u-boot/drivers/usb/gadget/atmel_usba_udc.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

1305 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Driver for the Atmel USBA high speed USB device controller
* [Original from Linux kernel: drivers/usb/gadget/atmel_usba_udc.c]
*
* Copyright (C) 2005-2013 Atmel Corporation
* Bo Shen <voice.shen@atmel.com>
*/
#include <common.h>
#include <linux/errno.h>
#include <asm/gpio.h>
#include <asm/hardware.h>
#include <linux/list.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/atmel_usba_udc.h>
#include <malloc.h>
#include <usb/lin_gadget_compat.h>
#include "atmel_usba_udc.h"
static int vbus_is_present(struct usba_udc *udc)
{
/* No Vbus detection: Assume always present */
return 1;
}
static void next_fifo_transaction(struct usba_ep *ep, struct usba_request *req)
{
unsigned int transaction_len;
transaction_len = req->req.length - req->req.actual;
req->last_transaction = 1;
if (transaction_len > ep->ep.maxpacket) {
transaction_len = ep->ep.maxpacket;
req->last_transaction = 0;
} else if (transaction_len == ep->ep.maxpacket && req->req.zero) {
req->last_transaction = 0;
}
DBG(DBG_QUEUE, "%s: submit_transaction, req %p (length %d)%s\n",
ep->ep.name, req, transaction_len,
req->last_transaction ? ", done" : "");
memcpy(ep->fifo, req->req.buf + req->req.actual, transaction_len);
usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
req->req.actual += transaction_len;
}
static void submit_request(struct usba_ep *ep, struct usba_request *req)
{
DBG(DBG_QUEUE, "%s: submit_request: req %p (length %d), dma: %d\n",
ep->ep.name, req, req->req.length, req->using_dma);
req->req.actual = 0;
req->submitted = 1;
next_fifo_transaction(ep, req);
if (req->last_transaction) {
usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY);
usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE);
} else {
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY);
}
}
static void submit_next_request(struct usba_ep *ep)
{
struct usba_request *req;
if (list_empty(&ep->queue)) {
usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY | USBA_RX_BK_RDY);
return;
}
req = list_entry(ep->queue.next, struct usba_request, queue);
if (!req->submitted)
submit_request(ep, req);
}
static void send_status(struct usba_udc *udc, struct usba_ep *ep)
{
ep->state = STATUS_STAGE_IN;
usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE);
}
static void receive_data(struct usba_ep *ep)
{
struct usba_udc *udc = ep->udc;
struct usba_request *req;
unsigned long status;
unsigned int bytecount, nr_busy;
int is_complete = 0;
status = usba_ep_readl(ep, STA);
nr_busy = USBA_BFEXT(BUSY_BANKS, status);
DBG(DBG_QUEUE, "receive data: nr_busy=%u\n", nr_busy);
while (nr_busy > 0) {
if (list_empty(&ep->queue)) {
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
break;
}
req = list_entry(ep->queue.next,
struct usba_request, queue);
bytecount = USBA_BFEXT(BYTE_COUNT, status);
if (status & USBA_SHORT_PACKET)
is_complete = 1;
if (req->req.actual + bytecount >= req->req.length) {
is_complete = 1;
bytecount = req->req.length - req->req.actual;
}
memcpy(req->req.buf + req->req.actual, ep->fifo, bytecount);
req->req.actual += bytecount;
usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
if (is_complete) {
DBG(DBG_QUEUE, "%s: request done\n", ep->ep.name);
req->req.status = 0;
list_del_init(&req->queue);
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
spin_lock(&udc->lock);
req->req.complete(&ep->ep, &req->req);
spin_unlock(&udc->lock);
}
status = usba_ep_readl(ep, STA);
nr_busy = USBA_BFEXT(BUSY_BANKS, status);
if (is_complete && ep_is_control(ep)) {
send_status(udc, ep);
break;
}
}
}
static void
request_complete(struct usba_ep *ep, struct usba_request *req, int status)
{
if (req->req.status == -EINPROGRESS)
req->req.status = status;
DBG(DBG_GADGET | DBG_REQ, "%s: req %p complete: status %d, actual %u\n",
ep->ep.name, req, req->req.status, req->req.actual);
req->req.complete(&ep->ep, &req->req);
}
static void
request_complete_list(struct usba_ep *ep, struct list_head *list, int status)
{
struct usba_request *req, *tmp_req;
list_for_each_entry_safe(req, tmp_req, list, queue) {
list_del_init(&req->queue);
request_complete(ep, req, status);
}
}
static int
usba_ep_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
unsigned long flags = 0, ept_cfg, maxpacket;
unsigned int nr_trans;
DBG(DBG_GADGET, "%s: ep_enable: desc=%p\n", ep->ep.name, desc);
maxpacket = usb_endpoint_maxp(desc) & 0x7ff;
if (((desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK)
!= ep->index) ||
ep->index == 0 ||
desc->bDescriptorType != USB_DT_ENDPOINT ||
maxpacket == 0 ||
maxpacket > ep->fifo_size) {
DBG(DBG_ERR, "ep_enable: Invalid argument");
