u-boot/lib/fdtdec.c
Tom Rini 11232139e3 nds32: Remove the architecture
As removal of nds32 has been ack'd for the Linux kernel, remove support
here as well.

Cc: Rick Chen <rick@andestech.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Rick Chen <rick@andestech.com>
2022-04-25 16:04:05 -04:00

1819 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2011 The Chromium OS Authors.
*/
#ifndef USE_HOSTCC
#include <common.h>
#include <boot_fit.h>
#include <dm.h>
#include <hang.h>
#include <init.h>
#include <log.h>
#include <malloc.h>
#include <net.h>
#include <dm/of_extra.h>
#include <env.h>
#include <errno.h>
#include <fdtdec.h>
#include <fdt_support.h>
#include <gzip.h>
#include <mapmem.h>
#include <linux/libfdt.h>
#include <serial.h>
#include <asm/global_data.h>
#include <asm/sections.h>
#include <linux/ctype.h>
#include <linux/lzo.h>
#include <linux/ioport.h>
DECLARE_GLOBAL_DATA_PTR;
/*
* Here are the type we know about. One day we might allow drivers to
* register. For now we just put them here. The COMPAT macro allows us to
* turn this into a sparse list later, and keeps the ID with the name.
*
* NOTE: This list is basically a TODO list for things that need to be
* converted to driver model. So don't add new things here unless there is a
* good reason why driver-model conversion is infeasible. Examples include
* things which are used before driver model is available.
*/
#define COMPAT(id, name) name
static const char * const compat_names[COMPAT_COUNT] = {
COMPAT(UNKNOWN, "<none>"),
COMPAT(NVIDIA_TEGRA20_EMC, "nvidia,tegra20-emc"),
COMPAT(NVIDIA_TEGRA20_EMC_TABLE, "nvidia,tegra20-emc-table"),
COMPAT(NVIDIA_TEGRA20_NAND, "nvidia,tegra20-nand"),
COMPAT(NVIDIA_TEGRA124_XUSB_PADCTL, "nvidia,tegra124-xusb-padctl"),
COMPAT(NVIDIA_TEGRA210_XUSB_PADCTL, "nvidia,tegra210-xusb-padctl"),
COMPAT(SAMSUNG_EXYNOS_USB_PHY, "samsung,exynos-usb-phy"),
COMPAT(SAMSUNG_EXYNOS5_USB3_PHY, "samsung,exynos5250-usb3-phy"),
COMPAT(SAMSUNG_EXYNOS_TMU, "samsung,exynos-tmu"),
COMPAT(SAMSUNG_EXYNOS_MIPI_DSI, "samsung,exynos-mipi-dsi"),
COMPAT(SAMSUNG_EXYNOS_DWMMC, "samsung,exynos-dwmmc"),
COMPAT(GENERIC_SPI_FLASH, "jedec,spi-nor"),
COMPAT(SAMSUNG_EXYNOS_SYSMMU, "samsung,sysmmu-v3.3"),
COMPAT(INTEL_MICROCODE, "intel,microcode"),
COMPAT(INTEL_QRK_MRC, "intel,quark-mrc"),
COMPAT(ALTERA_SOCFPGA_DWMAC, "altr,socfpga-stmmac"),
COMPAT(ALTERA_SOCFPGA_DWMMC, "altr,socfpga-dw-mshc"),
COMPAT(ALTERA_SOCFPGA_DWC2USB, "snps,dwc2"),
COMPAT(INTEL_BAYTRAIL_FSP, "intel,baytrail-fsp"),
COMPAT(INTEL_BAYTRAIL_FSP_MDP, "intel,baytrail-fsp-mdp"),
COMPAT(INTEL_IVYBRIDGE_FSP, "intel,ivybridge-fsp"),
COMPAT(COMPAT_SUNXI_NAND, "allwinner,sun4i-a10-nand"),
COMPAT(ALTERA_SOCFPGA_CLK, "altr,clk-mgr"),
COMPAT(ALTERA_SOCFPGA_PINCTRL_SINGLE, "pinctrl-single"),
COMPAT(ALTERA_SOCFPGA_H2F_BRG, "altr,socfpga-hps2fpga-bridge"),
COMPAT(ALTERA_SOCFPGA_LWH2F_BRG, "altr,socfpga-lwhps2fpga-bridge"),
COMPAT(ALTERA_SOCFPGA_F2H_BRG, "altr,socfpga-fpga2hps-bridge"),
COMPAT(ALTERA_SOCFPGA_F2SDR0, "altr,socfpga-fpga2sdram0-bridge"),
COMPAT(ALTERA_SOCFPGA_F2SDR1, "altr,socfpga-fpga2sdram1-bridge"),
COMPAT(ALTERA_SOCFPGA_F2SDR2, "altr,socfpga-fpga2sdram2-bridge"),
COMPAT(ALTERA_SOCFPGA_FPGA0, "altr,socfpga-a10-fpga-mgr"),
COMPAT(ALTERA_SOCFPGA_NOC, "altr,socfpga-a10-noc"),
COMPAT(ALTERA_SOCFPGA_CLK_INIT, "altr,socfpga-a10-clk-init")
};
static const char *const fdt_src_name[] = {
[FDTSRC_SEPARATE] = "separate",
[FDTSRC_FIT] = "fit",
[FDTSRC_BOARD] = "board",
[FDTSRC_EMBED] = "embed",
[FDTSRC_ENV] = "env",
};
const char *fdtdec_get_srcname(void)
{
return fdt_src_name[gd->fdt_src];
}
const char *fdtdec_get_compatible(enum fdt_compat_id id)
{
/* We allow reading of the 'unknown' ID for testing purposes */
assert(id >= 0 && id < COMPAT_COUNT);
return compat_names[id];
}
fdt_addr_t fdtdec_get_addr_size_fixed(const void *blob, int node,
const char *prop_name, int index, int na,
int ns, fdt_size_t *sizep,
bool translate)
{
const fdt32_t *prop, *prop_end;
const fdt32_t *prop_addr, *prop_size, *prop_after_size;
int len;
fdt_addr_t addr;
debug("%s: %s: ", __func__, prop_name);
prop = fdt_getprop(blob, node, prop_name, &len);
if (!prop) {
debug("(not found)\n");
return FDT_ADDR_T_NONE;
}
prop_end = prop + (len / sizeof(*prop));
prop_addr = prop + (index * (na + ns));
prop_size = prop_addr + na;
prop_after_size = prop_size + ns;
if (prop_after_size > prop_end) {
debug("(not enough data: expected >= %d cells, got %d cells)\n",
(u32)(prop_after_size - prop), ((u32)(prop_end - prop)));
return FDT_ADDR_T_NONE;
}
#if CONFIG_IS_ENABLED(OF_TRANSLATE)
if (translate)
addr = fdt_translate_address(blob, node, prop_addr);
else
#endif
addr = fdtdec_get_number(prop_addr, na);
if (sizep) {
*sizep = fdtdec_get_number(prop_size, ns);
debug("addr=%08llx, size=%llx\n", (unsigned long long)addr,
(unsigned long long)*sizep);
} else {
debug("addr=%08llx\n", (unsigned long long)addr);
}
return addr;
}
fdt_addr_t fdtdec_get_addr_size_auto_parent(const void *blob, int parent,
