u-boot/common/bootm.c
Simon Glass 51bb33846a bootm: Support string substitution in bootargs
In some cases it is necessary to pass parameters to Linux so that it will
boot correctly. For example, the rootdev parameter is often used to
specify the root device. However the root device may change depending on
whence U-Boot loads the kernel. At present it is necessary to build up
the command line by adding device strings to it one by one.

It is often more convenient to provide a template for bootargs, with
U-Boot doing the substitution from other environment variables.

Add a way to substitute strings in the bootargs variable. This allows
things like "rootdev=${rootdev}" to be used in bootargs, with the
${rootdev} substitution providing the UUID of the root device.

For example, to substitute the GUID of the kernel partition:

  setenv bootargs "console=/dev/ttyS0 rootdev=${uuid}/PARTNROFF=1
		kern_guid=${uuid}"
  part uuid mmc 2:2 uuid
  bootm

This is particularly useful when the command line from another place. For
example, Chrome OS stores the command line next to the kernel itself. It
depends on the kernel version being used as well as the hardware features,
so it is extremely difficult to devise a U-Boot script that works on all
boards and kernel versions. With this feature, the command line can be
read from disk and used directly, with a few substitutions set up.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-12-04 19:48:29 -05:00

1037 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2000-2009
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*/
#ifndef USE_HOSTCC
#include <common.h>
#include <bootstage.h>
#include <cli.h>
#include <cpu_func.h>
#include <env.h>
#include <errno.h>
#include <fdt_support.h>
#include <irq_func.h>
#include <lmb.h>
#include <log.h>
#include <malloc.h>
#include <mapmem.h>
#include <net.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <linux/sizes.h>
#if defined(CONFIG_CMD_USB)
#include <usb.h>
#endif
#else
#include "mkimage.h"
#endif
#include <command.h>
#include <bootm.h>
#include <image.h>
#ifndef CONFIG_SYS_BOOTM_LEN
/* use 8MByte as default max gunzip size */
#define CONFIG_SYS_BOOTM_LEN 0x800000
#endif
#define MAX_CMDLINE_SIZE SZ_4K
#define IH_INITRD_ARCH IH_ARCH_DEFAULT
#ifndef USE_HOSTCC
DECLARE_GLOBAL_DATA_PTR;
bootm_headers_t images; /* pointers to os/initrd/fdt images */
static const void *boot_get_kernel(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[], bootm_headers_t *images,
ulong *os_data, ulong *os_len);
__weak void board_quiesce_devices(void)
{
}
#ifdef CONFIG_LMB
static void boot_start_lmb(bootm_headers_t *images)
{
ulong mem_start;
phys_size_t mem_size;
mem_start = env_get_bootm_low();
mem_size = env_get_bootm_size();
lmb_init_and_reserve_range(&images->lmb, (phys_addr_t)mem_start,
mem_size, NULL);
}
#else
#define lmb_reserve(lmb, base, size)
static inline void boot_start_lmb(bootm_headers_t *images) { }
#endif
static int bootm_start(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
memset((void *)&images, 0, sizeof(images));
images.verify = env_get_yesno("verify");
boot_start_lmb(&images);
bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");
images.state = BOOTM_STATE_START;
return 0;
}
static int bootm_find_os(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
const void *os_hdr;
bool ep_found = false;
int ret;
/* get kernel image header, start address and length */
os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,
&images, &images.os.image_start, &images.os.image_len);
if (images.os.image_len == 0) {
puts("ERROR: can't get kernel image!\n");
return 1;
}
/* get image parameters */
switch (genimg_get_format(os_hdr)) {
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
case IMAGE_FORMAT_LEGACY:
images.os.type = image_get_type(os_hdr);
images.os.comp = image_get_comp(os_hdr);
images.os.os = image_get_os(os_hdr);
images.os.end = image_get_image_end(os_hdr);
images.os.load = image_get_load(os_hdr);
images.os.arch = image_get_arch(os_hdr);
break;
#endif
#if IMAGE_ENABLE_FIT
case IMAGE_FORMAT_FIT:
if (fit_image_get_type(images.fit_hdr_os,
images.fit_noffset_os,
&images.os.type)) {
puts("Can't get image type!\n");
bootstage_error(BOOTSTAGE_ID_FIT_TYPE);
return 1;
}
