u-boot/common/cmd_bootm.c
Simon Glass 385501d38b bootm: Disable interrupts only when loading
With the move of the interrupt code to earlier in the sequence, we
exposed a problem where the interrupts are disabled at each bootm
stage. This is not correct - it should be done only once. Let's disable
interrupts in the LOAD stage. Put the code in a function for clarity.

Also, bootz lost its interrupt code altogether, so reinstate it.

Signed-off-by: Simon Glass <sjg@chromium.org>
2013-07-10 09:15:14 -04:00

1834 lines
46 KiB
C

/*
* (C) Copyright 2000-2009
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* Boot support
*/
#include <common.h>
#include <watchdog.h>
#include <command.h>
#include <image.h>
#include <malloc.h>
#include <u-boot/zlib.h>
#include <bzlib.h>
#include <environment.h>
#include <lmb.h>
#include <linux/ctype.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <linux/compiler.h>
#if defined(CONFIG_CMD_USB)
#include <usb.h>
#endif
#ifdef CONFIG_SYS_HUSH_PARSER
#include <hush.h>
#endif
#if defined(CONFIG_OF_LIBFDT)
#include <libfdt.h>
#include <fdt_support.h>
#endif
#ifdef CONFIG_LZMA
#include <lzma/LzmaTypes.h>
#include <lzma/LzmaDec.h>
#include <lzma/LzmaTools.h>
#endif /* CONFIG_LZMA */
#ifdef CONFIG_LZO
#include <linux/lzo.h>
#endif /* CONFIG_LZO */
DECLARE_GLOBAL_DATA_PTR;
#ifndef CONFIG_SYS_BOOTM_LEN
#define CONFIG_SYS_BOOTM_LEN 0x800000 /* use 8MByte as default max gunzip size */
#endif
#ifdef CONFIG_BZIP2
extern void bz_internal_error(int);
#endif
#if defined(CONFIG_CMD_IMI)
static int image_info(unsigned long addr);
#endif
#if defined(CONFIG_CMD_IMLS)
#include <flash.h>
#include <mtd/cfi_flash.h>
extern flash_info_t flash_info[]; /* info for FLASH chips */
#endif
#if defined(CONFIG_CMD_IMLS) || defined(CONFIG_CMD_IMLS_NAND)
static int do_imls(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
#endif
#include <linux/err.h>
#include <nand.h>
#if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
static void fixup_silent_linux(void);
#endif
static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[], bootm_headers_t *images,
ulong *os_data, ulong *os_len);
/*
* Continue booting an OS image; caller already has:
* - copied image header to global variable `header'
* - checked header magic number, checksums (both header & image),
* - verified image architecture (PPC) and type (KERNEL or MULTI),
* - loaded (first part of) image to header load address,
* - disabled interrupts.
*
* @flag: Flags indicating what to do (BOOTM_STATE_...)
* @argc: Number of arguments. Note that the arguments are shifted down
* so that 0 is the first argument not processed by U-Boot, and
* argc is adjusted accordingly. This avoids confusion as to how
* many arguments are available for the OS.
* @images: Pointers to os/initrd/fdt
* @return 1 on error. On success the OS boots so this function does
* not return.
*/
typedef int boot_os_fn(int flag, int argc, char * const argv[],
bootm_headers_t *images);
#ifdef CONFIG_BOOTM_LINUX
extern boot_os_fn do_bootm_linux;
#endif
#ifdef CONFIG_BOOTM_NETBSD
static boot_os_fn do_bootm_netbsd;
#endif
#if defined(CONFIG_LYNXKDI)
static boot_os_fn do_bootm_lynxkdi;
extern void lynxkdi_boot(image_header_t *);
#endif
#ifdef CONFIG_BOOTM_RTEMS
static boot_os_fn do_bootm_rtems;
#endif
#if defined(CONFIG_BOOTM_OSE)
static boot_os_fn do_bootm_ose;
#endif
#if defined(CONFIG_BOOTM_PLAN9)
static boot_os_fn do_bootm_plan9;
#endif
#if defined(CONFIG_CMD_ELF)
static boot_os_fn do_bootm_vxworks;
static boot_os_fn do_bootm_qnxelf;
int do_bootvx(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
int do_bootelf(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
#endif
#if defined(CONFIG_INTEGRITY)
static boot_os_fn do_bootm_integrity;
#endif
static boot_os_fn *boot_os[] = {
#ifdef CONFIG_BOOTM_LINUX
[IH_OS_LINUX] = do_bootm_linux,
#endif
#ifdef CONFIG_BOOTM_NETBSD
[IH_OS_NETBSD] = do_bootm_netbsd,
#endif
#ifdef CONFIG_LYNXKDI
[IH_OS_LYNXOS] = do_bootm_lynxkdi,
#endif
#ifdef CONFIG_BOOTM_RTEMS