int node, const char *prop_name,
int index, fdt_size_t *sizep,
bool translate)
{
int na, ns;
debug("%s: ", __func__);
na = fdt_address_cells(blob, parent);
if (na < 1) {
debug("(bad #address-cells)\n");
return FDT_ADDR_T_NONE;
}
ns = fdt_size_cells(blob, parent);
if (ns < 0) {
debug("(bad #size-cells)\n");
return FDT_ADDR_T_NONE;
}
debug("na=%d, ns=%d, ", na, ns);
return fdtdec_get_addr_size_fixed(blob, node, prop_name, index, na,
ns, sizep, translate);
}
fdt_addr_t fdtdec_get_addr_size_auto_noparent(const void *blob, int node,
const char *prop_name, int index,
fdt_size_t *sizep,
bool translate)
{
int parent;
debug("%s: ", __func__);
parent = fdt_parent_offset(blob, node);
if (parent < 0) {
debug("(no parent found)\n");
return FDT_ADDR_T_NONE;
}
return fdtdec_get_addr_size_auto_parent(blob, parent, node, prop_name,
index, sizep, translate);
}
fdt_addr_t fdtdec_get_addr_size(const void *blob, int node,
const char *prop_name, fdt_size_t *sizep)
{
int ns = sizep ? (sizeof(fdt_size_t) / sizeof(fdt32_t)) : 0;
return fdtdec_get_addr_size_fixed(blob, node, prop_name, 0,
sizeof(fdt_addr_t) / sizeof(fdt32_t),
ns, sizep, false);
}
fdt_addr_t fdtdec_get_addr(const void *blob, int node, const char *prop_name)
{
return fdtdec_get_addr_size(blob, node, prop_name, NULL);
}
int fdtdec_get_pci_vendev(const void *blob, int node, u16 *vendor, u16 *device)
{
const char *list, *end;
int len;
list = fdt_getprop(blob, node, "compatible", &len);
if (!list)
return -ENOENT;
end = list + len;
while (list < end) {
len = strlen(list);
if (len >= strlen("pciVVVV,DDDD")) {
char *s = strstr(list, "pci");
/*
* check if the string is something like pciVVVV,DDDD.RR
* or just pciVVVV,DDDD
*/
if (s && s[7] == ',' &&
(s[12] == '.' || s[12] == 0)) {
s += 3;
*vendor = simple_strtol(s, NULL, 16);
s += 5;
*device = simple_strtol(s, NULL, 16);
return 0;
}
}
list += (len + 1);
}
return -ENOENT;
}
int fdtdec_get_pci_bar32(const struct udevice *dev, struct fdt_pci_addr *addr,
u32 *bar)
{
int barnum;
/* extract the bar number from fdt_pci_addr */
barnum = addr->phys_hi & 0xff;
if (barnum < PCI_BASE_ADDRESS_0 || barnum > PCI_CARDBUS_CIS)
return -EINVAL;
barnum = (barnum - PCI_BASE_ADDRESS_0) / 4;
*bar = dm_pci_read_bar32(dev, barnum);
return 0;
}
int fdtdec_get_pci_bus_range(const void *blob, int node,
struct fdt_resource *res)
{
const u32 *values;
int len;
values = fdt_getprop(blob, node, "bus-range", &len);
if (!values || len < sizeof(*values) * 2)
return -EINVAL;
res->start = fdt32_to_cpu(*values++);
res->end = fdt32_to_cpu(*values);
return 0;
}
uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name,
uint64_t default_val)
{
const unaligned_fdt64_t *cell64;
int length;
cell64 = fdt_getprop(blob, node, prop_name, &length);
if (!cell64 || length < sizeof(*cell64))
return default_val;
return fdt64_to_cpu(*cell64);
}
int fdtdec_get_is_enabled(const void *blob, int node)
{
const char *cell;
/*
* It should say "okay", so only allow that. Some fdts use "ok" but
* this is a bug. Please fix your device tree source file. See here
* for discussion:
*
* http://www.mail-archive.com/u-boot@lists.denx.de/msg71598.html
*/
cell = fdt_getprop(blob, node, "status", NULL);
if (cell)
return strcmp(cell, "okay") == 0;
return 1;
}
enum fdt_compat_id fdtdec_lookup(const void *blob, int node)
{
enum fdt_compat_id id;
/* Search our drivers */
for (id = COMPAT_UNKNOWN; id < COMPAT_COUNT; id++)
if (fdt_node_check_compatible(blob, node,
compat_names[id]) == 0)
return id;
return COMPAT_UNKNOWN;
}
int fdtdec_next_compatible(const void *blob, int node, enum fdt_compat_id id)
{
return fdt_node_offset_by_compatible(blob, node, compat_names[id]);
}
int fdtdec_next_compatible_subnode(const void *blob, int node,
enum fdt_compat_id id, int *depthp)
{
do {
node = fdt_next_node(blob, node, depthp);
} while (*depthp > 1);
/* If this is a direct subnode, and compatible, return it */
if (*depthp == 1 && 0 == fdt_node_check_compatible(
blob, node, compat_names[id]))
return node;
return -FDT_ERR_NOTFOUND;
}
int fdtdec_next_alias(const void *blob, const char *name, enum fdt_compat_id id,
int *upto)
{
#define MAX_STR_LEN 20
char str[MAX_STR_LEN + 20];
int node, err;
/* snprintf() is not available */
assert(strlen(name) < MAX_STR_LEN);
sprintf(str, "%.*s%d", MAX_STR_LEN, name, *upto);
node = fdt_path_offset(blob, str);
if (node < 0)
return node;
err = fdt_node_check_compatible(blob, node, compat_names[id]);
if (err < 0)
return err;
if (err)
return -FDT_ERR_NOTFOUND;
(*upto)++;
return node;
}
int fdtdec_find_aliases_for_id(const void *blob, const char *name,
enum fdt_compat_id id, int *node_list,
int maxcount)
{
memset(node_list, '\0', sizeof(*node_list) * maxcount);
return fdtdec_add_aliases_for_id(blob, name, id, node_list, maxcount);
}
/* TODO: Can we tighten this code up a little? */
int fdtdec_add_aliases_for_id(const void *blob, const char *name,
enum fdt_compat_id id, int *node_list,
int maxcount)
{
int name_len = strlen(name);
int nodes[maxcount];
