u-boot/drivers/net/dm9000x.c
Tom Rini 9f2d365ed3 net: dm9000x: Remove non-DM_ETH code
As DM_ETH is required for all network drivers, it's now safe to remove
the non-DM_ETH support code.

Signed-off-by: Tom Rini <trini@konsulko.com>
2022-12-07 16:04:17 -05:00

684 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* dm9000.c: Version 1.2 12/15/2003
*
* A Davicom DM9000 ISA NIC fast Ethernet driver for Linux.
* Copyright (C) 1997 Sten Wang
*
* (C)Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
*
* V0.11 06/20/2001 REG_0A bit3=1, default enable BP with DA match
* 06/22/2001 Support DM9801 progrmming
* E3: R25 = ((R24 + NF) & 0x00ff) | 0xf000
* E4: R25 = ((R24 + NF) & 0x00ff) | 0xc200
* R17 = (R17 & 0xfff0) | NF + 3
* E5: R25 = ((R24 + NF - 3) & 0x00ff) | 0xc200
* R17 = (R17 & 0xfff0) | NF
*
* v1.00 modify by simon 2001.9.5
* change for kernel 2.4.x
*
* v1.1 11/09/2001 fix force mode bug
*
* v1.2 03/18/2003 Weilun Huang <weilun_huang@davicom.com.tw>:
* Fixed phy reset.
* Added tx/rx 32 bit mode.
* Cleaned up for kernel merge.
*
* --------------------------------------
*
* 12/15/2003 Initial port to u-boot by
* Sascha Hauer <saschahauer@web.de>
*
* 06/03/2008 Remy Bohmer <linux@bohmer.net>
* - Fixed the driver to work with DM9000A.
* (check on ISR receive status bit before reading the
* FIFO as described in DM9000 programming guide and
* application notes)
* - Added autodetect of databus width.
* - Made debug code compile again.
* - Adapt eth_send such that it matches the DM9000*
* application notes. Needed to make it work properly
* for DM9000A.
* - Adapted reset procedure to match DM9000 application
* notes (i.e. double reset)
* - some minor code cleanups
* These changes are tested with DM9000{A,EP,E} together
* with a 200MHz Atmel AT91SAM9261 core
*
* TODO: external MII is not functional, only internal at the moment.
*/
#include <common.h>
#include <command.h>
#include <dm.h>
#include <malloc.h>
#include <net.h>
#include <asm/io.h>
#include <linux/delay.h>
#include "dm9000x.h"
/* Structure/enum declaration ------------------------------- */
struct dm9000_priv {
u32 runt_length_counter; /* counter: RX length < 64byte */
u32 long_length_counter; /* counter: RX length > 1514byte */
u32 reset_counter; /* counter: RESET */
u32 reset_tx_timeout; /* RESET caused by TX Timeout */
u32 reset_rx_status; /* RESET caused by RX Statsus wrong */
u16 tx_pkt_cnt;
u16 queue_start_addr;
u16 dbug_cnt;
u8 phy_addr;
u8 device_wait_reset; /* device state */
unsigned char srom[128];
void (*outblk)(struct dm9000_priv *db, void *data_ptr, int count);
void (*inblk)(struct dm9000_priv *db, void *data_ptr, int count);
void (*rx_status)(struct dm9000_priv *db, u16 *rxstatus, u16 *rxlen);
void __iomem *base_io;
void __iomem *base_data;
};
/* DM9000 network board routine ---------------------------- */
#ifndef CONFIG_DM9000_BYTE_SWAPPED
#define dm9000_outb(d, r) writeb((d), (r))
#define dm9000_outw(d, r) writew((d), (r))
#define dm9000_outl(d, r) writel((d), (r))
#define dm9000_inb(r) readb(r)
#define dm9000_inw(r) readw(r)
#define dm9000_inl(r) readl(r)
#else
#define dm9000_outb(d, r) __raw_writeb(d, r)
#define dm9000_outw(d, r) __raw_writew(d, r)
#define dm9000_outl(d, r) __raw_writel(d, r)
#define dm9000_inb(r) __raw_readb(r)
#define dm9000_inw(r) __raw_readw(r)
#define dm9000_inl(r) __raw_readl(r)
#endif
#ifdef DEBUG
static void dm9000_dump_packet(const char *func, u8 *packet, int length)
{
int i;
printf("%s: length: %d\n", func, length);
for (i = 0; i < length; i++) {
