u-boot/fs/reiserfs/reiserfs.c
wdenk 518e2e1ae3 * Patch by Pavel Bartusek, 21 Mar 2004
Add Reiserfs support

* Patch by Hinko Kocevar, 20 Mar 2004
  - Add auto-release for SMSC LAN91c111 driver
  - Add save/restore of PTR and PNR regs as suggested in datasheet
2004-03-25 14:59:05 +00:00

987 lines
28 KiB
C

/*
* Copyright 2000-2002 by Hans Reiser, licensing governed by reiserfs/README
*
* GRUB -- GRand Unified Bootloader
* Copyright (C) 2000, 2001 Free Software Foundation, Inc.
*
* (C) Copyright 2003 - 2004
* Sysgo AG, <www.elinos.com>, Pavel Bartusek <pba@sysgo.com>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* An implementation for the ReiserFS filesystem ported from GRUB.
* Some parts of this code (mainly the structures and defines) are
* from the original reiser fs code, as found in the linux kernel.
*/
#include <common.h>
#if (CONFIG_COMMANDS & CFG_CMD_REISER)
#include <malloc.h>
#include <linux/ctype.h>
#include <linux/time.h>
#include <asm/byteorder.h>
#include <reiserfs.h>
#include "reiserfs_private.h"
#undef REISERDEBUG
/* Some parts of this code (mainly the structures and defines) are
* from the original reiser fs code, as found in the linux kernel.
*/
static char fsys_buf[FSYS_BUFLEN];
static reiserfs_error_t errnum = ERR_NONE;
static int print_possibilities;
static unsigned int filepos, filemax;
static int
substring (const char *s1, const char *s2)
{
while (*s1 == *s2)
{
/* The strings match exactly. */
if (! *(s1++))
return 0;
s2 ++;
}
/* S1 is a substring of S2. */
if (*s1 == 0)
return -1;
/* S1 isn't a substring. */
return 1;
}
static void sd_print_item (struct item_head * ih, char * item)
{
char filetime[30];
time_t ttime;
if (stat_data_v1 (ih)) {
struct stat_data_v1 * sd = (struct stat_data_v1 *)item;
ttime = sd_v1_mtime(sd);
ctime_r(&ttime, filetime);
printf ("%-10s %4hd %6d %6d %9d %24.24s",
bb_mode_string(sd_v1_mode(sd)), sd_v1_nlink(sd),sd_v1_uid(sd), sd_v1_gid(sd),
sd_v1_size(sd), filetime);
} else {
struct stat_data * sd = (struct stat_data *)item;
ttime = sd_v2_mtime(sd);
ctime_r(&ttime, filetime);
printf ("%-10s %4d %6d %6d %9d %24.24s",
bb_mode_string(sd_v2_mode(sd)), sd_v2_nlink(sd),sd_v2_uid(sd),sd_v2_gid(sd),
(__u32) sd_v2_size(sd), filetime);
}
}
static int
journal_read (int block, int len, char *buffer)
{
return reiserfs_devread ((INFO->journal_block + block) << INFO->blocksize_shift,
0, len, buffer);
}
/* Read a block from ReiserFS file system, taking the journal into
* account. If the block nr is in the journal, the block from the
* journal taken.
*/
static int
block_read (unsigned int blockNr, int start, int len, char *buffer)
{
int transactions = INFO->journal_transactions;
int desc_block = INFO->journal_first_desc;
int journal_mask = INFO->journal_block_count - 1;
int translatedNr = blockNr;
__u32 *journal_table = JOURNAL_START;
while (transactions-- > 0)
{
int i = 0;
int j_len;
if (__le32_to_cpu(*journal_table) != 0xffffffff)
{
/* Search for the blockNr in cached journal */
j_len = __le32_to_cpu(*journal_table++);
while (i++ < j_len)
{
if (__le32_to_cpu(*journal_table++) == blockNr)
{
journal_table += j_len - i;
goto found;
}
}
}
else
{
/* This is the end of cached journal marker. The remaining
* transactions are still on disk.