int num_found = 0;
int offset, node;
int alias_node;
int count;
int i, j;
/* find the alias node if present */
alias_node = fdt_path_offset(blob, "/aliases");
/*
* start with nothing, and we can assume that the root node can't
* match
*/
memset(nodes, '\0', sizeof(nodes));
/* First find all the compatible nodes */
for (node = count = 0; node >= 0 && count < maxcount;) {
node = fdtdec_next_compatible(blob, node, id);
if (node >= 0)
nodes[count++] = node;
}
if (node >= 0)
debug("%s: warning: maxcount exceeded with alias '%s'\n",
__func__, name);
/* Now find all the aliases */
for (offset = fdt_first_property_offset(blob, alias_node);
offset > 0;
offset = fdt_next_property_offset(blob, offset)) {
const struct fdt_property *prop;
const char *path;
int number;
int found;
node = 0;
prop = fdt_get_property_by_offset(blob, offset, NULL);
path = fdt_string(blob, fdt32_to_cpu(prop->nameoff));
if (prop->len && 0 == strncmp(path, name, name_len))
node = fdt_path_offset(blob, prop->data);
if (node <= 0)
continue;
/* Get the alias number */
number = dectoul(path + name_len, NULL);
if (number < 0 || number >= maxcount) {
debug("%s: warning: alias '%s' is out of range\n",
__func__, path);
continue;
}
/* Make sure the node we found is actually in our list! */
found = -1;
for (j = 0; j < count; j++)
if (nodes[j] == node) {
found = j;
break;
}
if (found == -1) {
debug("%s: warning: alias '%s' points to a node "
"'%s' that is missing or is not compatible "
" with '%s'\n", __func__, path,
fdt_get_name(blob, node, NULL),
compat_names[id]);
continue;
}
/*
* Add this node to our list in the right place, and mark
* it as done.
*/
if (fdtdec_get_is_enabled(blob, node)) {
if (node_list[number]) {
debug("%s: warning: alias '%s' requires that "
"a node be placed in the list in a "
"position which is already filled by "
"node '%s'\n", __func__, path,
fdt_get_name(blob, node, NULL));
continue;
}
node_list[number] = node;
if (number >= num_found)
num_found = number + 1;
}
nodes[found] = 0;
}
/* Add any nodes not mentioned by an alias */
for (i = j = 0; i < maxcount; i++) {
if (!node_list[i]) {
for (; j < maxcount; j++)
if (nodes[j] &&
fdtdec_get_is_enabled(blob, nodes[j]))
break;
/* Have we run out of nodes to add? */
if (j == maxcount)
break;
assert(!node_list[i]);
node_list[i] = nodes[j++];
if (i >= num_found)
num_found = i + 1;
}
}
return num_found;
}
int fdtdec_get_alias_seq(const void *blob, const char *base, int offset,
int *seqp)
{
int base_len = strlen(base);
const char *find_name;
int find_namelen;
int prop_offset;
int aliases;
find_name = fdt_get_name(blob, offset, &find_namelen);
debug("Looking for '%s' at %d, name %s\n", base, offset, find_name);
aliases = fdt_path_offset(blob, "/aliases");
for (prop_offset = fdt_first_property_offset(blob, aliases);
prop_offset > 0;
prop_offset = fdt_next_property_offset(blob, prop_offset)) {
const char *prop;
const char *name;
const char *slash;
int len, val;
prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len);
debug(" - %s, %s\n", name, prop);
if (len < find_namelen || *prop != '/' || prop[len - 1] ||
strncmp(name, base, base_len))
continue;
slash = strrchr(prop, '/');
if (strcmp(slash + 1, find_name))
continue;
/*
* Adding an extra check to distinguish DT nodes with
* same name
*/
if (IS_ENABLED(CONFIG_PHANDLE_CHECK_SEQ)) {
if (fdt_get_phandle(blob, offset) !=
fdt_get_phandle(blob, fdt_path_offset(blob, prop)))
continue;
}
val = trailing_strtol(name);
if (val != -1) {
*seqp = val;
debug("Found seq %d\n", *seqp);
return 0;
}
}
debug("Not found\n");
return -ENOENT;
}
int fdtdec_get_alias_highest_id(const void *blob, const char *base)
{
int base_len = strlen(base);
int prop_offset;
int aliases;
int max = -1;
debug("Looking for highest alias id for '%s'\n", base);
aliases = fdt_path_offset(blob, "/aliases");
for (prop_offset = fdt_first_property_offset(blob, aliases);
prop_offset > 0;
prop_offset = fdt_next_property_offset(blob, prop_offset)) {
const char *prop;
const char *name;
int len, val;
prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len);
debug(" - %s, %s\n", name, prop);
if (*prop != '/' || prop[len - 1] ||
strncmp(name, base, base_len))
continue;
val = trailing_strtol(name);
if (val > max) {
debug("Found seq %d\n", val);
max = val;
}
}
return max;
}
const char *fdtdec_get_chosen_prop(const void *blob, const char *name)
{
int chosen_node;
if (!blob)
return NULL;
chosen_node = fdt_path_offset(blob, "/chosen");
return fdt_getprop(blob, chosen_node, name, NULL);
}
int fdtdec_get_chosen_node(const void *blob, const char *name)
{
const char *prop;
prop = fdtdec_get_chosen_prop(blob, name);
if (!prop)
return -FDT_ERR_NOTFOUND;
return fdt_path_offset(blob, prop);
}
int fdtdec_check_fdt(void)
{
/*
* We must have an FDT, but we cannot panic() yet since the console
* is not ready. So for now, just assert(). Boards which need an early
* FDT (prior to console ready) will need to make their own
* arrangements and do their own checks.