return -EINVAL;
}
ep->is_isoc = 0;
ep->is_in = 0;
if (maxpacket <= 8)
ept_cfg = USBA_BF(EPT_SIZE, USBA_EPT_SIZE_8);
else
/* LSB is bit 1, not 0 */
ept_cfg = USBA_BF(EPT_SIZE, fls(maxpacket - 1) - 3);
DBG(DBG_HW, "%s: EPT_SIZE = %lu (maxpacket = %lu)\n",
ep->ep.name, ept_cfg, maxpacket);
if (usb_endpoint_dir_in(desc)) {
ep->is_in = 1;
ept_cfg |= USBA_EPT_DIR_IN;
}
switch (usb_endpoint_type(desc)) {
case USB_ENDPOINT_XFER_CONTROL:
ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_CONTROL);
ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_ONE);
break;
case USB_ENDPOINT_XFER_ISOC:
if (!ep->can_isoc) {
DBG(DBG_ERR, "ep_enable: %s is not isoc capable\n",
ep->ep.name);
return -EINVAL;
}
/*
* Bits 11:12 specify number of _additional_
* transactions per microframe.
*/
nr_trans = ((usb_endpoint_maxp(desc) >> 11) & 3) + 1;
if (nr_trans > 3)
return -EINVAL;
ep->is_isoc = 1;
ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_ISO);
/*
* Do triple-buffering on high-bandwidth iso endpoints.
*/
if (nr_trans > 1 && ep->nr_banks == 3)
ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_TRIPLE);
else
ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_DOUBLE);
ept_cfg |= USBA_BF(NB_TRANS, nr_trans);
break;
case USB_ENDPOINT_XFER_BULK:
ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK);
ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_ONE);
break;
case USB_ENDPOINT_XFER_INT:
ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_INT);
ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_ONE);
break;
}
spin_lock_irqsave(&ep->udc->lock, flags);
ep->desc = desc;
ep->ep.maxpacket = maxpacket;
usba_ep_writel(ep, CFG, ept_cfg);
usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE);
usba_writel(udc, INT_ENB,
(usba_readl(udc, INT_ENB)
| USBA_BF(EPT_INT, 1 << ep->index)));
spin_unlock_irqrestore(&udc->lock, flags);
DBG(DBG_HW, "EPT_CFG%d after init: %#08lx\n", ep->index,
(unsigned long)usba_ep_readl(ep, CFG));
DBG(DBG_HW, "INT_ENB after init: %#08lx\n",
(unsigned long)usba_readl(udc, INT_ENB));
return 0;
}
static int usba_ep_disable(struct usb_ep *_ep)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
LIST_HEAD(req_list);
unsigned long flags = 0;
DBG(DBG_GADGET, "ep_disable: %s\n", ep->ep.name);
spin_lock_irqsave(&udc->lock, flags);
if (!ep->desc) {
spin_unlock_irqrestore(&udc->lock, flags);
/* REVISIT because this driver disables endpoints in
* reset_all_endpoints() before calling disconnect(),
* most gadget drivers would trigger this non-error ...
*/
if (udc->gadget.speed != USB_SPEED_UNKNOWN)
DBG(DBG_ERR, "ep_disable: %s not enabled\n",
ep->ep.name);
return -EINVAL;
}
ep->desc = NULL;
list_splice_init(&ep->queue, &req_list);
usba_ep_writel(ep, CFG, 0);
usba_ep_writel(ep, CTL_DIS, USBA_EPT_ENABLE);
usba_writel(udc, INT_ENB,
usba_readl(udc, INT_ENB) &
~USBA_BF(EPT_INT, 1 << ep->index));
request_complete_list(ep, &req_list, -ESHUTDOWN);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static struct usb_request *
usba_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
{
struct usba_request *req;
DBG(DBG_GADGET, "ep_alloc_request: %p, 0x%x\n", _ep, gfp_flags);
req = calloc(1, sizeof(struct usba_request));
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
static void
usba_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
{
struct usba_request *req = to_usba_req(_req);
DBG(DBG_GADGET, "ep_free_request: %p, %p\n", _ep, _req);
free(req);
}
static int
usba_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
{
struct usba_request *req = to_usba_req(_req);
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
unsigned long flags = 0;
int ret;
DBG(DBG_GADGET | DBG_QUEUE | DBG_REQ, "%s: queue req %p, len %u\n",
ep->ep.name, req, _req->length);
if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN ||
!ep->desc)
return -ESHUTDOWN;
req->submitted = 0;
req->using_dma = 0;
req->last_transaction = 0;
_req->status = -EINPROGRESS;
_req->actual = 0;
/* May have received a reset since last time we checked */
ret = -ESHUTDOWN;
spin_lock_irqsave(&udc->lock, flags);
if (ep->desc) {
list_add_tail(&req->queue, &ep->queue);
if ((!ep_is_control(ep) && ep->is_in) ||
(ep_is_control(ep) && (ep->state == DATA_STAGE_IN ||
ep->state == STATUS_STAGE_IN)))
usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY);
else
usba_ep_writel(ep, CTL_ENB, USBA_RX_BK_RDY);
ret = 0;
}
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static int usba_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_request *req = to_usba_req(_req);
DBG(DBG_GADGET | DBG_QUEUE, "ep_dequeue: %s, req %p\n",
ep->ep.name, req);
/*
* Errors should stop the queue from advancing until the
* completion function returns.