*/
struct reiserfs_journal_desc desc;
struct reiserfs_journal_commit commit;
if (! journal_read (desc_block, sizeof (desc), (char *) &desc))
return 0;
j_len = __le32_to_cpu(desc.j_len);
while (i < j_len && i < JOURNAL_TRANS_HALF)
if (__le32_to_cpu(desc.j_realblock[i++]) == blockNr)
goto found;
if (j_len >= JOURNAL_TRANS_HALF)
{
int commit_block = (desc_block + 1 + j_len) & journal_mask;
if (! journal_read (commit_block,
sizeof (commit), (char *) &commit))
return 0;
while (i < j_len)
if (__le32_to_cpu(commit.j_realblock[i++ - JOURNAL_TRANS_HALF]) == blockNr)
goto found;
}
}
goto not_found;
found:
translatedNr = INFO->journal_block + ((desc_block + i) & journal_mask);
#ifdef REISERDEBUG
printf ("block_read: block %d is mapped to journal block %d.\n",
blockNr, translatedNr - INFO->journal_block);
#endif
/* We must continue the search, as this block may be overwritten
* in later transactions.
*/
not_found:
desc_block = (desc_block + 2 + j_len) & journal_mask;
}
return reiserfs_devread (translatedNr << INFO->blocksize_shift, start, len, buffer);
}
/* Init the journal data structure. We try to cache as much as
* possible in the JOURNAL_START-JOURNAL_END space, but if it is full
* we can still read the rest from the disk on demand.
*
* The first number of valid transactions and the descriptor block of the
* first valid transaction are held in INFO. The transactions are all
* adjacent, but we must take care of the journal wrap around.
*/
static int
journal_init (void)
{
unsigned int block_count = INFO->journal_block_count;
unsigned int desc_block;
unsigned int commit_block;
unsigned int next_trans_id;
struct reiserfs_journal_header header;
struct reiserfs_journal_desc desc;
struct reiserfs_journal_commit commit;
__u32 *journal_table = JOURNAL_START;
journal_read (block_count, sizeof (header), (char *) &header);
desc_block = __le32_to_cpu(header.j_first_unflushed_offset);
if (desc_block >= block_count)
return 0;
INFO->journal_first_desc = desc_block;
next_trans_id = __le32_to_cpu(header.j_last_flush_trans_id) + 1;
#ifdef REISERDEBUG
printf ("journal_init: last flushed %d\n",
__le32_to_cpu(header.j_last_flush_trans_id));
#endif
while (1)
{
journal_read (desc_block, sizeof (desc), (char *) &desc);
if (substring (JOURNAL_DESC_MAGIC, desc.j_magic) > 0
|| __le32_to_cpu(desc.j_trans_id) != next_trans_id
|| __le32_to_cpu(desc.j_mount_id) != __le32_to_cpu(header.j_mount_id))
/* no more valid transactions */
break;
commit_block = (desc_block + __le32_to_cpu(desc.j_len) + 1) & (block_count - 1);
journal_read (commit_block, sizeof (commit), (char *) &commit);
if (__le32_to_cpu(desc.j_trans_id) != commit.j_trans_id
|| __le32_to_cpu(desc.j_len) != __le32_to_cpu(commit.j_len))
/* no more valid transactions */
break;
#ifdef REISERDEBUG
printf ("Found valid transaction %d/%d at %d.\n",
__le32_to_cpu(desc.j_trans_id), __le32_to_cpu(desc.j_mount_id), desc_block);
#endif
next_trans_id++;
if (journal_table < JOURNAL_END)
{
if ((journal_table + 1 + __le32_to_cpu(desc.j_len)) >= JOURNAL_END)
{
/* The table is almost full; mark the end of the cached
* journal.*/
*journal_table = __cpu_to_le32(0xffffffff);
journal_table = JOURNAL_END;
}
else
{
unsigned int i;
/* Cache the length and the realblock numbers in the table.
* The block number of descriptor can easily be computed.
* and need not to be stored here.