*/
assert(!fdtdec_prepare_fdt());
return 0;
}
/*
* This function is a little odd in that it accesses global data. At some
* point if the architecture board.c files merge this will make more sense.
* Even now, it is common code.
*/
int fdtdec_prepare_fdt(void)
{
if (!gd->fdt_blob || ((uintptr_t)gd->fdt_blob & 3) ||
fdt_check_header(gd->fdt_blob)) {
#ifdef CONFIG_SPL_BUILD
puts("Missing DTB\n");
#else
printf("No valid device tree binary found at %p\n",
gd->fdt_blob);
# ifdef DEBUG
if (gd->fdt_blob) {
printf("fdt_blob=%p\n", gd->fdt_blob);
print_buffer((ulong)gd->fdt_blob, gd->fdt_blob, 4,
32, 0);
}
# endif
#endif
return -1;
}
return 0;
}
int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name)
{
const u32 *phandle;
int lookup;
debug("%s: %s\n", __func__, prop_name);
phandle = fdt_getprop(blob, node, prop_name, NULL);
if (!phandle)
return -FDT_ERR_NOTFOUND;
lookup = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*phandle));
return lookup;
}
/**
* Look up a property in a node and check that it has a minimum length.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @param min_len minimum property length in bytes
* @param err 0 if ok, or -FDT_ERR_NOTFOUND if the property is not
found, or -FDT_ERR_BADLAYOUT if not enough data
* Return: pointer to cell, which is only valid if err == 0
*/
static const void *get_prop_check_min_len(const void *blob, int node,
const char *prop_name, int min_len,
int *err)
{
const void *cell;
int len;
debug("%s: %s\n", __func__, prop_name);
cell = fdt_getprop(blob, node, prop_name, &len);
if (!cell)
*err = -FDT_ERR_NOTFOUND;
else if (len < min_len)
*err = -FDT_ERR_BADLAYOUT;
else
*err = 0;
return cell;
}
int fdtdec_get_int_array(const void *blob, int node, const char *prop_name,
u32 *array, int count)
{
const u32 *cell;
int err = 0;
debug("%s: %s\n", __func__, prop_name);
cell = get_prop_check_min_len(blob, node, prop_name,
sizeof(u32) * count, &err);
if (!err) {
int i;
for (i = 0; i < count; i++)
array[i] = fdt32_to_cpu(cell[i]);
}
return err;
}
int fdtdec_get_int_array_count(const void *blob, int node,
const char *prop_name, u32 *array, int count)
{
const u32 *cell;
int len, elems;
int i;
debug("%s: %s\n", __func__, prop_name);
cell = fdt_getprop(blob, node, prop_name, &len);
if (!cell)
return -FDT_ERR_NOTFOUND;
elems = len / sizeof(u32);
if (count > elems)
count = elems;
for (i = 0; i < count; i++)
array[i] = fdt32_to_cpu(cell[i]);
return count;
}
const u32 *fdtdec_locate_array(const void *blob, int node,
const char *prop_name, int count)
{
const u32 *cell;
int err;
cell = get_prop_check_min_len(blob, node, prop_name,
sizeof(u32) * count, &err);
return err ? NULL : cell;
}
int fdtdec_get_bool(const void *blob, int node, const char *prop_name)
{
const s32 *cell;
int len;
debug("%s: %s\n", __func__, prop_name);
cell = fdt_getprop(blob, node, prop_name, &len);
return cell != NULL;
}
int fdtdec_parse_phandle_with_args(const void *blob, int src_node,
const char *list_name,
const char *cells_name,
int cell_count, int index,
struct fdtdec_phandle_args *out_args)
{
const __be32 *list, *list_end;
int rc = 0, size, cur_index = 0;
uint32_t count = 0;
int node = -1;
int phandle;
/* Retrieve the phandle list property */
list = fdt_getprop(blob, src_node, list_name, &size);
if (!list)
return -ENOENT;
list_end = list + size / sizeof(*list);
/* Loop over the phandles until all the requested entry is found */
while (list < list_end) {
rc = -EINVAL;
count = 0;
/*
* If phandle is 0, then it is an empty entry with no
* arguments. Skip forward to the next entry.
*/
phandle = be32_to_cpup(list++);
if (phandle) {
/*
* Find the provider node and parse the #*-cells
* property to determine the argument length.
*
* This is not needed if the cell count is hard-coded
* (i.e. cells_name not set, but cell_count is set),
* except when we're going to return the found node
* below.
*/
if (cells_name || cur_index == index) {
node = fdt_node_offset_by_phandle(blob,
phandle);
if (node < 0) {
debug("%s: could not find phandle\n",
fdt_get_name(blob, src_node,
NULL));
goto err;
}
}
if (cells_name) {
count = fdtdec_get_int(blob, node, cells_name,
-1);
if (count == -1) {
debug("%s: could not get %s for %s\n",
fdt_get_name(blob, src_node,
NULL),
cells_name,
fdt_get_name(blob, node,
NULL));
goto err;
}
} else {
count = cell_count;
}
/*
* Make sure that the arguments actually fit in the
* remaining property data length
*/
if (list + count > list_end) {
debug("%s: arguments longer than property\n",
fdt_get_name(blob, src_node, NULL));
goto err;
}
}
/*
* All of the error cases above bail out of the loop, so at
* this point, the parsing is successful. If the requested
* index matches, then fill the out_args structure and return,
* or return -ENOENT for an empty entry.