*/
list_del_init(&req->queue);
request_complete(ep, req, -ECONNRESET);
/* Process the next request if any */
submit_next_request(ep);
return 0;
}
static int usba_ep_set_halt(struct usb_ep *_ep, int value)
{
struct usba_ep *ep = to_usba_ep(_ep);
unsigned long flags = 0;
int ret = 0;
DBG(DBG_GADGET, "endpoint %s: %s HALT\n", ep->ep.name,
value ? "set" : "clear");
if (!ep->desc) {
DBG(DBG_ERR, "Attempted to halt uninitialized ep %s\n",
ep->ep.name);
return -ENODEV;
}
if (ep->is_isoc) {
DBG(DBG_ERR, "Attempted to halt isochronous ep %s\n",
ep->ep.name);
return -ENOTTY;
}
spin_lock_irqsave(&udc->lock, flags);
/*
* We can't halt IN endpoints while there are still data to be
* transferred
*/
if (!list_empty(&ep->queue) ||
((value && ep->is_in && (usba_ep_readl(ep, STA) &
USBA_BF(BUSY_BANKS, -1L))))) {
ret = -EAGAIN;
} else {
if (value)
usba_ep_writel(ep, SET_STA, USBA_FORCE_STALL);
else
usba_ep_writel(ep, CLR_STA,
USBA_FORCE_STALL | USBA_TOGGLE_CLR);
usba_ep_readl(ep, STA);
}
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static int usba_ep_fifo_status(struct usb_ep *_ep)
{
struct usba_ep *ep = to_usba_ep(_ep);
return USBA_BFEXT(BYTE_COUNT, usba_ep_readl(ep, STA));
}
static void usba_ep_fifo_flush(struct usb_ep *_ep)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
usba_writel(udc, EPT_RST, 1 << ep->index);
}
static const struct usb_ep_ops usba_ep_ops = {
.enable = usba_ep_enable,
.disable = usba_ep_disable,
.alloc_request = usba_ep_alloc_request,
.free_request = usba_ep_free_request,
.queue = usba_ep_queue,
.dequeue = usba_ep_dequeue,
.set_halt = usba_ep_set_halt,
.fifo_status = usba_ep_fifo_status,
.fifo_flush = usba_ep_fifo_flush,
};
static int usba_udc_get_frame(struct usb_gadget *gadget)
{
struct usba_udc *udc = to_usba_udc(gadget);
return USBA_BFEXT(FRAME_NUMBER, usba_readl(udc, FNUM));
}
static int usba_udc_wakeup(struct usb_gadget *gadget)
{
struct usba_udc *udc = to_usba_udc(gadget);
unsigned long flags = 0;
u32 ctrl;
int ret = -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
if (udc->devstatus & (1 << USB_DEVICE_REMOTE_WAKEUP)) {
ctrl = usba_readl(udc, CTRL);
usba_writel(udc, CTRL, ctrl | USBA_REMOTE_WAKE_UP);
ret = 0;
}
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static int
usba_udc_set_selfpowered(struct usb_gadget *gadget, int is_selfpowered)
{
struct usba_udc *udc = to_usba_udc(gadget);
unsigned long flags = 0;
spin_lock_irqsave(&udc->lock, flags);
if (is_selfpowered)
udc->devstatus |= 1 << USB_DEVICE_SELF_POWERED;
else
udc->devstatus &= ~(1 << USB_DEVICE_SELF_POWERED);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static const struct usb_gadget_ops usba_udc_ops = {
.get_frame = usba_udc_get_frame,
.wakeup = usba_udc_wakeup,
.set_selfpowered = usba_udc_set_selfpowered,
};
static struct usb_endpoint_descriptor usba_ep0_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
.wMaxPacketSize = cpu_to_le16(64),
/* FIXME: I have no idea what to put here */
.bInterval = 1,
};
/*
* Called with interrupts disabled and udc->lock held.