if (fit_image_get_comp(images.fit_hdr_os,
images.fit_noffset_os,
&images.os.comp)) {
puts("Can't get image compression!\n");
bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION);
return 1;
}
if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os,
&images.os.os)) {
puts("Can't get image OS!\n");
bootstage_error(BOOTSTAGE_ID_FIT_OS);
return 1;
}
if (fit_image_get_arch(images.fit_hdr_os,
images.fit_noffset_os,
&images.os.arch)) {
puts("Can't get image ARCH!\n");
return 1;
}
images.os.end = fit_get_end(images.fit_hdr_os);
if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os,
&images.os.load)) {
puts("Can't get image load address!\n");
bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR);
return 1;
}
break;
#endif
#ifdef CONFIG_ANDROID_BOOT_IMAGE
case IMAGE_FORMAT_ANDROID:
images.os.type = IH_TYPE_KERNEL;
images.os.comp = android_image_get_kcomp(os_hdr);
images.os.os = IH_OS_LINUX;
images.os.end = android_image_get_end(os_hdr);
images.os.load = android_image_get_kload(os_hdr);
images.ep = images.os.load;
ep_found = true;
break;
#endif
default:
puts("ERROR: unknown image format type!\n");
return 1;
}
/* If we have a valid setup.bin, we will use that for entry (x86) */
if (images.os.arch == IH_ARCH_I386 ||
images.os.arch == IH_ARCH_X86_64) {
ulong len;
ret = boot_get_setup(&images, IH_ARCH_I386, &images.ep, &len);
if (ret < 0 && ret != -ENOENT) {
puts("Could not find a valid setup.bin for x86\n");
return 1;
}
/* Kernel entry point is the setup.bin */
} else if (images.legacy_hdr_valid) {
images.ep = image_get_ep(&images.legacy_hdr_os_copy);
#if IMAGE_ENABLE_FIT
} else if (images.fit_uname_os) {
int ret;
ret = fit_image_get_entry(images.fit_hdr_os,
images.fit_noffset_os, &images.ep);
if (ret) {
puts("Can't get entry point property!\n");
return 1;
}
#endif
} else if (!ep_found) {
puts("Could not find kernel entry point!\n");
return 1;
}
if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
if (CONFIG_IS_ENABLED(CMD_BOOTI) &&
images.os.arch == IH_ARCH_ARM64) {
ulong image_addr;
ulong image_size;
ret = booti_setup(images.os.image_start, &image_addr,
&image_size, true);
if (ret != 0)
return 1;
images.os.type = IH_TYPE_KERNEL;
images.os.load = image_addr;
images.ep = image_addr;
} else {
images.os.load = images.os.image_start;
images.ep += images.os.image_start;
}
}
images.os.start = map_to_sysmem(os_hdr);
return 0;
}
/**
* bootm_find_images - wrapper to find and locate various images
* @flag: Ignored Argument
* @argc: command argument count
* @argv: command argument list
* @start: OS image start address
* @size: OS image size
*
* boot_find_images() will attempt to load an available ramdisk,
* flattened device tree, as well as specifically marked
* "loadable" images (loadables are FIT only)
*
* Note: bootm_find_images will skip an image if it is not found
*
* @return:
* 0, if all existing images were loaded correctly
* 1, if an image is found but corrupted, or invalid
*/
int bootm_find_images(int flag, int argc, char *const argv[], ulong start,
ulong size)
{
int ret;
/* find ramdisk */
ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH,
&images.rd_start, &images.rd_end);
if (ret) {
puts("Ramdisk image is corrupt or invalid\n");
return 1;
}
/* check if ramdisk overlaps OS image */
if (images.rd_start && (((ulong)images.rd_start >= start &&
(ulong)images.rd_start < start + size) ||
((ulong)images.rd_end > start &&
(ulong)images.rd_end <= start + size) ||
((ulong)images.rd_start < start &&
(ulong)images.rd_end >= start + size))) {
printf("ERROR: RD image overlaps OS image (OS=0x%lx..0x%lx)\n",
start, start + size);
return 1;
}
#if IMAGE_ENABLE_OF_LIBFDT
/* find flattened device tree */
ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images,
&images.ft_addr, &images.ft_len);
if (ret) {
puts("Could not find a valid device tree\n");
return 1;
}
/* check if FDT overlaps OS image */
if (images.ft_addr &&
(((ulong)images.ft_addr >= start &&
(ulong)images.ft_addr <= start + size) ||
((ulong)images.ft_addr + images.ft_len >= start &&
(ulong)images.ft_addr + images.ft_len <= start + size))) {
printf("ERROR: FDT image overlaps OS image (OS=0x%lx..0x%lx)\n",
start, start + size);
return 1;
}
if (CONFIG_IS_ENABLED(CMD_FDT))
set_working_fdt_addr(map_to_sysmem(images.ft_addr));