*/
rc = -ENOENT;
if (cur_index == index) {
if (!phandle)
goto err;
if (out_args) {
int i;
if (count > MAX_PHANDLE_ARGS) {
debug("%s: too many arguments %d\n",
fdt_get_name(blob, src_node,
NULL), count);
count = MAX_PHANDLE_ARGS;
}
out_args->node = node;
out_args->args_count = count;
for (i = 0; i < count; i++) {
out_args->args[i] =
be32_to_cpup(list++);
}
}
/* Found it! return success */
return 0;
}
node = -1;
list += count;
cur_index++;
}
/*
* Result will be one of:
* -ENOENT : index is for empty phandle
* -EINVAL : parsing error on data
* [1..n] : Number of phandle (count mode; when index = -1)
*/
rc = index < 0 ? cur_index : -ENOENT;
err:
return rc;
}
int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name,
u8 *array, int count)
{
const u8 *cell;
int err;
cell = get_prop_check_min_len(blob, node, prop_name, count, &err);
if (!err)
memcpy(array, cell, count);
return err;
}
const u8 *fdtdec_locate_byte_array(const void *blob, int node,
const char *prop_name, int count)
{
const u8 *cell;
int err;
cell = get_prop_check_min_len(blob, node, prop_name, count, &err);
if (err)
return NULL;
return cell;
}
u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells)
{
u64 number = 0;
while (cells--)
number = (number << 32) | fdt32_to_cpu(*ptr++);
return number;
}
int fdt_get_resource(const void *fdt, int node, const char *property,
unsigned int index, struct fdt_resource *res)
{
const fdt32_t *ptr, *end;
int na, ns, len, parent;
unsigned int i = 0;
parent = fdt_parent_offset(fdt, node);
if (parent < 0)
return parent;
na = fdt_address_cells(fdt, parent);
ns = fdt_size_cells(fdt, parent);
ptr = fdt_getprop(fdt, node, property, &len);
if (!ptr)
return len;
end = ptr + len / sizeof(*ptr);
while (ptr + na + ns <= end) {
if (i == index) {
if (CONFIG_IS_ENABLED(OF_TRANSLATE))
res->start = fdt_translate_address(fdt, node, ptr);
else
res->start = fdtdec_get_number(ptr, na);
res->end = res->start;
res->end += fdtdec_get_number(&ptr[na], ns) - 1;
return 0;
}
ptr += na + ns;
i++;
}
return -FDT_ERR_NOTFOUND;
}
int fdt_get_named_resource(const void *fdt, int node, const char *property,
const char *prop_names, const char *name,
struct fdt_resource *res)
{
int index;
index = fdt_stringlist_search(fdt, node, prop_names, name);
if (index < 0)
return index;
return fdt_get_resource(fdt, node, property, index, res);
}
static int decode_timing_property(const void *blob, int node, const char *name,
struct timing_entry *result)
{
int length, ret = 0;
const u32 *prop;
prop = fdt_getprop(blob, node, name, &length);
if (!prop) {
debug("%s: could not find property %s\n",
fdt_get_name(blob, node, NULL), name);
return length;
}
if (length == sizeof(u32)) {
result->typ = fdtdec_get_int(blob, node, name, 0);
result->min = result->typ;
result->max = result->typ;
} else {
ret = fdtdec_get_int_array(blob, node, name, &result->min, 3);
}
return ret;
}
int fdtdec_decode_display_timing(const void *blob, int parent, int index,
struct display_timing *dt)
{
int i, node, timings_node;
u32 val = 0;
int ret = 0;
timings_node = fdt_subnode_offset(blob, parent, "display-timings");
if (timings_node < 0)
return timings_node;
for (i = 0, node = fdt_first_subnode(blob, timings_node);
node > 0 && i != index;
node = fdt_next_subnode(blob, node))
i++;
if (node < 0)
return node;
memset(dt, 0, sizeof(*dt));
ret |= decode_timing_property(blob, node, "hback-porch",
&dt->hback_porch);
ret |= decode_timing_property(blob, node, "hfront-porch",
&dt->hfront_porch);
ret |= decode_timing_property(blob, node, "hactive", &dt->hactive);
ret |= decode_timing_property(blob, node, "hsync-len", &dt->hsync_len);
ret |= decode_timing_property(blob, node, "vback-porch",
&dt->vback_porch);
ret |= decode_timing_property(blob, node, "vfront-porch",
&dt->vfront_porch);
ret |= decode_timing_property(blob, node, "vactive", &dt->vactive);
ret |= decode_timing_property(blob, node, "vsync-len", &dt->vsync_len);
ret |= decode_timing_property(blob, node, "clock-frequency",
&dt->pixelclock);
dt->flags = 0;
val = fdtdec_get_int(blob, node, "vsync-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH :
DISPLAY_FLAGS_VSYNC_LOW;
}
val = fdtdec_get_int(blob, node, "hsync-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH :
DISPLAY_FLAGS_HSYNC_LOW;
}
val = fdtdec_get_int(blob, node, "de-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH :
DISPLAY_FLAGS_DE_LOW;
}
val = fdtdec_get_int(blob, node, "pixelclk-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE :
DISPLAY_FLAGS_PIXDATA_NEGEDGE;
}
if (fdtdec_get_bool(blob, node, "interlaced"))
dt->flags |= DISPLAY_FLAGS_INTERLACED;
if (fdtdec_get_bool(blob, node, "doublescan"))
dt->flags |= DISPLAY_FLAGS_DOUBLESCAN;
if (fdtdec_get_bool(blob, node, "doubleclk"))
dt->flags |= DISPLAY_FLAGS_DOUBLECLK;
return ret;
}
int fdtdec_setup_mem_size_base(void)
{
int ret;
ofnode mem;
struct resource res;
mem = ofnode_path("/memory");
if (!ofnode_valid(mem)) {
debug("%s: Missing /memory node\n", __func__);
return -EINVAL;
}
ret = ofnode_read_resource(mem, 0, &res);
if (ret != 0) {
debug("%s: Unable to decode first memory bank\n", __func__);
return -EINVAL;
}
gd->ram_size = (phys_size_t)(res.end - res.start + 1);
gd->ram_base = (unsigned long)res.start;
debug("%s: Initial DRAM size %llx\n", __func__,
(unsigned long long)gd->ram_size);
return 0;
}
ofnode get_next_memory_node(ofnode mem)
{
do {
mem = ofnode_by_prop_value(mem, "device_type", "memory", 7);
} while (!ofnode_is_available(mem));
return mem;
}
int fdtdec_setup_memory_banksize(void)
{
int bank, ret, reg = 0;
struct resource res;
ofnode mem = ofnode_null();
mem = get_next_memory_node(mem);
if (!ofnode_valid(mem)) {
debug("%s: Missing /memory node\n", __func__);
return -EINVAL;
}
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