*/
static void reset_all_endpoints(struct usba_udc *udc)
{
struct usba_ep *ep;
struct usba_request *req, *tmp_req;
usba_writel(udc, EPT_RST, ~0UL);
ep = to_usba_ep(udc->gadget.ep0);
list_for_each_entry_safe(req, tmp_req, &ep->queue, queue) {
list_del_init(&req->queue);
request_complete(ep, req, -ECONNRESET);
}
/* NOTE: normally, the next call to the gadget driver is in
* charge of disabling endpoints... usually disconnect().
* The exception would be entering a high speed test mode.
*
* FIXME remove this code ... and retest thoroughly.
*/
list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
if (ep->desc) {
spin_unlock(&udc->lock);
usba_ep_disable(&ep->ep);
spin_lock(&udc->lock);
}
}
}
static struct usba_ep *get_ep_by_addr(struct usba_udc *udc, u16 wIndex)
{
struct usba_ep *ep;
if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0)
return to_usba_ep(udc->gadget.ep0);
list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
u8 bEndpointAddress;
if (!ep->desc)
continue;
bEndpointAddress = ep->desc->bEndpointAddress;
if ((wIndex ^ bEndpointAddress) & USB_DIR_IN)
continue;
if ((bEndpointAddress & USB_ENDPOINT_NUMBER_MASK)
== (wIndex & USB_ENDPOINT_NUMBER_MASK))
return ep;
}
return NULL;
}
/* Called with interrupts disabled and udc->lock held */
static inline void set_protocol_stall(struct usba_udc *udc, struct usba_ep *ep)
{
usba_ep_writel(ep, SET_STA, USBA_FORCE_STALL);
ep->state = WAIT_FOR_SETUP;
}
static inline int is_stalled(struct usba_udc *udc, struct usba_ep *ep)
{
if (usba_ep_readl(ep, STA) & USBA_FORCE_STALL)
return 1;
return 0;
}
static inline void set_address(struct usba_udc *udc, unsigned int addr)
{
u32 regval;
DBG(DBG_BUS, "setting address %u...\n", addr);
regval = usba_readl(udc, CTRL);
regval = USBA_BFINS(DEV_ADDR, addr, regval);
usba_writel(udc, CTRL, regval);
}
static int do_test_mode(struct usba_udc *udc)
{
static const char test_packet_buffer[] = {
/* JKJKJKJK * 9 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* JJKKJJKK * 8 */
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
/* JJKKJJKK * 8 */
0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE,
/* JJJJJJJKKKKKKK * 8 */
0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
/* JJJJJJJK * 8 */
0x7F, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD,
/* {JKKKKKKK * 10}, JK */
0xFC, 0x7E, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD, 0x7E
};
struct usba_ep *ep;
int test_mode;
test_mode = udc->test_mode;
/* Start from a clean slate */
reset_all_endpoints(udc);
switch (test_mode) {
case 0x0100:
/* Test_J */
usba_writel(udc, TST, USBA_TST_J_MODE);
DBG(DBG_ALL, "Entering Test_J mode...\n");
break;
case 0x0200:
/* Test_K */
usba_writel(udc, TST, USBA_TST_K_MODE);
DBG(DBG_ALL, "Entering Test_K mode...\n");
break;
case 0x0300:
/*
* Test_SE0_NAK: Force high-speed mode and set up ep0
* for Bulk IN transfers
*/
ep = &udc->usba_ep[0];
usba_writel(udc, TST,
USBA_BF(SPEED_CFG, USBA_SPEED_CFG_FORCE_HIGH));
usba_ep_writel(ep, CFG,
USBA_BF(EPT_SIZE, USBA_EPT_SIZE_64)
| USBA_EPT_DIR_IN
| USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK)
| USBA_BF(BK_NUMBER, 1));
if (!(usba_ep_readl(ep, CFG) & USBA_EPT_MAPPED)) {
set_protocol_stall(udc, ep);
DBG(DBG_ALL, "Test_SE0_NAK: ep0 not mapped\n");
} else {
usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE);
DBG(DBG_ALL, "Entering Test_SE0_NAK mode...\n");
}
break;
case 0x0400:
/* Test_Packet */
ep = &udc->usba_ep[0];
usba_ep_writel(ep, CFG,
USBA_BF(EPT_SIZE, USBA_EPT_SIZE_64)
| USBA_EPT_DIR_IN
| USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK)
| USBA_BF(BK_NUMBER, 1));
if (!(usba_ep_readl(ep, CFG) & USBA_EPT_MAPPED)) {
set_protocol_stall(udc, ep);