#endif
#if IMAGE_ENABLE_FIT
#if defined(CONFIG_FPGA)
/* find bitstreams */
ret = boot_get_fpga(argc, argv, &images, IH_ARCH_DEFAULT,
NULL, NULL);
if (ret) {
printf("FPGA image is corrupted or invalid\n");
return 1;
}
#endif
/* find all of the loadables */
ret = boot_get_loadable(argc, argv, &images, IH_ARCH_DEFAULT,
NULL, NULL);
if (ret) {
printf("Loadable(s) is corrupt or invalid\n");
return 1;
}
#endif
return 0;
}
static int bootm_find_other(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
if (((images.os.type == IH_TYPE_KERNEL) ||
(images.os.type == IH_TYPE_KERNEL_NOLOAD) ||
(images.os.type == IH_TYPE_MULTI)) &&
(images.os.os == IH_OS_LINUX ||
images.os.os == IH_OS_VXWORKS))
return bootm_find_images(flag, argc, argv, 0, 0);
return 0;
}
#endif /* USE_HOSTC */
#if !defined(USE_HOSTCC) || defined(CONFIG_FIT_SIGNATURE)
/**
* handle_decomp_error() - display a decompression error
*
* This function tries to produce a useful message. In the case where the
* uncompressed size is the same as the available space, we can assume that
* the image is too large for the buffer.
*
* @comp_type: Compression type being used (IH_COMP_...)
* @uncomp_size: Number of bytes uncompressed
* @ret: errno error code received from compression library
* @return Appropriate BOOTM_ERR_ error code
*/
static int handle_decomp_error(int comp_type, size_t uncomp_size, int ret)
{
const char *name = genimg_get_comp_name(comp_type);
/* ENOSYS means unimplemented compression type, don't reset. */
if (ret == -ENOSYS)
return BOOTM_ERR_UNIMPLEMENTED;
if (uncomp_size >= CONFIG_SYS_BOOTM_LEN)
printf("Image too large: increase CONFIG_SYS_BOOTM_LEN\n");
else
printf("%s: uncompress error %d\n", name, ret);
/*
* The decompression routines are now safe, so will not write beyond
* their bounds. Probably it is not necessary to reset, but maintain
* the current behaviour for now.
*/
printf("Must RESET board to recover\n");
#ifndef USE_HOSTCC
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
#endif
return BOOTM_ERR_RESET;
}
#endif
#ifndef USE_HOSTCC
static int bootm_load_os(bootm_headers_t *images, int boot_progress)
{
image_info_t os = images->os;
ulong load = os.load;
ulong load_end;
ulong blob_start = os.start;
ulong blob_end = os.end;
ulong image_start = os.image_start;
ulong image_len = os.image_len;
ulong flush_start = ALIGN_DOWN(load, ARCH_DMA_MINALIGN);
bool no_overlap;
void *load_buf, *image_buf;
int err;
load_buf = map_sysmem(load, 0);
image_buf = map_sysmem(os.image_start, image_len);
err = image_decomp(os.comp, load, os.image_start, os.type,
load_buf, image_buf, image_len,
CONFIG_SYS_BOOTM_LEN, &load_end);
if (err) {
err = handle_decomp_error(os.comp, load_end - load, err);
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
return err;
}
/* We need the decompressed image size in the next steps */
images->os.image_len = load_end - load;
flush_cache(flush_start, ALIGN(load_end, ARCH_DMA_MINALIGN) - flush_start);
debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, load_end);
bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED);
no_overlap = (os.comp == IH_COMP_NONE && load == image_start);
if (!no_overlap && load < blob_end && load_end > blob_start) {
debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n",
blob_start, blob_end);
debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load,
load_end);
/* Check what type of image this is. */
if (images->legacy_hdr_valid) {
if (image_get_type(&images->legacy_hdr_os_copy)
== IH_TYPE_MULTI)
puts("WARNING: legacy format multi component image overwritten\n");
return BOOTM_ERR_OVERLAP;
} else {
puts("ERROR: new format image overwritten - must RESET the board to recover\n");
bootstage_error(BOOTSTAGE_ID_OVERWRITTEN);
return BOOTM_ERR_RESET;
}
}
lmb_reserve(&images->lmb, images->os.load, (load_end -
images->os.load));
return 0;
}
/**
* bootm_disable_interrupts() - Disable interrupts in preparation for load/boot
*
* @return interrupt flag (0 if interrupts were disabled, non-zero if they were
* enabled)
*/
ulong bootm_disable_interrupts(void)
{
ulong iflag;
/*
* We have reached the point of no return: we are going to
* overwrite all exception vector code, so we cannot easily
* recover from any failures any more...