*/
/* both are in the little endian format */
*journal_table++ = desc.j_len;
for (i = 0; i < __le32_to_cpu(desc.j_len) && i < JOURNAL_TRANS_HALF; i++)
{
/* both are in the little endian format */
*journal_table++ = desc.j_realblock[i];
#ifdef REISERDEBUG
printf ("block %d is in journal %d.\n",
__le32_to_cpu(desc.j_realblock[i]), desc_block);
#endif
}
for ( ; i < __le32_to_cpu(desc.j_len); i++)
{
/* both are in the little endian format */
*journal_table++ = commit.j_realblock[i-JOURNAL_TRANS_HALF];
#ifdef REISERDEBUG
printf ("block %d is in journal %d.\n",
__le32_to_cpu(commit.j_realblock[i-JOURNAL_TRANS_HALF]),
desc_block);
#endif
}
}
}
desc_block = (commit_block + 1) & (block_count - 1);
}
#ifdef REISERDEBUG
printf ("Transaction %d/%d at %d isn't valid.\n",
__le32_to_cpu(desc.j_trans_id), __le32_to_cpu(desc.j_mount_id), desc_block);
#endif
INFO->journal_transactions
= next_trans_id - __le32_to_cpu(header.j_last_flush_trans_id) - 1;
return errnum == 0;
}
/* check filesystem types and read superblock into memory buffer */
int
reiserfs_mount (unsigned part_length)
{
struct reiserfs_super_block super;
int superblock = REISERFS_DISK_OFFSET_IN_BYTES >> SECTOR_BITS;
if (part_length < superblock + (sizeof (super) >> SECTOR_BITS)
|| ! reiserfs_devread (superblock, 0, sizeof (struct reiserfs_super_block),
(char *) &super)
|| (substring (REISER3FS_SUPER_MAGIC_STRING, super.s_magic) > 0
&& substring (REISER2FS_SUPER_MAGIC_STRING, super.s_magic) > 0
&& substring (REISERFS_SUPER_MAGIC_STRING, super.s_magic) > 0)
|| (/* check that this is not a copy inside the journal log */
sb_journal_block(&super) * sb_blocksize(&super)
<= REISERFS_DISK_OFFSET_IN_BYTES))
{
/* Try old super block position */
superblock = REISERFS_OLD_DISK_OFFSET_IN_BYTES >> SECTOR_BITS;
if (part_length < superblock + (sizeof (super) >> SECTOR_BITS)
|| ! reiserfs_devread (superblock, 0, sizeof (struct reiserfs_super_block),
(char *) &super))
return 0;
if (substring (REISER2FS_SUPER_MAGIC_STRING, super.s_magic) > 0
&& substring (REISERFS_SUPER_MAGIC_STRING, super.s_magic) > 0)
{
/* pre journaling super block ? */
if (substring (REISERFS_SUPER_MAGIC_STRING,
(char*) ((int) &super + 20)) > 0)
return 0;
set_sb_blocksize(&super, REISERFS_OLD_BLOCKSIZE);
set_sb_journal_block(&super, 0);
set_sb_version(&super, 0);
}
}
/* check the version number. */
if (sb_version(&super) > REISERFS_MAX_SUPPORTED_VERSION)
return 0;
INFO->version = sb_version(&super);
INFO->blocksize = sb_blocksize(&super);
INFO->fullblocksize_shift = log2 (sb_blocksize(&super));
INFO->blocksize_shift = INFO->fullblocksize_shift - SECTOR_BITS;
INFO->cached_slots =
(FSYSREISER_CACHE_SIZE >> INFO->fullblocksize_shift) - 1;
#ifdef REISERDEBUG
printf ("reiserfs_mount: version=%d, blocksize=%d\n",
INFO->version, INFO->blocksize);
#endif /* REISERDEBUG */
/* Clear node cache. */
memset (INFO->blocks, 0, sizeof (INFO->blocks));
if (sb_blocksize(&super) < FSYSREISER_MIN_BLOCKSIZE
|| sb_blocksize(&super) > FSYSREISER_MAX_BLOCKSIZE
|| (SECTOR_SIZE << INFO->blocksize_shift) != sb_blocksize(&super))
return 0;
/* Initialize journal code. If something fails we end with zero
* journal_transactions, so we don't access the journal at all.