if (i % 8 == 0)
printf("\n%s: %02x: ", func, i);
printf("%02x ", packet[i]);
}
printf("\n");
}
#else
static void dm9000_dump_packet(const char *func, u8 *packet, int length) {}
#endif
static void dm9000_outblk_8bit(struct dm9000_priv *db, void *data_ptr, int count)
{
int i;
for (i = 0; i < count; i++)
dm9000_outb((((u8 *)data_ptr)[i] & 0xff), db->base_data);
}
static void dm9000_outblk_16bit(struct dm9000_priv *db, void *data_ptr, int count)
{
int i;
u32 tmplen = (count + 1) / 2;
for (i = 0; i < tmplen; i++)
dm9000_outw(((u16 *)data_ptr)[i], db->base_data);
}
static void dm9000_outblk_32bit(struct dm9000_priv *db, void *data_ptr, int count)
{
int i;
u32 tmplen = (count + 3) / 4;
for (i = 0; i < tmplen; i++)
dm9000_outl(((u32 *)data_ptr)[i], db->base_data);
}
static void dm9000_inblk_8bit(struct dm9000_priv *db, void *data_ptr, int count)
{
int i;
for (i = 0; i < count; i++)
((u8 *)data_ptr)[i] = dm9000_inb(db->base_data);
}
static void dm9000_inblk_16bit(struct dm9000_priv *db, void *data_ptr, int count)
{
int i;
u32 tmplen = (count + 1) / 2;
for (i = 0; i < tmplen; i++)
((u16 *)data_ptr)[i] = dm9000_inw(db->base_data);
}
static void dm9000_inblk_32bit(struct dm9000_priv *db, void *data_ptr, int count)
{
int i;
u32 tmplen = (count + 3) / 4;
for (i = 0; i < tmplen; i++)
((u32 *)data_ptr)[i] = dm9000_inl(db->base_data);
}
static void dm9000_rx_status_32bit(struct dm9000_priv *db, u16 *rxstatus, u16 *rxlen)
{
u32 tmpdata;
dm9000_outb(DM9000_MRCMD, db->base_io);
tmpdata = dm9000_inl(db->base_data);
*rxstatus = __le16_to_cpu(tmpdata);
*rxlen = __le16_to_cpu(tmpdata >> 16);
}
static void dm9000_rx_status_16bit(struct dm9000_priv *db, u16 *rxstatus, u16 *rxlen)
{
dm9000_outb(DM9000_MRCMD, db->base_io);
*rxstatus = __le16_to_cpu(dm9000_inw(db->base_data));
*rxlen = __le16_to_cpu(dm9000_inw(db->base_data));
}
static void dm9000_rx_status_8bit(struct dm9000_priv *db, u16 *rxstatus, u16 *rxlen)
{
dm9000_outb(DM9000_MRCMD, db->base_io);
*rxstatus =
__le16_to_cpu(dm9000_inb(db->base_data) +
(dm9000_inb(db->base_data) << 8));
*rxlen =
__le16_to_cpu(dm9000_inb(db->base_data) +
(dm9000_inb(db->base_data) << 8));
}
/*
* Read a byte from I/O port
*/
static u8 dm9000_ior(struct dm9000_priv *db, int reg)
{
dm9000_outb(reg, db->base_io);
return dm9000_inb(db->base_data);
}
/*
* Write a byte to I/O port
*/
static void dm9000_iow(struct dm9000_priv *db, int reg, u8 value)
{
dm9000_outb(reg, db->base_io);
dm9000_outb(value, db->base_data);
}
/*
* Read a word from phyxcer
*/
static u16 dm9000_phy_read(struct dm9000_priv *db, int reg)
{
u16 val;
/* Fill the phyxcer register into REG_0C */
dm9000_iow(db, DM9000_EPAR, DM9000_PHY | reg);
dm9000_iow(db, DM9000_EPCR, 0xc); /* Issue phyxcer read command */
udelay(100); /* Wait read complete */
dm9000_iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
val = (dm9000_ior(db, DM9000_EPDRH) << 8) |
dm9000_ior(db, DM9000_EPDRL);
/* The read data keeps on REG_0D & REG_0E */
debug("%s(0x%x): 0x%x\n", __func__, reg, val);
return val;
}
/*
* Write a word to phyxcer
*/
static void dm9000_phy_write(struct dm9000_priv *db, int reg, u16 value)
{
/* Fill the phyxcer register into REG_0C */
dm9000_iow(db, DM9000_EPAR, DM9000_PHY | reg);
/* Fill the written data into REG_0D & REG_0E */
dm9000_iow(db, DM9000_EPDRL, (value & 0xff));
dm9000_iow(db, DM9000_EPDRH, ((value >> 8) & 0xff));
dm9000_iow(db, DM9000_EPCR, 0xa); /* Issue phyxcer write command */
udelay(500); /* Wait write complete */
dm9000_iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