*/
iflag = disable_interrupts();
#ifdef CONFIG_NETCONSOLE
/* Stop the ethernet stack if NetConsole could have left it up */
eth_halt();
# ifndef CONFIG_DM_ETH
eth_unregister(eth_get_dev());
# endif
#endif
#if defined(CONFIG_CMD_USB)
/*
* turn off USB to prevent the host controller from writing to the
* SDRAM while Linux is booting. This could happen (at least for OHCI
* controller), because the HCCA (Host Controller Communication Area)
* lies within the SDRAM and the host controller writes continously to
* this area (as busmaster!). The HccaFrameNumber is for example
* updated every 1 ms within the HCCA structure in SDRAM! For more
* details see the OpenHCI specification.
*/
usb_stop();
#endif
return iflag;
}
#define CONSOLE_ARG "console="
#define CONSOLE_ARG_SIZE sizeof(CONSOLE_ARG)
/**
* fixup_silent_linux() - Handle silencing the linux boot if required
*
* This uses the silent_linux envvar to control whether to add/set a "console="
* parameter to the command line
*
* @buf: Buffer containing the string to process
* @maxlen: Maximum length of buffer
* @return 0 if OK, -ENOSPC if @maxlen is too small
*/
static int fixup_silent_linux(char *buf, int maxlen)
{
int want_silent;
char *cmdline;
int size;
/*
* Move the input string to the end of buffer. The output string will be
* built up at the start.
*/
size = strlen(buf) + 1;
if (size * 2 > maxlen)
return -ENOSPC;
cmdline = buf + maxlen - size;
memmove(cmdline, buf, size);
/*
* Only fix cmdline when requested. The environment variable can be:
*
* no - we never fixup
* yes - we always fixup
* unset - we rely on the console silent flag
*/
want_silent = env_get_yesno("silent_linux");
if (want_silent == 0)
return 0;
else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT))
return 0;
debug("before silent fix-up: %s\n", cmdline);
if (*cmdline) {
char *start = strstr(cmdline, CONSOLE_ARG);
/* Check space for maximum possible new command line */
if (size + CONSOLE_ARG_SIZE > maxlen)
return -ENOSPC;
if (start) {
char *end = strchr(start, ' ');
int start_bytes;
start_bytes = start - cmdline + CONSOLE_ARG_SIZE - 1;
strncpy(buf, cmdline, start_bytes);
if (end)
strcpy(buf + start_bytes, end);
else
buf[start_bytes] = '\0';
} else {
sprintf(buf, "%s %s", cmdline, CONSOLE_ARG);
}
if (buf + strlen(buf) >= cmdline)
return -ENOSPC;
} else {
if (maxlen < sizeof(CONSOLE_ARG))
return -ENOSPC;
strcpy(buf, CONSOLE_ARG);
}
debug("after silent fix-up: %s\n", buf);
return 0;
}
/**
* process_subst() - Handle substitution of ${...} fields in the environment
*
* Handle variable substitution in the provided buffer
*
* @buf: Buffer containing the string to process
* @maxlen: Maximum length of buffer
* @return 0 if OK, -ENOSPC if @maxlen is too small
*/
static int process_subst(char *buf, int maxlen)
{
char *cmdline;
int size;
int ret;
/* Move to end of buffer */
size = strlen(buf) + 1;
cmdline = buf + maxlen - size;
if (buf + size > cmdline)
return -ENOSPC;
memmove(cmdline, buf, size);
ret = cli_simple_process_macros(cmdline, buf, cmdline - buf);
return ret;
}
int bootm_process_cmdline(char *buf, int maxlen, int flags)
{
int ret;
/* Check config first to enable compiler to eliminate code */
if (IS_ENABLED(CONFIG_SILENT_CONSOLE) &&
!IS_ENABLED(CONFIG_SILENT_U_BOOT_ONLY) &&
(flags & BOOTM_CL_SILENT)) {
ret = fixup_silent_linux(buf, maxlen);
if (ret)
return log_msg_ret("silent", ret);
}
if (IS_ENABLED(CONFIG_BOOTARGS_SUBST) && (flags & BOOTM_CL_SUBST)) {
ret = process_subst(buf, maxlen);
if (ret)
return log_msg_ret("silent", ret);
}
return 0;
}
int bootm_process_cmdline_env(int flags)
{
const int maxlen = MAX_CMDLINE_SIZE;
bool do_silent;
const char *env;
char *buf;
int ret;
/* First check if any action is needed */
do_silent = IS_ENABLED(CONFIG_SILENT_CONSOLE) &&
!IS_ENABLED(CONFIG_SILENT_U_BOOT_ONLY) && (flags & BOOTM_CL_SILENT);
if (!do_silent && !IS_ENABLED(CONFIG_BOOTARGS_SUBST))
return 0;
env = env_get("bootargs");
if (env && strlen(env) >= maxlen)
return -E2BIG;
buf = malloc(maxlen);
if (!buf)
return -ENOMEM;
if (env)
strcpy(buf, env);
else
*buf = '\0';