DBG(DBG_ALL, "Test_Packet: ep0 not mapped\n");
} else {
usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE);
usba_writel(udc, TST, USBA_TST_PKT_MODE);
memcpy(ep->fifo, test_packet_buffer,
sizeof(test_packet_buffer));
usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
DBG(DBG_ALL, "Entering Test_Packet mode...\n");
}
break;
default:
DBG(DBG_ERR, "Invalid test mode: 0x%04x\n", test_mode);
return -EINVAL;
}
return 0;
}
/* Avoid overly long expressions */
static inline bool feature_is_dev_remote_wakeup(struct usb_ctrlrequest *crq)
{
if (crq->wValue == cpu_to_le16(USB_DEVICE_REMOTE_WAKEUP))
return true;
return false;
}
static inline bool feature_is_dev_test_mode(struct usb_ctrlrequest *crq)
{
if (crq->wValue == cpu_to_le16(USB_DEVICE_TEST_MODE))
return true;
return false;
}
static inline bool feature_is_ep_halt(struct usb_ctrlrequest *crq)
{
if (crq->wValue == cpu_to_le16(USB_ENDPOINT_HALT))
return true;
return false;
}
static int handle_ep0_setup(struct usba_udc *udc, struct usba_ep *ep,
struct usb_ctrlrequest *crq)
{
int retval = 0;
switch (crq->bRequest) {
case USB_REQ_GET_STATUS: {
u16 status;
if (crq->bRequestType == (USB_DIR_IN | USB_RECIP_DEVICE)) {
status = cpu_to_le16(udc->devstatus);
} else if (crq->bRequestType
== (USB_DIR_IN | USB_RECIP_INTERFACE)) {
status = cpu_to_le16(0);
} else if (crq->bRequestType
== (USB_DIR_IN | USB_RECIP_ENDPOINT)) {
struct usba_ep *target;
target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex));
if (!target)
goto stall;
status = 0;
if (is_stalled(udc, target))
status |= cpu_to_le16(1);
} else {
goto delegate;
}
/* Write directly to the FIFO. No queueing is done. */
if (crq->wLength != cpu_to_le16(sizeof(status)))
goto stall;
ep->state = DATA_STAGE_IN;
__raw_writew(status, ep->fifo);
usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
break;
}
case USB_REQ_CLEAR_FEATURE: {
if (crq->bRequestType == USB_RECIP_DEVICE) {
if (feature_is_dev_remote_wakeup(crq))
udc->devstatus
&= ~(1 << USB_DEVICE_REMOTE_WAKEUP);
else
/* Can't CLEAR_FEATURE TEST_MODE */
goto stall;
} else if (crq->bRequestType == USB_RECIP_ENDPOINT) {
struct usba_ep *target;
if (crq->wLength != cpu_to_le16(0) ||
!feature_is_ep_halt(crq))
goto stall;
target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex));
if (!target)
goto stall;
usba_ep_writel(target, CLR_STA, USBA_FORCE_STALL);
if (target->index != 0)
usba_ep_writel(target, CLR_STA,
USBA_TOGGLE_CLR);
} else {
goto delegate;
}
send_status(udc, ep);
break;
}
case USB_REQ_SET_FEATURE: {
if (crq->bRequestType == USB_RECIP_DEVICE) {
if (feature_is_dev_test_mode(crq)) {
send_status(udc, ep);
ep->state = STATUS_STAGE_TEST;
udc->test_mode = le16_to_cpu(crq->wIndex);
return 0;
} else if (feature_is_dev_remote_wakeup(crq)) {
udc->devstatus |= 1 << USB_DEVICE_REMOTE_WAKEUP;
} else {
goto stall;
}
} else if (crq->bRequestType == USB_RECIP_ENDPOINT) {
struct usba_ep *target;
if (crq->wLength != cpu_to_le16(0) ||
!feature_is_ep_halt(crq))
goto stall;
target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex));
if (!target)
goto stall;
usba_ep_writel(target, SET_STA, USBA_FORCE_STALL);
} else {
goto delegate;
}
send_status(udc, ep);
break;
}
case USB_REQ_SET_ADDRESS:
if (crq->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE))
goto delegate;
set_address(udc, le16_to_cpu(crq->wValue));
send_status(udc, ep);
ep->state = STATUS_STAGE_ADDR;
break;
default:
delegate:
spin_unlock(&udc->lock);
retval = udc->driver->setup(&udc->gadget, crq);
spin_lock(&udc->lock);
}
return retval;
stall:
DBG(DBG_ALL, "%s: Invalid setup request: %02x.%02x v%04x i%04x l%d\n",
ep->ep.name, crq->bRequestType, crq->bRequest,