debug("%s(reg:0x%x, value:0x%x)\n", __func__, reg, value);
}
/*
* Search DM9000 board, allocate space and register it
*/
static int dm9000_probe(struct dm9000_priv *db)
{
u32 id_val;
id_val = dm9000_ior(db, DM9000_VIDL);
id_val |= dm9000_ior(db, DM9000_VIDH) << 8;
id_val |= dm9000_ior(db, DM9000_PIDL) << 16;
id_val |= dm9000_ior(db, DM9000_PIDH) << 24;
if (id_val != DM9000_ID) {
printf("dm9000 not found at 0x%p id: 0x%08x\n",
db->base_io, id_val);
return -1;
}
printf("dm9000 i/o: 0x%p, id: 0x%x\n", db->base_io, id_val);
return 0;
}
/* General Purpose dm9000 reset routine */
static void dm9000_reset(struct dm9000_priv *db)
{
debug("resetting DM9000\n");
/*
* Reset DM9000,
* see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
*/
/* DEBUG: Make all GPIO0 outputs, all others inputs */
dm9000_iow(db, DM9000_GPCR, GPCR_GPIO0_OUT);
/* Step 1: Power internal PHY by writing 0 to GPIO0 pin */
dm9000_iow(db, DM9000_GPR, 0);
/* Step 2: Software reset */
dm9000_iow(db, DM9000_NCR, (NCR_LBK_INT_MAC | NCR_RST));
do {
debug("resetting the DM9000, 1st reset\n");
udelay(25); /* Wait at least 20 us */
} while (dm9000_ior(db, DM9000_NCR) & 1);
dm9000_iow(db, DM9000_NCR, 0);
dm9000_iow(db, DM9000_NCR, (NCR_LBK_INT_MAC | NCR_RST)); /* Issue a second reset */
do {
debug("resetting the DM9000, 2nd reset\n");
udelay(25); /* Wait at least 20 us */
} while (dm9000_ior(db, DM9000_NCR) & 1);
/* Check whether the ethernet controller is present */
if ((dm9000_ior(db, DM9000_PIDL) != 0x0) ||
(dm9000_ior(db, DM9000_PIDH) != 0x90))
printf("ERROR: resetting DM9000 -> not responding\n");
}
/* Initialize dm9000 board */
static int dm9000_init_common(struct dm9000_priv *db, u8 enetaddr[6])
{
int i, oft, lnk;
u8 io_mode;
/* RESET device */
dm9000_reset(db);
if (dm9000_probe(db) < 0)
return -1;
/* Auto-detect 8/16/32 bit mode, ISR Bit 6+7 indicate bus width */
io_mode = dm9000_ior(db, DM9000_ISR) >> 6;
switch (io_mode) {
case 0x0: /* 16-bit mode */
printf("DM9000: running in 16 bit mode\n");
db->outblk = dm9000_outblk_16bit;
db->inblk = dm9000_inblk_16bit;
db->rx_status = dm9000_rx_status_16bit;
break;
case 0x01: /* 32-bit mode */
printf("DM9000: running in 32 bit mode\n");
db->outblk = dm9000_outblk_32bit;
db->inblk = dm9000_inblk_32bit;
db->rx_status = dm9000_rx_status_32bit;
break;
case 0x02: /* 8 bit mode */
printf("DM9000: running in 8 bit mode\n");
db->outblk = dm9000_outblk_8bit;
db->inblk = dm9000_inblk_8bit;
db->rx_status = dm9000_rx_status_8bit;
break;
default:
/* Assume 8 bit mode, will probably not work anyway */
printf("DM9000: Undefined IO-mode:0x%x\n", io_mode);
db->outblk = dm9000_outblk_8bit;
db->inblk = dm9000_inblk_8bit;
db->rx_status = dm9000_rx_status_8bit;
break;
}
/* Program operating register, only internal phy supported */
dm9000_iow(db, DM9000_NCR, 0x0);
/* TX Polling clear */
dm9000_iow(db, DM9000_TCR, 0);
/* Less 3Kb, 200us */
dm9000_iow(db, DM9000_BPTR, BPTR_BPHW(3) | BPTR_JPT_600US);
/* Flow Control : High/Low Water */
dm9000_iow(db, DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8));
/* SH FIXME: This looks strange! Flow Control */
dm9000_iow(db, DM9000_FCR, 0x0);
/* Special Mode */
dm9000_iow(db, DM9000_SMCR, 0);
/* clear TX status */
dm9000_iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
/* Clear interrupt status */
dm9000_iow(db, DM9000_ISR, ISR_ROOS | ISR_ROS | ISR_PTS | ISR_PRS);
printf("MAC: %pM\n", enetaddr);
if (!is_valid_ethaddr(enetaddr))
printf("WARNING: Bad MAC address (uninitialized EEPROM?)\n");
/* fill device MAC address registers */