*/
INFO->journal_transactions = 0;
if (sb_journal_block(&super) != 0 && super.s_journal_dev == 0)
{
INFO->journal_block = sb_journal_block(&super);
INFO->journal_block_count = sb_journal_size(&super);
if (is_power_of_two (INFO->journal_block_count))
journal_init ();
/* Read in super block again, maybe it is in the journal */
block_read (superblock >> INFO->blocksize_shift,
0, sizeof (struct reiserfs_super_block), (char *) &super);
}
if (! block_read (sb_root_block(&super), 0, INFO->blocksize, (char*) ROOT))
return 0;
INFO->tree_depth = __le16_to_cpu(BLOCKHEAD (ROOT)->blk_level);
#ifdef REISERDEBUG
printf ("root read_in: block=%d, depth=%d\n",
sb_root_block(&super), INFO->tree_depth);
#endif /* REISERDEBUG */
if (INFO->tree_depth >= MAX_HEIGHT)
return 0;
if (INFO->tree_depth == DISK_LEAF_NODE_LEVEL)
{
/* There is only one node in the whole filesystem,
* which is simultanously leaf and root */
memcpy (LEAF, ROOT, INFO->blocksize);
}
return 1;
}
/***************** TREE ACCESSING METHODS *****************************/
/* I assume you are familiar with the ReiserFS tree, if not go to
* http://www.namesys.com/content_table.html
*
* My tree node cache is organized as following
* 0 ROOT node
* 1 LEAF node (if the ROOT is also a LEAF it is copied here
* 2-n other nodes on current path from bottom to top.
* if there is not enough space in the cache, the top most are
* omitted.
*
* I have only two methods to find a key in the tree:
* search_stat(dir_id, objectid) searches for the stat entry (always
* the first entry) of an object.
* next_key() gets the next key in tree order.
*
* This means, that I can only sequential reads of files are
* efficient, but this really doesn't hurt for grub.
*/
/* Read in the node at the current path and depth into the node cache.
* You must set INFO->blocks[depth] before.
*/
static char *
read_tree_node (unsigned int blockNr, int depth)
{
char* cache = CACHE(depth);
int num_cached = INFO->cached_slots;
if (depth < num_cached)
{
/* This is the cached part of the path. Check if same block is
* needed.
*/
if (blockNr == INFO->blocks[depth])
return cache;
}
else
cache = CACHE(num_cached);
#ifdef REISERDEBUG
printf (" next read_in: block=%d (depth=%d)\n",
blockNr, depth);
#endif /* REISERDEBUG */
if (! block_read (blockNr, 0, INFO->blocksize, cache))
return 0;
/* Make sure it has the right node level */
if (__le16_to_cpu(BLOCKHEAD (cache)->blk_level) != depth)
{
errnum = ERR_FSYS_CORRUPT;
return 0;
}
INFO->blocks[depth] = blockNr;
return cache;
}
/* Get the next key, i.e. the key following the last retrieved key in
* tree order. INFO->current_ih and
* INFO->current_info are adapted accordingly. */
static int
next_key (void)
{
int depth;
struct item_head *ih = INFO->current_ih + 1;
char *cache;
#ifdef REISERDEBUG
printf ("next_key:\n old ih: key %d:%d:%d:%d version:%d\n",
__le32_to_cpu(INFO->current_ih->ih_key.k_dir_id),
__le32_to_cpu(INFO->current_ih->ih_key.k_objectid),
__le32_to_cpu(INFO->current_ih->ih_key.u.v1.k_offset),
__le32_to_cpu(INFO->current_ih->ih_key.u.v1.k_uniqueness),
__le16_to_cpu(INFO->current_ih->ih_version));
#endif /* REISERDEBUG */
if (ih == &ITEMHEAD[__le16_to_cpu(BLOCKHEAD (LEAF)->blk_nr_item)])
{
depth = DISK_LEAF_NODE_LEVEL;
/* The last item, was the last in the leaf node.
* Read in the next block
*/
do
{
if (depth == INFO->tree_depth)
{
/* There are no more keys at all.