ret = bootm_process_cmdline(buf, maxlen, flags);
if (!ret) {
ret = env_set("bootargs", buf);
/*
* If buf is "" and bootargs does not exist, this will produce
* an error trying to delete bootargs. Ignore it
*/
if (ret == -ENOENT)
ret = 0;
}
free(buf);
if (ret)
return log_msg_ret("env", ret);
return 0;
}
/**
* Execute selected states of the bootm command.
*
* Note the arguments to this state must be the first argument, Any 'bootm'
* or sub-command arguments must have already been taken.
*
* Note that if states contains more than one flag it MUST contain
* BOOTM_STATE_START, since this handles and consumes the command line args.
*
* Also note that aside from boot_os_fn functions and bootm_load_os no other
* functions we store the return value of in 'ret' may use a negative return
* value, without special handling.
*
* @param cmdtp Pointer to bootm command table entry
* @param flag Command flags (CMD_FLAG_...)
* @param argc Number of subcommand arguments (0 = no arguments)
* @param argv Arguments
* @param states Mask containing states to run (BOOTM_STATE_...)
* @param images Image header information
* @param boot_progress 1 to show boot progress, 0 to not do this
* @return 0 if ok, something else on error. Some errors will cause this
* function to perform a reboot! If states contains BOOTM_STATE_OS_GO
* then the intent is to boot an OS, so this function will not return
* unless the image type is standalone.
*/
int do_bootm_states(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[], int states, bootm_headers_t *images,
int boot_progress)
{
boot_os_fn *boot_fn;
ulong iflag = 0;
int ret = 0, need_boot_fn;
images->state |= states;
/*
* Work through the states and see how far we get. We stop on
* any error.
*/
if (states & BOOTM_STATE_START)
ret = bootm_start(cmdtp, flag, argc, argv);
if (!ret && (states & BOOTM_STATE_FINDOS))
ret = bootm_find_os(cmdtp, flag, argc, argv);
if (!ret && (states & BOOTM_STATE_FINDOTHER))
ret = bootm_find_other(cmdtp, flag, argc, argv);
/* Load the OS */
if (!ret && (states & BOOTM_STATE_LOADOS)) {
iflag = bootm_disable_interrupts();
ret = bootm_load_os(images, 0);
if (ret && ret != BOOTM_ERR_OVERLAP)
goto err;
else if (ret == BOOTM_ERR_OVERLAP)
ret = 0;
}
/* Relocate the ramdisk */
#ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
if (!ret && (states & BOOTM_STATE_RAMDISK)) {
ulong rd_len = images->rd_end - images->rd_start;
ret = boot_ramdisk_high(&images->lmb, images->rd_start,
rd_len, &images->initrd_start, &images->initrd_end);
if (!ret) {
env_set_hex("initrd_start", images->initrd_start);
env_set_hex("initrd_end", images->initrd_end);
}
}
#endif
#if IMAGE_ENABLE_OF_LIBFDT && defined(CONFIG_LMB)
if (!ret && (states & BOOTM_STATE_FDT)) {
boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr);
ret = boot_relocate_fdt(&images->lmb, &images->ft_addr,
&images->ft_len);
}
#endif
/* From now on, we need the OS boot function */
if (ret)
return ret;
boot_fn = bootm_os_get_boot_func(images->os.os);
need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE |
BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP |
BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO);
if (boot_fn == NULL && need_boot_fn) {
if (iflag)
enable_interrupts();
printf("ERROR: booting os '%s' (%d) is not supported\n",
genimg_get_os_name(images->os.os), images->os.os);
bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS);
return 1;
}
/* Call various other states that are not generally used */
if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);
if (!ret && (states & BOOTM_STATE_OS_BD_T))
ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);
if (!ret && (states & BOOTM_STATE_OS_PREP)) {
ret = bootm_process_cmdline_env(images->os.os == IH_OS_LINUX);
if (ret) {
printf("Cmdline setup failed (err=%d)\n", ret);
ret = CMD_RET_FAILURE;
goto err;
}
ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);
}
#ifdef CONFIG_TRACE
/* Pretend to run the OS, then run a user command */
if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) {
char *cmd_list = env_get("fakegocmd");
ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO,
images, boot_fn);
if (!ret && cmd_list)
ret = run_command_list(cmd_list, -1, flag);
}
#endif
/* Check for unsupported subcommand. */
if (ret) {
puts("subcommand not supported\n");
return ret;
}
/* Now run the OS! We hope this doesn't return */
if (!ret && (states & BOOTM_STATE_OS_GO))
ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,
images, boot_fn);
/* Deal with any fallout */
err:
if (iflag)
enable_interrupts();
if (ret == BOOTM_ERR_UNIMPLEMENTED)
bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL);
else if (ret == BOOTM_ERR_RESET)
do_reset(cmdtp, flag, argc, argv);
return ret;
}
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
/**
* image_get_kernel - verify legacy format kernel image
* @img_addr: in RAM address of the legacy format image to be verified
* @verify: data CRC verification flag
*
* image_get_kernel() verifies legacy image integrity and returns pointer to
* legacy image header if image verification was completed successfully.
*
* returns:
* pointer to a legacy image header if valid image was found
* otherwise return NULL
*/
static image_header_t *image_get_kernel(ulong img_addr, int verify)
{
image_header_t *hdr = (image_header_t *)img_addr;
if (!image_check_magic(hdr)) {
puts("Bad Magic Number\n");
bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC);
return NULL;
}
bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER);
if (!image_check_hcrc(hdr)) {
puts("Bad Header Checksum\n");
bootstage_error(BOOTSTAGE_ID_CHECK_HEADER);
return NULL;
}
bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM);
image_print_contents(hdr);
if (verify) {
puts(" Verifying Checksum ... ");
if (!image_check_dcrc(hdr)) {
printf("Bad Data CRC\n");
bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM);
return NULL;
}
puts("OK\n");
}
bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH);
if (!image_check_target_arch(hdr)) {
printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr));
bootstage_error(BOOTSTAGE_ID_CHECK_ARCH);
return NULL;
}
return hdr;
}
#endif
/**
* boot_get_kernel - find kernel image
* @os_data: pointer to a ulong variable, will hold os data start address
* @os_len: pointer to a ulong variable, will hold os data length
*
* boot_get_kernel() tries to find a kernel image, verifies its integrity
* and locates kernel data.
*
* returns:
* pointer to image header if valid image was found, plus kernel start
* address and length, otherwise NULL
*/
static const void *boot_get_kernel(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[], bootm_headers_t *images,
ulong *os_data, ulong *os_len)
{
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
image_header_t *hdr;
#endif
ulong img_addr;
const void *buf;
const char *fit_uname_config = NULL;
const char *fit_uname_kernel = NULL;
#if IMAGE_ENABLE_FIT
int os_noffset;
#endif
img_addr = genimg_get_kernel_addr_fit(argc < 1 ? NULL : argv[0],
&fit_uname_config,
&fit_uname_kernel);
bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);
/* check image type, for FIT images get FIT kernel node */
*os_data = *os_len = 0;
buf = map_sysmem(img_addr, 0);
switch (genimg_get_format(buf)) {
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
case IMAGE_FORMAT_LEGACY:
printf("## Booting kernel from Legacy Image at %08lx ...\n",
img_addr);
hdr = image_get_kernel(img_addr, images->verify);
if (!hdr)
return NULL;
bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);
/* get os_data and os_len */
switch (image_get_type(hdr)) {
case IH_TYPE_KERNEL:
case IH_TYPE_KERNEL_NOLOAD:
*os_data = image_get_data(hdr);
*os_len = image_get_data_size(hdr);
break;
case IH_TYPE_MULTI:
image_multi_getimg(hdr, 0, os_data, os_len);
break;
case IH_TYPE_STANDALONE:
*os_data = image_get_data(hdr);
*os_len = image_get_data_size(hdr);
break;
default:
printf("Wrong Image Type for %s command\n",
cmdtp->name);
bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
return NULL;
}
/*
* copy image header to allow for image overwrites during
* kernel decompression.