for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
dm9000_iow(db, oft, enetaddr[i]);
for (i = 0, oft = 0x16; i < 8; i++, oft++)
dm9000_iow(db, oft, 0xff);
/* read back mac, just to be sure */
for (i = 0, oft = 0x10; i < 6; i++, oft++)
debug("%02x:", dm9000_ior(db, oft));
debug("\n");
/* Activate DM9000 */
/* RX enable */
dm9000_iow(db, DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN);
/* Enable TX/RX interrupt mask */
dm9000_iow(db, DM9000_IMR, IMR_PAR);
i = 0;
while (!(dm9000_phy_read(db, 1) & 0x20)) { /* autonegation complete bit */
udelay(1000);
i++;
if (i == 10000) {
printf("could not establish link\n");
return 0;
}
}
/* see what we've got */
lnk = dm9000_phy_read(db, 17) >> 12;
printf("operating at ");
switch (lnk) {
case 1:
printf("10M half duplex ");
break;
case 2:
printf("10M full duplex ");
break;
case 4:
printf("100M half duplex ");
break;
case 8:
printf("100M full duplex ");
break;
default:
printf("unknown: %d ", lnk);
break;
}
printf("mode\n");
return 0;
}
/*
* Hardware start transmission.
* Send a packet to media from the upper layer.
*/
static int dm9000_send_common(struct dm9000_priv *db, void *packet, int length)
{
int tmo;
dm9000_dump_packet(__func__, packet, length);
dm9000_iow(db, DM9000_ISR, IMR_PTM); /* Clear Tx bit in ISR */
/* Move data to DM9000 TX RAM */
dm9000_outb(DM9000_MWCMD, db->base_io); /* Prepare for TX-data */
/* push the data to the TX-fifo */
db->outblk(db, packet, length);
/* Set TX length to DM9000 */
dm9000_iow(db, DM9000_TXPLL, length & 0xff);
dm9000_iow(db, DM9000_TXPLH, (length >> 8) & 0xff);
/* Issue TX polling command */
dm9000_iow(db, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
/* wait for end of transmission */
tmo = get_timer(0) + 5 * CONFIG_SYS_HZ;
while (!(dm9000_ior(db, DM9000_NSR) & (NSR_TX1END | NSR_TX2END)) ||
!(dm9000_ior(db, DM9000_ISR) & IMR_PTM)) {
if (get_timer(0) >= tmo) {
printf("transmission timeout\n");
break;
}
}
dm9000_iow(db, DM9000_ISR, IMR_PTM); /* Clear Tx bit in ISR */
debug("transmit done\n\n");
return 0;
}
/*
* Stop the interface.
* The interface is stopped when it is brought.
*/
static void dm9000_halt_common(struct dm9000_priv *db)
{
/* RESET device */
dm9000_phy_write(db, 0, 0x8000); /* PHY RESET */
dm9000_iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
dm9000_iow(db, DM9000_IMR, 0x80); /* Disable all interrupt */
dm9000_iow(db, DM9000_RCR, 0x00); /* Disable RX */
}
/*
* Received a packet and pass to upper layer
*/
static int dm9000_recv_common(struct dm9000_priv *db, uchar *rdptr)
{
u8 rxbyte;
u16 rxstatus, rxlen = 0;
/*
* Check packet ready or not, we must check
* the ISR status first for DM9000A
*/
if (!(dm9000_ior(db, DM9000_ISR) & 0x01)) /* Rx-ISR bit must be set. */
return 0;
dm9000_iow(db, DM9000_ISR, 0x01); /* clear PR status latched in bit 0 */
/* There is _at least_ 1 package in the fifo, read them all */
dm9000_ior(db, DM9000_MRCMDX); /* Dummy read */
/*
* Get most updated data,
* only look at bits 0:1, See application notes DM9000
*/
rxbyte = dm9000_inb(db->base_data) & 0x03;
/* Status check: this byte must be 0 or 1 */
if (rxbyte > DM9000_PKT_RDY) {
dm9000_iow(db, DM9000_RCR, 0x00); /* Stop Device */
dm9000_iow(db, DM9000_ISR, 0x80); /* Stop INT request */
printf("DM9000 error: status check fail: 0x%x\n",
rxbyte);
return -EINVAL;
}
if (rxbyte != DM9000_PKT_RDY)
return 0; /* No packet received, ignore */
debug("receiving packet\n");
/* A packet ready now & Get status/length */
db->rx_status(db, &rxstatus, &rxlen);