le16_to_cpu(crq->wValue), le16_to_cpu(crq->wIndex),
le16_to_cpu(crq->wLength));
set_protocol_stall(udc, ep);
return -1;
}
static void usba_control_irq(struct usba_udc *udc, struct usba_ep *ep)
{
struct usba_request *req;
u32 epstatus;
u32 epctrl;
restart:
epstatus = usba_ep_readl(ep, STA);
epctrl = usba_ep_readl(ep, CTL);
DBG(DBG_INT, "%s [%d]: s/%08x c/%08x\n",
ep->ep.name, ep->state, epstatus, epctrl);
req = NULL;
if (!list_empty(&ep->queue))
req = list_entry(ep->queue.next,
struct usba_request, queue);
if ((epctrl & USBA_TX_PK_RDY) && !(epstatus & USBA_TX_PK_RDY)) {
if (req->submitted)
next_fifo_transaction(ep, req);
else
submit_request(ep, req);
if (req->last_transaction) {
usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY);
usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE);
}
goto restart;
}
if ((epstatus & epctrl) & USBA_TX_COMPLETE) {
usba_ep_writel(ep, CLR_STA, USBA_TX_COMPLETE);
switch (ep->state) {
case DATA_STAGE_IN:
usba_ep_writel(ep, CTL_ENB, USBA_RX_BK_RDY);
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
ep->state = STATUS_STAGE_OUT;
break;
case STATUS_STAGE_ADDR:
/* Activate our new address */
usba_writel(udc, CTRL, (usba_readl(udc, CTRL)
| USBA_FADDR_EN));
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
ep->state = WAIT_FOR_SETUP;
break;
case STATUS_STAGE_IN:
if (req) {
list_del_init(&req->queue);
request_complete(ep, req, 0);
submit_next_request(ep);
}
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
ep->state = WAIT_FOR_SETUP;
break;
case STATUS_STAGE_TEST:
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
ep->state = WAIT_FOR_SETUP;
if (do_test_mode(udc))
set_protocol_stall(udc, ep);
break;
default:
DBG(DBG_ALL, "%s: TXCOMP: Invalid endpoint state %d\n",
ep->ep.name, ep->state);
set_protocol_stall(udc, ep);
break;
}
goto restart;
}
if ((epstatus & epctrl) & USBA_RX_BK_RDY) {
switch (ep->state) {
case STATUS_STAGE_OUT:
usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
if (req) {
list_del_init(&req->queue);
request_complete(ep, req, 0);
}
ep->state = WAIT_FOR_SETUP;
break;
case DATA_STAGE_OUT:
receive_data(ep);
break;
default:
usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
DBG(DBG_ALL, "%s: RXRDY: Invalid endpoint state %d\n",
ep->ep.name, ep->state);
set_protocol_stall(udc, ep);
break;
}
goto restart;
}
if (epstatus & USBA_RX_SETUP) {
union {
struct usb_ctrlrequest crq;
unsigned long data[2];
} crq;
unsigned int pkt_len;
int ret;
if (ep->state != WAIT_FOR_SETUP) {
/*
* Didn't expect a SETUP packet at this
* point. Clean up any pending requests (which
* may be successful).
*/
int status = -EPROTO;
/*
* RXRDY and TXCOMP are dropped when SETUP
* packets arrive. Just pretend we received
* the status packet.
*/
if (ep->state == STATUS_STAGE_OUT ||
ep->state == STATUS_STAGE_IN) {
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
status = 0;
}
if (req) {
list_del_init(&req->queue);
request_complete(ep, req, status);
}
}
pkt_len = USBA_BFEXT(BYTE_COUNT, usba_ep_readl(ep, STA));
DBG(DBG_HW, "Packet length: %u\n", pkt_len);
if (pkt_len != sizeof(crq)) {
DBG(DBG_ALL, "udc: Invalid length %u (expected %zu)\n",
pkt_len, sizeof(crq));
set_protocol_stall(udc, ep);
return;
}
DBG(DBG_FIFO, "Copying ctrl request from 0x%p:\n", ep->fifo);
memcpy(crq.data, ep->fifo, sizeof(crq));
/* Free up one bank in the FIFO so that we can
* generate or receive a reply right away. */
usba_ep_writel(ep, CLR_STA, USBA_RX_SETUP);
if (crq.crq.bRequestType & USB_DIR_IN) {
/*
* The USB 2.0 spec states that "if wLength is
* zero, there is no data transfer phase."
* However, testusb #14 seems to actually
* expect a data phase even if wLength = 0...