* Return a dummy item with MAX_KEY */
ih = (struct item_head *) &BLOCKHEAD (LEAF)->blk_right_delim_key;
goto found;
}
depth++;
#ifdef REISERDEBUG
printf (" depth=%d, i=%d\n", depth, INFO->next_key_nr[depth]);
#endif /* REISERDEBUG */
}
while (INFO->next_key_nr[depth] == 0);
if (depth == INFO->tree_depth)
cache = ROOT;
else if (depth <= INFO->cached_slots)
cache = CACHE (depth);
else
{
cache = read_tree_node (INFO->blocks[depth], depth);
if (! cache)
return 0;
}
do
{
int nr_item = __le16_to_cpu(BLOCKHEAD (cache)->blk_nr_item);
int key_nr = INFO->next_key_nr[depth]++;
#ifdef REISERDEBUG
printf (" depth=%d, i=%d/%d\n", depth, key_nr, nr_item);
#endif /* REISERDEBUG */
if (key_nr == nr_item)
/* This is the last item in this block, set the next_key_nr to 0 */
INFO->next_key_nr[depth] = 0;
cache = read_tree_node (dc_block_number(&(DC (cache)[key_nr])), --depth);
if (! cache)
return 0;
}
while (depth > DISK_LEAF_NODE_LEVEL);
ih = ITEMHEAD;
}
found:
INFO->current_ih = ih;
INFO->current_item = &LEAF[__le16_to_cpu(ih->ih_item_location)];
#ifdef REISERDEBUG
printf (" new ih: key %d:%d:%d:%d version:%d\n",
__le32_to_cpu(INFO->current_ih->ih_key.k_dir_id),
__le32_to_cpu(INFO->current_ih->ih_key.k_objectid),
__le32_to_cpu(INFO->current_ih->ih_key.u.v1.k_offset),
__le32_to_cpu(INFO->current_ih->ih_key.u.v1.k_uniqueness),
__le16_to_cpu(INFO->current_ih->ih_version));
#endif /* REISERDEBUG */
return 1;
}
/* preconditions: reiserfs_mount already executed, therefore
* INFO block is valid
* returns: 0 if error (errnum is set),
* nonzero iff we were able to find the key successfully.
* postconditions: on a nonzero return, the current_ih and
* current_item fields describe the key that equals the
* searched key. INFO->next_key contains the next key after
* the searched key.
* side effects: messes around with the cache.
*/
static int
search_stat (__u32 dir_id, __u32 objectid)
{
char *cache;
int depth;
int nr_item;
int i;
struct item_head *ih;
#ifdef REISERDEBUG
printf ("search_stat:\n key %d:%d:0:0\n", dir_id, objectid);
#endif /* REISERDEBUG */
depth = INFO->tree_depth;
cache = ROOT;
while (depth > DISK_LEAF_NODE_LEVEL)
{
struct key *key;
nr_item = __le16_to_cpu(BLOCKHEAD (cache)->blk_nr_item);
key = KEY (cache);
for (i = 0; i < nr_item; i++)
{
if (__le32_to_cpu(key->k_dir_id) > dir_id
|| (__le32_to_cpu(key->k_dir_id) == dir_id
&& (__le32_to_cpu(key->k_objectid) > objectid
|| (__le32_to_cpu(key->k_objectid) == objectid
&& (__le32_to_cpu(key->u.v1.k_offset)
| __le32_to_cpu(key->u.v1.k_uniqueness)) > 0))))
break;
key++;
}
#ifdef REISERDEBUG
printf (" depth=%d, i=%d/%d\n", depth, i, nr_item);
#endif /* REISERDEBUG */
INFO->next_key_nr[depth] = (i == nr_item) ? 0 : i+1;
cache = read_tree_node (dc_block_number(&(DC (cache)[i])), --depth);
if (! cache)
return 0;
}
/* cache == LEAF */
nr_item = __le16_to_cpu(BLOCKHEAD (LEAF)->blk_nr_item);
ih = ITEMHEAD;