ret = ofnode_read_resource(mem, reg++, &res);
if (ret < 0) {
reg = 0;
mem = get_next_memory_node(mem);
if (!ofnode_valid(mem))
break;
ret = ofnode_read_resource(mem, reg++, &res);
if (ret < 0)
break;
}
if (ret != 0)
return -EINVAL;
gd->bd->bi_dram[bank].start = (phys_addr_t)res.start;
gd->bd->bi_dram[bank].size =
(phys_size_t)(res.end - res.start + 1);
debug("%s: DRAM Bank #%d: start = 0x%llx, size = 0x%llx\n",
__func__, bank,
(unsigned long long)gd->bd->bi_dram[bank].start,
(unsigned long long)gd->bd->bi_dram[bank].size);
}
return 0;
}
int fdtdec_setup_mem_size_base_lowest(void)
{
int bank, ret, reg = 0;
struct resource res;
unsigned long base;
phys_size_t size;
ofnode mem = ofnode_null();
gd->ram_base = (unsigned long)~0;
mem = get_next_memory_node(mem);
if (!ofnode_valid(mem)) {
debug("%s: Missing /memory node\n", __func__);
return -EINVAL;
}
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
ret = ofnode_read_resource(mem, reg++, &res);
if (ret < 0) {
reg = 0;
mem = get_next_memory_node(mem);
if (!ofnode_valid(mem))
break;
ret = ofnode_read_resource(mem, reg++, &res);
if (ret < 0)
break;
}
if (ret != 0)
return -EINVAL;
base = (unsigned long)res.start;
size = (phys_size_t)(res.end - res.start + 1);
if (gd->ram_base > base && size) {
gd->ram_base = base;
gd->ram_size = size;
debug("%s: Initial DRAM base %lx size %lx\n",
__func__, base, (unsigned long)size);
}
}
return 0;
}
static int uncompress_blob(const void *src, ulong sz_src, void **dstp)
{
#if CONFIG_IS_ENABLED(MULTI_DTB_FIT_GZIP) ||\
CONFIG_IS_ENABLED(MULTI_DTB_FIT_LZO)
size_t sz_out = CONFIG_VAL(MULTI_DTB_FIT_UNCOMPRESS_SZ);
bool gzip = 0, lzo = 0;
ulong sz_in = sz_src;
void *dst;
int rc;
if (CONFIG_IS_ENABLED(GZIP))
if (gzip_parse_header(src, sz_in) >= 0)
gzip = 1;
if (CONFIG_IS_ENABLED(LZO))
if (!gzip && lzop_is_valid_header(src))
lzo = 1;
if (!gzip && !lzo)
return -EBADMSG;
if (CONFIG_IS_ENABLED(MULTI_DTB_FIT_DYN_ALLOC)) {
dst = malloc(sz_out);
if (!dst) {
puts("uncompress_blob: Unable to allocate memory\n");
return -ENOMEM;
}
} else {
# if CONFIG_IS_ENABLED(MULTI_DTB_FIT_USER_DEFINED_AREA)
dst = (void *)CONFIG_VAL(MULTI_DTB_FIT_USER_DEF_ADDR);
# else
return -ENOTSUPP;
# endif
}
if (CONFIG_IS_ENABLED(GZIP) && gzip)
rc = gunzip(dst, sz_out, (u8 *)src, &sz_in);
else if (CONFIG_IS_ENABLED(LZO) && lzo)
rc = lzop_decompress(src, sz_in, dst, &sz_out);
else
hang();
if (rc < 0) {
/* not a valid compressed blob */
puts("uncompress_blob: Unable to uncompress\n");
if (CONFIG_IS_ENABLED(MULTI_DTB_FIT_DYN_ALLOC))
free(dst);
return -EBADMSG;
}
*dstp = dst;
#else
*dstp = (void *)src;
*dstp = (void *)src;
#endif
return 0;
}
/**
* fdt_find_separate() - Find a devicetree at the end of the image
*
* Return: pointer to FDT blob
*/
static void *fdt_find_separate(void)
{
void *fdt_blob = NULL;
if (IS_ENABLED(CONFIG_SANDBOX))
return NULL;
#ifdef CONFIG_SPL_BUILD
/* FDT is at end of BSS unless it is in a different memory region */
if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS))
fdt_blob = (ulong *)&_image_binary_end;
else
fdt_blob = (ulong *)&__bss_end;
#else
/* FDT is at end of image */
fdt_blob = (ulong *)&_end;
#endif
return fdt_blob;
}
int fdtdec_set_ethernet_mac_address(void *fdt, const u8 *mac, size_t size)
{
const char *path;
int offset, err;
if (!is_valid_ethaddr(mac))
return -EINVAL;
path = fdt_get_alias(fdt, "ethernet");
if (!path)
return 0;
debug("ethernet alias found: %s\n", path);
offset = fdt_path_offset(fdt, path);
if (offset < 0) {
debug("ethernet alias points to absent node %s\n", path);
return -ENOENT;
}
err = fdt_setprop_inplace(fdt, offset, "local-mac-address", mac, size);
if (err < 0)
return err;
debug("MAC address: %pM\n", mac);
return 0;
}
static int fdtdec_init_reserved_memory(void *blob)
{
int na, ns, node, err;
fdt32_t value;
/* inherit #address-cells and #size-cells from the root node */
na = fdt_address_cells(blob, 0);
ns = fdt_size_cells(blob, 0);
node = fdt_add_subnode(blob, 0, "reserved-memory");
if (node < 0)
return node;
err = fdt_setprop(blob, node, "ranges", NULL, 0);
if (err < 0)
return err;
value = cpu_to_fdt32(ns);
err = fdt_setprop(blob, node, "#size-cells", &value, sizeof(value));
if (err < 0)
return err;
value = cpu_to_fdt32(na);
err = fdt_setprop(blob, node, "#address-cells", &value, sizeof(value));
if (err < 0)
return err;
return node;
}
int fdtdec_add_reserved_memory(void *blob, const char *basename,
const struct fdt_memory *carveout,
const char **compatibles, unsigned int count,
uint32_t *phandlep, unsigned long flags)
{
fdt32_t cells[4] = {}, *ptr = cells;
uint32_t upper, lower, phandle;
int parent, node, na, ns, err;
fdt_size_t size;
char name[64];
/* create an empty /reserved-memory node if one doesn't exist */
parent = fdt_path_offset(blob, "/reserved-memory");
if (parent < 0) {
parent = fdtdec_init_reserved_memory(blob);
if (parent < 0)
return parent;
}
/* only 1 or 2 #address-cells and #size-cells are supported */
na = fdt_address_cells(blob, parent);
if (na < 1 || na > 2)
return -FDT_ERR_BADNCELLS;
ns = fdt_size_cells(blob, parent);
if (ns < 1 || ns > 2)
return -FDT_ERR_BADNCELLS;
/* find a matching node and return the phandle to that */
fdt_for_each_subnode(node, blob, parent) {
const char *name = fdt_get_name(blob, node, NULL);
fdt_addr_t addr;
fdt_size_t size;
addr = fdtdec_get_addr_size_fixed(blob, node, "reg", 0, na, ns,
&size, false);
if (addr == FDT_ADDR_T_NONE) {
debug("failed to read address/size for %s\n", name);
continue;
}
if (addr == carveout->start && (addr + size - 1) ==
carveout->end) {
if (phandlep)
*phandlep = fdt_get_phandle(blob, node);
return 0;
}
}
/*
* Unpack the start address and generate the name of the new node
* base on the basename and the unit-address.