debug("rx status: 0x%04x rx len: %d\n", rxstatus, rxlen);
/* Move data from DM9000 */
/* Read received packet from RX SRAM */
db->inblk(db, rdptr, rxlen);
if (rxstatus & 0xbf00 || rxlen < 0x40 || rxlen > DM9000_PKT_MAX) {
if (rxstatus & 0x100)
printf("rx fifo error\n");
if (rxstatus & 0x200)
printf("rx crc error\n");
if (rxstatus & 0x8000)
printf("rx length error\n");
if (rxlen > DM9000_PKT_MAX) {
printf("rx length too big\n");
dm9000_reset(db);
}
return -EINVAL;
}
return rxlen;
}
/*
* Read a word data from SROM
*/
#if !defined(CONFIG_DM9000_NO_SROM)
static void dm9000_read_srom_word(struct dm9000_priv *db, int offset, u8 *to)
{
dm9000_iow(db, DM9000_EPAR, offset);
dm9000_iow(db, DM9000_EPCR, 0x4);
mdelay(8);
dm9000_iow(db, DM9000_EPCR, 0x0);
to[0] = dm9000_ior(db, DM9000_EPDRL);
to[1] = dm9000_ior(db, DM9000_EPDRH);
}
static void dm9000_get_enetaddr(struct dm9000_priv *db, u8 *enetaddr)
{
int i;
for (i = 0; i < 3; i++)
dm9000_read_srom_word(db, i, enetaddr + (2 * i));
}
#else
static void dm9000_get_enetaddr(struct dm9000_priv *db, u8 *enetaddr) {}
#endif
static int dm9000_start(struct udevice *dev)
{
struct dm9000_priv *db = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
return dm9000_init_common(db, pdata->enetaddr);
}
static void dm9000_stop(struct udevice *dev)
{
struct dm9000_priv *db = dev_get_priv(dev);
dm9000_halt_common(db);
}
static int dm9000_send(struct udevice *dev, void *packet, int length)
{
struct dm9000_priv *db = dev_get_priv(dev);
int ret;
ret = dm9000_send_common(db, packet, length);
return ret ? 0 : -ETIMEDOUT;
}
static int dm9000_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct dm9000_priv *db = dev_get_priv(dev);
uchar *data = net_rx_packets[0];
int ret;
ret = dm9000_recv_common(db, data);
if (ret > 0)
*packetp = (void *)data;
return ret >= 0 ? ret : -EAGAIN;
}
static int dm9000_write_hwaddr(struct udevice *dev)
{
struct dm9000_priv *db = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
int i, oft;
/* fill device MAC address registers */
for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
dm9000_iow(db, oft, pdata->enetaddr[i]);
for (i = 0, oft = 0x16; i < 8; i++, oft++)
dm9000_iow(db, oft, 0xff);
/* read back mac, just to be sure */
for (i = 0, oft = 0x10; i < 6; i++, oft++)
debug("%02x:", dm9000_ior(db, oft));
debug("\n");
return 0;
}
static int dm9000_read_rom_hwaddr(struct udevice *dev)
{
struct dm9000_priv *db = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
dm9000_get_enetaddr(db, pdata->enetaddr);
return !is_valid_ethaddr(pdata->enetaddr);
}
static int dm9000_bind(struct udevice *dev)
{
return device_set_name(dev, dev->name);
}
static int dm9000_of_to_plat(struct udevice *dev)
{
struct dm9000_priv *db = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
pdata->iobase = dev_read_addr_index(dev, 0);
db->base_io = (void __iomem *)pdata->iobase;
db->base_data = (void __iomem *)dev_read_addr_index(dev, 1);
return 0;
}
static const struct eth_ops dm9000_ops = {
.start = dm9000_start,
.stop = dm9000_stop,
.send = dm9000_send,
.recv = dm9000_recv,
.write_hwaddr = dm9000_write_hwaddr,
.read_rom_hwaddr = dm9000_read_rom_hwaddr,
};
static const struct udevice_id dm9000_ids[] = {
{ .compatible = "davicom,dm9000" },
{ }
};
U_BOOT_DRIVER(dm9000) = {
.name = "eth_dm9000",
.id = UCLASS_ETH,
.of_match = dm9000_ids,
.bind = dm9000_bind,
.of_to_plat = dm9000_of_to_plat,
.ops = &dm9000_ops,
.priv_auto = sizeof(struct dm9000_priv),
.plat_auto = sizeof(struct eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};