for (i = 0; i < nr_item; i++)
{
if (__le32_to_cpu(ih->ih_key.k_dir_id) == dir_id
&& __le32_to_cpu(ih->ih_key.k_objectid) == objectid
&& __le32_to_cpu(ih->ih_key.u.v1.k_offset) == 0
&& __le32_to_cpu(ih->ih_key.u.v1.k_uniqueness) == 0)
{
#ifdef REISERDEBUG
printf (" depth=%d, i=%d/%d\n", depth, i, nr_item);
#endif /* REISERDEBUG */
INFO->current_ih = ih;
INFO->current_item = &LEAF[__le16_to_cpu(ih->ih_item_location)];
return 1;
}
ih++;
}
errnum = ERR_FSYS_CORRUPT;
return 0;
}
int
reiserfs_read (char *buf, unsigned len)
{
unsigned int blocksize;
unsigned int offset;
unsigned int to_read;
char *prev_buf = buf;
#ifdef REISERDEBUG
printf ("reiserfs_read: filepos=%d len=%d, offset=%Lx\n",
filepos, len, (__u64) IH_KEY_OFFSET (INFO->current_ih) - 1);
#endif /* REISERDEBUG */
if (__le32_to_cpu(INFO->current_ih->ih_key.k_objectid) != INFO->fileinfo.k_objectid
|| IH_KEY_OFFSET (INFO->current_ih) > filepos + 1)
{
search_stat (INFO->fileinfo.k_dir_id, INFO->fileinfo.k_objectid);
goto get_next_key;
}
while (! errnum)
{
if (__le32_to_cpu(INFO->current_ih->ih_key.k_objectid) != INFO->fileinfo.k_objectid) {
break;
}
offset = filepos - IH_KEY_OFFSET (INFO->current_ih) + 1;
blocksize = __le16_to_cpu(INFO->current_ih->ih_item_len);
#ifdef REISERDEBUG
printf (" loop: filepos=%d len=%d, offset=%d blocksize=%d\n",
filepos, len, offset, blocksize);
#endif /* REISERDEBUG */
if (IH_KEY_ISTYPE(INFO->current_ih, TYPE_DIRECT)
&& offset < blocksize)
{
#ifdef REISERDEBUG
printf ("direct_read: offset=%d, blocksize=%d\n",
offset, blocksize);
#endif /* REISERDEBUG */
to_read = blocksize - offset;
if (to_read > len)
to_read = len;
memcpy (buf, INFO->current_item + offset, to_read);
goto update_buf_len;
}
else if (IH_KEY_ISTYPE(INFO->current_ih, TYPE_INDIRECT))
{
blocksize = (blocksize >> 2) << INFO->fullblocksize_shift;
#ifdef REISERDEBUG
printf ("indirect_read: offset=%d, blocksize=%d\n",
offset, blocksize);
#endif /* REISERDEBUG */
while (offset < blocksize)
{
__u32 blocknr = __le32_to_cpu(((__u32 *) INFO->current_item)
[offset >> INFO->fullblocksize_shift]);
int blk_offset = offset & (INFO->blocksize-1);
to_read = INFO->blocksize - blk_offset;
if (to_read > len)
to_read = len;
/* Journal is only for meta data. Data blocks can be read
* directly without using block_read
*/
reiserfs_devread (blocknr << INFO->blocksize_shift,
blk_offset, to_read, buf);
update_buf_len:
len -= to_read;
buf += to_read;
offset += to_read;
filepos += to_read;
if (len == 0)
goto done;
}
}
get_next_key:
next_key ();
}
done:
return errnum ? 0 : buf - prev_buf;
}
/* preconditions: reiserfs_mount already executed, therefore
* INFO block is valid
* returns: 0 if error, nonzero iff we were able to find the file successfully
* postconditions: on a nonzero return, INFO->fileinfo contains the info
* of the file we were trying to look up, filepos is 0 and filemax is
* the size of the file.