*/
memmove(&images->legacy_hdr_os_copy, hdr,
sizeof(image_header_t));
/* save pointer to image header */
images->legacy_hdr_os = hdr;
images->legacy_hdr_valid = 1;
bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);
break;
#endif
#if IMAGE_ENABLE_FIT
case IMAGE_FORMAT_FIT:
os_noffset = fit_image_load(images, img_addr,
&fit_uname_kernel, &fit_uname_config,
IH_ARCH_DEFAULT, IH_TYPE_KERNEL,
BOOTSTAGE_ID_FIT_KERNEL_START,
FIT_LOAD_IGNORED, os_data, os_len);
if (os_noffset < 0)
return NULL;
images->fit_hdr_os = map_sysmem(img_addr, 0);
images->fit_uname_os = fit_uname_kernel;
images->fit_uname_cfg = fit_uname_config;
images->fit_noffset_os = os_noffset;
break;
#endif
#ifdef CONFIG_ANDROID_BOOT_IMAGE
case IMAGE_FORMAT_ANDROID:
printf("## Booting Android Image at 0x%08lx ...\n", img_addr);
if (android_image_get_kernel(buf, images->verify,
os_data, os_len))
return NULL;
break;
#endif
default:
printf("Wrong Image Format for %s command\n", cmdtp->name);
bootstage_error(BOOTSTAGE_ID_FIT_KERNEL_INFO);
return NULL;
}
debug(" kernel data at 0x%08lx, len = 0x%08lx (%ld)\n",
*os_data, *os_len, *os_len);
return buf;
}
/**
* switch_to_non_secure_mode() - switch to non-secure mode
*
* This routine is overridden by architectures requiring this feature.
*/
void __weak switch_to_non_secure_mode(void)
{
}
#else /* USE_HOSTCC */
#if defined(CONFIG_FIT_SIGNATURE)
static int bootm_host_load_image(const void *fit, int req_image_type,
int cfg_noffset)
{
const char *fit_uname_config = NULL;
ulong data, len;
bootm_headers_t images;
int noffset;
ulong load_end;
uint8_t image_type;
uint8_t imape_comp;
void *load_buf;
int ret;
fit_uname_config = fdt_get_name(fit, cfg_noffset, NULL);
memset(&images, '\0', sizeof(images));
images.verify = 1;
noffset = fit_image_load(&images, (ulong)fit,
NULL, &fit_uname_config,
IH_ARCH_DEFAULT, req_image_type, -1,
FIT_LOAD_IGNORED, &data, &len);
if (noffset < 0)
return noffset;
if (fit_image_get_type(fit, noffset, &image_type)) {
puts("Can't get image type!\n");
return -EINVAL;
}
if (fit_image_get_comp(fit, noffset, &imape_comp)) {
puts("Can't get image compression!\n");
return -EINVAL;
}
/* Allow the image to expand by a factor of 4, should be safe */
load_buf = malloc((1 << 20) + len * 4);
ret = image_decomp(imape_comp, 0, data, image_type, load_buf,
(void *)data, len, CONFIG_SYS_BOOTM_LEN,
&load_end);
free(load_buf);
if (ret) {
ret = handle_decomp_error(imape_comp, load_end - 0, ret);
if (ret != BOOTM_ERR_UNIMPLEMENTED)
return ret;
}
return 0;
}
int bootm_host_load_images(const void *fit, int cfg_noffset)
{
static uint8_t image_types[] = {
IH_TYPE_KERNEL,
IH_TYPE_FLATDT,
IH_TYPE_RAMDISK,
};
int err = 0;
int i;
for (i = 0; i < ARRAY_SIZE(image_types); i++) {
int ret;
ret = bootm_host_load_image(fit, image_types[i], cfg_noffset);
if (!err && ret && ret != -ENOENT)
err = ret;
}
/* Return the first error we found */
return err;
}
#endif
#endif /* ndef USE_HOSTCC */