*/
ep->state = DATA_STAGE_IN;
} else {
if (crq.crq.wLength != cpu_to_le16(0))
ep->state = DATA_STAGE_OUT;
else
ep->state = STATUS_STAGE_IN;
}
ret = -1;
if (ep->index == 0) {
ret = handle_ep0_setup(udc, ep, &crq.crq);
} else {
spin_unlock(&udc->lock);
ret = udc->driver->setup(&udc->gadget, &crq.crq);
spin_lock(&udc->lock);
}
DBG(DBG_BUS, "req %02x.%02x, length %d, state %d, ret %d\n",
crq.crq.bRequestType, crq.crq.bRequest,
le16_to_cpu(crq.crq.wLength), ep->state, ret);
if (ret < 0) {
/* Let the host know that we failed */
set_protocol_stall(udc, ep);
}
}
}
static void usba_ep_irq(struct usba_udc *udc, struct usba_ep *ep)
{
struct usba_request *req;
u32 epstatus;
u32 epctrl;
epstatus = usba_ep_readl(ep, STA);
epctrl = usba_ep_readl(ep, CTL);
DBG(DBG_INT, "%s: interrupt, status: 0x%08x\n", ep->ep.name, epstatus);
while ((epctrl & USBA_TX_PK_RDY) && !(epstatus & USBA_TX_PK_RDY)) {
DBG(DBG_BUS, "%s: TX PK ready\n", ep->ep.name);
if (list_empty(&ep->queue)) {
DBG(DBG_INT, "ep_irq: queue empty\n");
usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY);
return;
}
req = list_entry(ep->queue.next, struct usba_request, queue);
if (req->submitted)
next_fifo_transaction(ep, req);
else
submit_request(ep, req);
if (req->last_transaction) {
list_del_init(&req->queue);
submit_next_request(ep);
request_complete(ep, req, 0);
}
epstatus = usba_ep_readl(ep, STA);
epctrl = usba_ep_readl(ep, CTL);
}
if ((epstatus & epctrl) & USBA_RX_BK_RDY) {
DBG(DBG_BUS, "%s: RX data ready\n", ep->ep.name);
receive_data(ep);
}
}
static int usba_udc_irq(struct usba_udc *udc)
{
u32 status, ep_status;
spin_lock(&udc->lock);
status = usba_readl(udc, INT_STA);
DBG(DBG_INT, "irq, status=%#08x\n", status);
if (status & USBA_DET_SUSPEND) {
usba_writel(udc, INT_CLR, USBA_DET_SUSPEND);
DBG(DBG_BUS, "Suspend detected\n");
if (udc->gadget.speed != USB_SPEED_UNKNOWN &&
udc->driver && udc->driver->suspend) {
spin_unlock(&udc->lock);
udc->driver->suspend(&udc->gadget);
spin_lock(&udc->lock);
}
}
if (status & USBA_WAKE_UP) {
usba_writel(udc, INT_CLR, USBA_WAKE_UP);
DBG(DBG_BUS, "Wake Up CPU detected\n");
}
if (status & USBA_END_OF_RESUME) {
usba_writel(udc, INT_CLR, USBA_END_OF_RESUME);
DBG(DBG_BUS, "Resume detected\n");
if (udc->gadget.speed != USB_SPEED_UNKNOWN &&
udc->driver && udc->driver->resume) {
spin_unlock(&udc->lock);
udc->driver->resume(&udc->gadget);
spin_lock(&udc->lock);
}
}
ep_status = USBA_BFEXT(EPT_INT, status);
if (ep_status) {
int i;
for (i = 0; i < USBA_NR_ENDPOINTS; i++)
if (ep_status & (1 << i)) {
if (ep_is_control(&udc->usba_ep[i]))
usba_control_irq(udc, &udc->usba_ep[i]);
else
usba_ep_irq(udc, &udc->usba_ep[i]);
}
}
if (status & USBA_END_OF_RESET) {
struct usba_ep *ep0;
usba_writel(udc, INT_CLR, USBA_END_OF_RESET);
reset_all_endpoints(udc);
if (udc->gadget.speed != USB_SPEED_UNKNOWN &&
udc->driver->disconnect) {
udc->gadget.speed = USB_SPEED_UNKNOWN;
spin_unlock(&udc->lock);
udc->driver->disconnect(&udc->gadget);
spin_lock(&udc->lock);
}
if (status & USBA_HIGH_SPEED)
udc->gadget.speed = USB_SPEED_HIGH;
else
udc->gadget.speed = USB_SPEED_FULL;
ep0 = &udc->usba_ep[0];
ep0->desc = &usba_ep0_desc;
ep0->state = WAIT_FOR_SETUP;
usba_ep_writel(ep0, CFG,
(USBA_BF(EPT_SIZE, EP0_EPT_SIZE)
| USBA_BF(EPT_TYPE, USBA_EPT_TYPE_CONTROL)
| USBA_BF(BK_NUMBER, USBA_BK_NUMBER_ONE)));
usba_ep_writel(ep0, CTL_ENB,
USBA_EPT_ENABLE | USBA_RX_SETUP);
usba_writel(udc, INT_ENB,
(usba_readl(udc, INT_ENB)
| USBA_BF(EPT_INT, 1)
| USBA_DET_SUSPEND
| USBA_END_OF_RESUME));
/*
* Unclear why we hit this irregularly, e.g. in usbtest,
* but it's clearly harmless...