*/
upper = upper_32_bits(carveout->start);
lower = lower_32_bits(carveout->start);
if (na > 1 && upper > 0)
snprintf(name, sizeof(name), "%s@%x,%x", basename, upper,
lower);
else {
if (upper > 0) {
debug("address %08x:%08x exceeds addressable space\n",
upper, lower);
return -FDT_ERR_BADVALUE;
}
snprintf(name, sizeof(name), "%s@%x", basename, lower);
}
node = fdt_add_subnode(blob, parent, name);
if (node < 0)
return node;
if (flags & FDTDEC_RESERVED_MEMORY_NO_MAP) {
err = fdt_setprop(blob, node, "no-map", NULL, 0);
if (err < 0)
return err;
}
if (phandlep) {
err = fdt_generate_phandle(blob, &phandle);
if (err < 0)
return err;
err = fdtdec_set_phandle(blob, node, phandle);
if (err < 0)
return err;
}
/* store one or two address cells */
if (na > 1)
*ptr++ = cpu_to_fdt32(upper);
*ptr++ = cpu_to_fdt32(lower);
/* store one or two size cells */
size = carveout->end - carveout->start + 1;
upper = upper_32_bits(size);
lower = lower_32_bits(size);
if (ns > 1)
*ptr++ = cpu_to_fdt32(upper);
*ptr++ = cpu_to_fdt32(lower);
err = fdt_setprop(blob, node, "reg", cells, (na + ns) * sizeof(*cells));
if (err < 0)
return err;
if (compatibles && count > 0) {
size_t length = 0, len = 0;
unsigned int i;
char *buffer;
for (i = 0; i < count; i++)
length += strlen(compatibles[i]) + 1;
buffer = malloc(length);
if (!buffer)
return -FDT_ERR_INTERNAL;
for (i = 0; i < count; i++)
len += strlcpy(buffer + len, compatibles[i],
length - len) + 1;
err = fdt_setprop(blob, node, "compatible", buffer, length);
free(buffer);
if (err < 0)
return err;
}
/* return the phandle for the new node for the caller to use */
if (phandlep)
*phandlep = phandle;
return 0;
}
int fdtdec_get_carveout(const void *blob, const char *node,
const char *prop_name, unsigned int index,
struct fdt_memory *carveout, const char **name,
const char ***compatiblesp, unsigned int *countp,
unsigned long *flags)
{
const fdt32_t *prop;
uint32_t phandle;
int offset, len;
fdt_size_t size;
offset = fdt_path_offset(blob, node);
if (offset < 0)
return offset;
prop = fdt_getprop(blob, offset, prop_name, &len);
if (!prop) {
debug("failed to get %s for %s\n", prop_name, node);
return -FDT_ERR_NOTFOUND;
}
if ((len % sizeof(phandle)) != 0) {
debug("invalid phandle property\n");
return -FDT_ERR_BADPHANDLE;
}
if (len < (sizeof(phandle) * (index + 1))) {
debug("invalid phandle index\n");
return -FDT_ERR_NOTFOUND;
}
phandle = fdt32_to_cpu(prop[index]);
offset = fdt_node_offset_by_phandle(blob, phandle);
if (offset < 0) {
debug("failed to find node for phandle %u\n", phandle);
return offset;
}
if (name)
*name = fdt_get_name(blob, offset, NULL);
if (compatiblesp) {
const char **compatibles = NULL;
const char *start, *end, *ptr;
unsigned int count = 0;
prop = fdt_getprop(blob, offset, "compatible", &len);
if (!prop)
goto skip_compat;
start = ptr = (const char *)prop;
end = start + len;
while (ptr < end) {
ptr = strchrnul(ptr, '\0');
count++;
ptr++;
}
compatibles = malloc(sizeof(ptr) * count);
if (!compatibles)
return -FDT_ERR_INTERNAL;
ptr = start;
count = 0;
while (ptr < end) {
compatibles[count] = ptr;
ptr = strchrnul(ptr, '\0');
count++;
ptr++;
}
skip_compat:
*compatiblesp = compatibles;
if (countp)
*countp = count;
}
carveout->start = fdtdec_get_addr_size_auto_noparent(blob, offset,
"reg", 0, &size,
true);
if (carveout->start == FDT_ADDR_T_NONE) {
debug("failed to read address/size from \"reg\" property\n");
return -FDT_ERR_NOTFOUND;
}
carveout->end = carveout->start + size - 1;
if (flags) {
*flags = 0;
if (fdtdec_get_bool(blob, offset, "no-map"))
*flags |= FDTDEC_RESERVED_MEMORY_NO_MAP;
}
return 0;
}
int fdtdec_set_carveout(void *blob, const char *node, const char *prop_name,
unsigned int index, const struct fdt_memory *carveout,
const char *name, const char **compatibles,
unsigned int count, unsigned long flags)
{
uint32_t phandle;
int err, offset, len;
fdt32_t value;
void *prop;
err = fdtdec_add_reserved_memory(blob, name, carveout, compatibles,
count, &phandle, flags);
if (err < 0) {
debug("failed to add reserved memory: %d\n", err);
return err;
}
offset = fdt_path_offset(blob, node);
if (offset < 0) {
debug("failed to find offset for node %s: %d\n", node, offset);
return offset;
}
value = cpu_to_fdt32(phandle);
if (!fdt_getprop(blob, offset, prop_name, &len)) {
if (len == -FDT_ERR_NOTFOUND)
len = 0;
else
return len;
}
if ((index + 1) * sizeof(value) > len) {
err = fdt_setprop_placeholder(blob, offset, prop_name,
(index + 1) * sizeof(value),
&prop);
if (err < 0) {
debug("failed to resize reserved memory property: %s\n",
fdt_strerror(err));
return err;
}
}
err = fdt_setprop_inplace_namelen_partial(blob, offset, prop_name,
strlen(prop_name),
index * sizeof(value),
&value, sizeof(value));
if (err < 0) {
debug("failed to update %s property for node %s: %s\n",
prop_name, node, fdt_strerror(err));
return err;
}
return 0;
}
/* TODO(sjg@chromium.org): This function should not be weak */
__weak int fdtdec_board_setup(const void *fdt_blob)
{
return 0;
}
/**
* setup_multi_dtb_fit() - locate the correct dtb from a FIT
*
* This supports the CONFIG_MULTI_DTB_FIT feature, looking for the dtb in a
* supplied FIT
*
* It accepts the current value of gd->fdt_blob, which points to the FIT, then
* updates that gd->fdt_blob, to point to the chosen dtb so that U-Boot uses the
* correct one
*/
static void setup_multi_dtb_fit(void)
{
void *blob;
/*
* Try and uncompress the blob.