*/
static int
reiserfs_dir (char *dirname)
{
struct reiserfs_de_head *de_head;
char *rest, ch;
__u32 dir_id, objectid, parent_dir_id = 0, parent_objectid = 0;
#ifndef STAGE1_5
int do_possibilities = 0;
#endif /* ! STAGE1_5 */
char linkbuf[PATH_MAX]; /* buffer for following symbolic links */
int link_count = 0;
int mode;
dir_id = REISERFS_ROOT_PARENT_OBJECTID;
objectid = REISERFS_ROOT_OBJECTID;
while (1)
{
#ifdef REISERDEBUG
printf ("dirname=%s\n", dirname);
#endif /* REISERDEBUG */
/* Search for the stat info first. */
if (! search_stat (dir_id, objectid))
return 0;
#ifdef REISERDEBUG
printf ("sd_mode=%x sd_size=%d\n",
stat_data_v1(INFO->current_ih) ? sd_v1_mode((struct stat_data_v1 *) INFO->current_item) :
sd_v2_mode((struct stat_data *) (INFO->current_item)),
stat_data_v1(INFO->current_ih) ? sd_v1_size((struct stat_data_v1 *) INFO->current_item) :
sd_v2_size((struct stat_data *) INFO->current_item)
);
#endif /* REISERDEBUG */
mode = stat_data_v1(INFO->current_ih) ?
sd_v1_mode((struct stat_data_v1 *) INFO->current_item) :
sd_v2_mode((struct stat_data *) INFO->current_item);
/* If we've got a symbolic link, then chase it. */
if (S_ISLNK (mode))
{
unsigned int len;
if (++link_count > MAX_LINK_COUNT)
{
errnum = ERR_SYMLINK_LOOP;
return 0;
}
/* Get the symlink size. */
filemax = stat_data_v1(INFO->current_ih) ?
sd_v1_size((struct stat_data_v1 *) INFO->current_item) :
sd_v2_size((struct stat_data *) INFO->current_item);
/* Find out how long our remaining name is. */
len = 0;
while (dirname[len] && !isspace (dirname[len]))
len++;
if (filemax + len > sizeof (linkbuf) - 1)
{
errnum = ERR_FILELENGTH;
return 0;
}
/* Copy the remaining name to the end of the symlink data.
Note that DIRNAME and LINKBUF may overlap! */
memmove (linkbuf + filemax, dirname, len+1);
INFO->fileinfo.k_dir_id = dir_id;
INFO->fileinfo.k_objectid = objectid;
filepos = 0;
if (! next_key ()
|| reiserfs_read (linkbuf, filemax) != filemax)
{
if (! errnum)
errnum = ERR_FSYS_CORRUPT;
return 0;
}
#ifdef REISERDEBUG
printf ("symlink=%s\n", linkbuf);
#endif /* REISERDEBUG */
dirname = linkbuf;
if (*dirname == '/')
{
/* It's an absolute link, so look it up in root. */
dir_id = REISERFS_ROOT_PARENT_OBJECTID;
objectid = REISERFS_ROOT_OBJECTID;
}
else
{
/* Relative, so look it up in our parent directory. */
dir_id = parent_dir_id;
objectid = parent_objectid;
}
/* Now lookup the new name. */
continue;
}
/* if we have a real file (and we're not just printing possibilities),
then this is where we want to exit */
if (! *dirname || isspace (*dirname))
{
if (! S_ISREG (mode))
{
errnum = ERR_BAD_FILETYPE;
return 0;
}
filepos = 0;
filemax = stat_data_v1(INFO->current_ih) ?