*/
if (!(usba_ep_readl(ep0, CFG) & USBA_EPT_MAPPED))
DBG(DBG_ALL, "ODD: EP0 configuration is invalid!\n");
}
spin_unlock(&udc->lock);
return 0;
}
static int atmel_usba_start(struct usba_udc *udc)
{
udc->devstatus = 1 << USB_DEVICE_SELF_POWERED;
udc->vbus_prev = 0;
/* If Vbus is present, enable the controller and wait for reset */
if (vbus_is_present(udc) && udc->vbus_prev == 0) {
usba_writel(udc, CTRL, USBA_ENABLE_MASK);
usba_writel(udc, INT_ENB, USBA_END_OF_RESET);
}
return 0;
}
static int atmel_usba_stop(struct usba_udc *udc)
{
udc->gadget.speed = USB_SPEED_UNKNOWN;
reset_all_endpoints(udc);
/* This will also disable the DP pullup */
usba_writel(udc, CTRL, USBA_DISABLE_MASK);
return 0;
}
static struct usba_udc controller = {
.regs = (unsigned *)ATMEL_BASE_UDPHS,
.fifo = (unsigned *)ATMEL_BASE_UDPHS_FIFO,
.gadget = {
.ops = &usba_udc_ops,
.ep_list = LIST_HEAD_INIT(controller.gadget.ep_list),
.speed = USB_SPEED_HIGH,
.is_dualspeed = 1,
.name = "atmel_usba_udc",
},
};
int usb_gadget_handle_interrupts(int index)
{
struct usba_udc *udc = &controller;
return usba_udc_irq(udc);
}
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
struct usba_udc *udc = &controller;
int ret;
if (!driver || !driver->bind || !driver->setup) {
printf("bad paramter\n");
return -EINVAL;
}
if (udc->driver) {
printf("UDC already has a gadget driver\n");
return -EBUSY;
}
atmel_usba_start(udc);
udc->driver = driver;
ret = driver->bind(&udc->gadget);
if (ret) {
pr_err("driver->bind() returned %d\n", ret);
udc->driver = NULL;
}
return ret;
}
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct usba_udc *udc = &controller;
if (!driver || !driver->unbind || !driver->disconnect) {
pr_err("bad paramter\n");
return -EINVAL;
}
driver->disconnect(&udc->gadget);
driver->unbind(&udc->gadget);
udc->driver = NULL;
atmel_usba_stop(udc);
return 0;
}
static struct usba_ep *usba_udc_pdata(struct usba_platform_data *pdata,
struct usba_udc *udc)
{
struct usba_ep *eps;
int i;
eps = malloc(sizeof(struct usba_ep) * pdata->num_ep);
if (!eps) {
pr_err("failed to alloc eps\n");
return NULL;
}
udc->gadget.ep0 = &eps[0].ep;
INIT_LIST_HEAD(&udc->gadget.ep_list);
INIT_LIST_HEAD(&eps[0].ep.ep_list);
for (i = 0; i < pdata->num_ep; i++) {
struct usba_ep *ep = &eps[i];
ep->ep_regs = udc->regs + USBA_EPT_BASE(i);
ep->dma_regs = udc->regs + USBA_DMA_BASE(i);
ep->fifo = udc->fifo + USBA_FIFO_BASE(i);
ep->ep.ops = &usba_ep_ops;
ep->ep.name = pdata->ep[i].name;
ep->ep.maxpacket = pdata->ep[i].fifo_size;
ep->fifo_size = ep->ep.maxpacket;
ep->udc = udc;
INIT_LIST_HEAD(&ep->queue);
ep->nr_banks = pdata->ep[i].nr_banks;
ep->index = pdata->ep[i].index;
ep->can_dma = pdata->ep[i].can_dma;
ep->can_isoc = pdata->ep[i].can_isoc;
if (i)
list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
};
return eps;
}
int usba_udc_probe(struct usba_platform_data *pdata)
{
struct usba_udc *udc;
udc = &controller;
udc->usba_ep = usba_udc_pdata(pdata, udc);
return 0;
}