* Unfortunately there is no way to know how big the input blob really
* is. So let us set the maximum input size arbitrarily high. 16MB
* ought to be more than enough for packed DTBs.
*/
if (uncompress_blob(gd->fdt_blob, 0x1000000, &blob) == 0)
gd->fdt_blob = blob;
/*
* Check if blob is a FIT images containings DTBs.
* If so, pick the most relevant
*/
blob = locate_dtb_in_fit(gd->fdt_blob);
if (blob) {
gd_set_multi_dtb_fit(gd->fdt_blob);
gd->fdt_blob = blob;
gd->fdt_src = FDTSRC_FIT;
}
}
int fdtdec_setup(void)
{
int ret;
/* The devicetree is typically appended to U-Boot */
if (IS_ENABLED(CONFIG_OF_SEPARATE)) {
gd->fdt_blob = fdt_find_separate();
gd->fdt_src = FDTSRC_SEPARATE;
} else { /* embed dtb in ELF file for testing / development */
gd->fdt_blob = dtb_dt_embedded();
gd->fdt_src = FDTSRC_EMBED;
}
/* Allow the board to override the fdt address. */
if (IS_ENABLED(CONFIG_OF_BOARD)) {
gd->fdt_blob = board_fdt_blob_setup(&ret);
if (ret)
return ret;
gd->fdt_src = FDTSRC_BOARD;
}
/* Allow the early environment to override the fdt address */
if (!IS_ENABLED(CONFIG_SPL_BUILD)) {
ulong addr;
addr = env_get_hex("fdtcontroladdr", 0);
if (addr) {
gd->fdt_blob = map_sysmem(addr, 0);
gd->fdt_src = FDTSRC_ENV;
}
}
if (CONFIG_IS_ENABLED(MULTI_DTB_FIT))
setup_multi_dtb_fit();
ret = fdtdec_prepare_fdt();
if (!ret)
ret = fdtdec_board_setup(gd->fdt_blob);
return ret;
}
int fdtdec_resetup(int *rescan)
{
void *fdt_blob;
/*
* If the current DTB is part of a compressed FIT image,
* try to locate the best match from the uncompressed
* FIT image stillpresent there. Save the time and space
* required to uncompress it again.
*/
if (gd_multi_dtb_fit()) {
fdt_blob = locate_dtb_in_fit(gd_multi_dtb_fit());
if (fdt_blob == gd->fdt_blob) {
/*
* The best match did not change. no need to tear down
* the DM and rescan the fdt.
*/
*rescan = 0;
return 0;
}
*rescan = 1;
gd->fdt_blob = fdt_blob;
return fdtdec_prepare_fdt();
}
/*
* If multi_dtb_fit is NULL, it means that blob appended to u-boot is
* not a FIT image containings DTB, but a single DTB. There is no need
* to teard down DM and rescan the DT in this case.
*/
*rescan = 0;
return 0;
}
int fdtdec_decode_ram_size(const void *blob, const char *area, int board_id,
phys_addr_t *basep, phys_size_t *sizep,
struct bd_info *bd)
{
int addr_cells, size_cells;
const u32 *cell, *end;
u64 total_size, size, addr;
int node, child;
bool auto_size;
int bank;
int len;
debug("%s: board_id=%d\n", __func__, board_id);
if (!area)
area = "/memory";
node = fdt_path_offset(blob, area);
if (node < 0) {
debug("No %s node found\n", area);
return -ENOENT;
}
cell = fdt_getprop(blob, node, "reg", &len);
if (!cell) {
debug("No reg property found\n");
return -ENOENT;
}
addr_cells = fdt_address_cells(blob, node);
size_cells = fdt_size_cells(blob, node);
/* Check the board id and mask */
for (child = fdt_first_subnode(blob, node);
child >= 0;
child = fdt_next_subnode(blob, child)) {
int match_mask, match_value;
match_mask = fdtdec_get_int(blob, child, "match-mask", -1);
match_value = fdtdec_get_int(blob, child, "match-value", -1);
if (match_value >= 0 &&
((board_id & match_mask) == match_value)) {
/* Found matching mask */
debug("Found matching mask %d\n", match_mask);
node = child;
cell = fdt_getprop(blob, node, "reg", &len);
if (!cell) {
debug("No memory-banks property found\n");
return -EINVAL;
}
break;
}
}
/* Note: if no matching subnode was found we use the parent node */
if (bd) {
memset(bd->bi_dram, '\0', sizeof(bd->bi_dram[0]) *
CONFIG_NR_DRAM_BANKS);
}
auto_size = fdtdec_get_bool(blob, node, "auto-size");
total_size = 0;
end = cell + len / 4 - addr_cells - size_cells;
debug("cell at %p, end %p\n", cell, end);
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
if (cell > end)
break;
addr = 0;
if (addr_cells == 2)
addr += (u64)fdt32_to_cpu(*cell++) << 32UL;
addr += fdt32_to_cpu(*cell++);
if (bd)
bd->bi_dram[bank].start = addr;
if (basep && !bank)
*basep = (phys_addr_t)addr;
size = 0;
if (size_cells == 2)
size += (u64)fdt32_to_cpu(*cell++) << 32UL;
size += fdt32_to_cpu(*cell++);
if (auto_size) {
u64 new_size;
debug("Auto-sizing %llx, size %llx: ", addr, size);
new_size = get_ram_size((long *)(uintptr_t)addr, size);
if (new_size == size) {
debug("OK\n");
} else {
debug("sized to %llx\n", new_size);
size = new_size;
}
}
if (bd)
bd->bi_dram[bank].size = size;
total_size += size;
}
debug("Memory size %llu\n", total_size);
if (sizep)
*sizep = (phys_size_t)total_size;
return 0;
}
#endif /* !USE_HOSTCC */