sd_v1_size((struct stat_data_v1 *) INFO->current_item) :
sd_v2_size((struct stat_data *) INFO->current_item);
#if 0
/* If this is a new stat data and size is > 4GB set filemax to
* maximum
*/
if (__le16_to_cpu(INFO->current_ih->ih_version) == ITEM_VERSION_2
&& sd_size_hi((struct stat_data *) INFO->current_item) > 0)
filemax = 0xffffffff;
#endif
INFO->fileinfo.k_dir_id = dir_id;
INFO->fileinfo.k_objectid = objectid;
return next_key ();
}
/* continue with the file/directory name interpretation */
while (*dirname == '/')
dirname++;
if (! S_ISDIR (mode))
{
errnum = ERR_BAD_FILETYPE;
return 0;
}
for (rest = dirname; (ch = *rest) && ! isspace (ch) && ch != '/'; rest++);
*rest = 0;
# ifndef STAGE1_5
if (print_possibilities && ch != '/')
do_possibilities = 1;
# endif /* ! STAGE1_5 */
while (1)
{
char *name_end;
int num_entries;
if (! next_key ())
return 0;
#ifdef REISERDEBUG
printf ("ih: key %d:%d:%d:%d version:%d\n",
__le32_to_cpu(INFO->current_ih->ih_key.k_dir_id),
__le32_to_cpu(INFO->current_ih->ih_key.k_objectid),
__le32_to_cpu(INFO->current_ih->ih_key.u.v1.k_offset),
__le32_to_cpu(INFO->current_ih->ih_key.u.v1.k_uniqueness),
__le16_to_cpu(INFO->current_ih->ih_version));
#endif /* REISERDEBUG */
if (__le32_to_cpu(INFO->current_ih->ih_key.k_objectid) != objectid)
break;
name_end = INFO->current_item + __le16_to_cpu(INFO->current_ih->ih_item_len);
de_head = (struct reiserfs_de_head *) INFO->current_item;
num_entries = __le16_to_cpu(INFO->current_ih->u.ih_entry_count);
while (num_entries > 0)
{
char *filename = INFO->current_item + deh_location(de_head);
char tmp = *name_end;
if ((deh_state(de_head) & DEH_Visible))
{
int cmp;
/* Directory names in ReiserFS are not null
* terminated. We write a temporary 0 behind it.
* NOTE: that this may overwrite the first block in
* the tree cache. That doesn't hurt as long as we
* don't call next_key () in between.
*/
*name_end = 0;
cmp = substring (dirname, filename);
*name_end = tmp;
# ifndef STAGE1_5
if (do_possibilities)
{
if (cmp <= 0)
{
char fn[PATH_MAX];
struct fsys_reiser_info info_save;
if (print_possibilities > 0)
print_possibilities = -print_possibilities;
*name_end = 0;
strcpy(fn, filename);
*name_end = tmp;
/* If NAME is "." or "..", do not count it. */
if (strcmp (fn, ".") != 0 && strcmp (fn, "..") != 0) {
memcpy(&info_save, INFO, sizeof(struct fsys_reiser_info));
search_stat (deh_dir_id(de_head), deh_objectid(de_head));
sd_print_item(INFO->current_ih, INFO->current_item);
printf(" %s\n", fn);
search_stat (dir_id, objectid);
memcpy(INFO, &info_save, sizeof(struct fsys_reiser_info));
}
}
}
else
# endif /* ! STAGE1_5 */
if (cmp == 0)
goto found;
}
/* The beginning of this name marks the end of the next name.
*/
name_end = filename;
de_head++;
num_entries--;
}
}
# ifndef STAGE1_5
if (print_possibilities < 0)
return 1;
# endif /* ! STAGE1_5 */
errnum = ERR_FILE_NOT_FOUND;
*rest = ch;
return 0;
found:
*rest = ch;
dirname = rest;
parent_dir_id = dir_id;
parent_objectid = objectid;
dir_id = deh_dir_id(de_head);
objectid = deh_objectid(de_head);
}
}
/*
* U-Boot interface functions
*/
/*
* List given directory
*
* RETURN: 0 - OK, else grub_error_t errnum
*/
int
reiserfs_ls (char *dirname)
{
char *dir_slash;
int res;
errnum = 0;
dir_slash = malloc(strlen(dirname) + 1);
if (dir_slash == NULL) {
return ERR_NUMBER_OVERFLOW;
}
strcpy(dir_slash, dirname);
/* add "/" to the directory name */
strcat(dir_slash, "/");
print_possibilities = 1;
res = reiserfs_dir (dir_slash);
free(dir_slash);
if (!res || errnum) {
return errnum;
}
return 0;
}
/*
* Open file for reading
*
* RETURN: >0 - OK, size of opened file
* <0 - ERROR -grub_error_t errnum
*/
int
reiserfs_open (char *filename)
{
/* open the file */
errnum = 0;
print_possibilities = 0;
if (!reiserfs_dir (filename) || errnum) {
return -errnum;
}
return filemax;
}
#endif /* CFG_CMD_REISER */