[IH_OS_RTEMS] = do_bootm_rtems,
#endif
#if defined(CONFIG_BOOTM_OSE)
[IH_OS_OSE] = do_bootm_ose,
#endif
#if defined(CONFIG_BOOTM_PLAN9)
[IH_OS_PLAN9] = do_bootm_plan9,
#endif
#if defined(CONFIG_CMD_ELF)
[IH_OS_VXWORKS] = do_bootm_vxworks,
[IH_OS_QNX] = do_bootm_qnxelf,
#endif
#ifdef CONFIG_INTEGRITY
[IH_OS_INTEGRITY] = do_bootm_integrity,
#endif
};
bootm_headers_t images; /* pointers to os/initrd/fdt images */
/* Allow for arch specific config before we boot */
static void __arch_preboot_os(void)
{
/* please define platform specific arch_preboot_os() */
}
void arch_preboot_os(void) __attribute__((weak, alias("__arch_preboot_os")));
#define IH_INITRD_ARCH IH_ARCH_DEFAULT
#ifdef CONFIG_LMB
static void boot_start_lmb(bootm_headers_t *images)
{
ulong mem_start;
phys_size_t mem_size;
lmb_init(&images->lmb);
mem_start = getenv_bootm_low();
mem_size = getenv_bootm_size();
lmb_add(&images->lmb, (phys_addr_t)mem_start, mem_size);
arch_lmb_reserve(&images->lmb);
board_lmb_reserve(&images->lmb);
}
#else
#define lmb_reserve(lmb, base, size)
static inline void boot_start_lmb(bootm_headers_t *images) { }
#endif
static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
memset((void *)&images, 0, sizeof(images));
images.verify = getenv_yesno("verify");
boot_start_lmb(&images);
bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");
images.state = BOOTM_STATE_START;
return 0;
}
static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[])
{
const void *os_hdr;
/* get kernel image header, start address and length */
os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,
&images, &images.os.image_start, &images.os.image_len);
if (images.os.image_len == 0) {
puts("ERROR: can't get kernel image!\n");
return 1;
}
/* get image parameters */
switch (genimg_get_format(os_hdr)) {
case IMAGE_FORMAT_LEGACY:
images.os.type = image_get_type(os_hdr);
images.os.comp = image_get_comp(os_hdr);
images.os.os = image_get_os(os_hdr);
images.os.end = image_get_image_end(os_hdr);
images.os.load = image_get_load(os_hdr);
break;
#if defined(CONFIG_FIT)
case IMAGE_FORMAT_FIT:
if (fit_image_get_type(images.fit_hdr_os,
images.fit_noffset_os, &images.os.type)) {
puts("Can't get image type!\n");
bootstage_error(BOOTSTAGE_ID_FIT_TYPE);
return 1;
}
if (fit_image_get_comp(images.fit_hdr_os,
images.fit_noffset_os, &images.os.comp)) {
puts("Can't get image compression!\n");
bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION);
return 1;
}
if (fit_image_get_os(images.fit_hdr_os,
images.fit_noffset_os, &images.os.os)) {
puts("Can't get image OS!\n");
bootstage_error(BOOTSTAGE_ID_FIT_OS);
return 1;
}
images.os.end = fit_get_end(images.fit_hdr_os);
if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os,
&images.os.load)) {
puts("Can't get image load address!\n");
bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR);
return 1;
}
break;
#endif
default:
puts("ERROR: unknown image format type!\n");
return 1;
}
/* find kernel entry point */
if (images.legacy_hdr_valid) {
images.ep = image_get_ep(&images.legacy_hdr_os_copy);
#if defined(CONFIG_FIT)
} else if (images.fit_uname_os) {
int ret;
ret = fit_image_get_entry(images.fit_hdr_os,
images.fit_noffset_os, &images.ep);
if (ret) {
puts("Can't get entry point property!\n");
return 1;
}
#endif
} else {
puts("Could not find kernel entry point!\n");
return 1;
}
if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
images.os.load = images.os.image_start;
images.ep += images.os.load;
}
images.os.start = (ulong)os_hdr;
return 0;
}
static int bootm_find_other(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[])
{
int ret;
if (((images.os.type == IH_TYPE_KERNEL) ||
(images.os.type == IH_TYPE_KERNEL_NOLOAD) ||
(images.os.type == IH_TYPE_MULTI)) &&
(images.os.os == IH_OS_LINUX)) {
/* find ramdisk */
ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH,
&images.rd_start, &images.rd_end);
if (ret) {
puts("Ramdisk image is corrupt or invalid\n");
return 1;
}
#if defined(CONFIG_OF_LIBFDT)
/* find flattened device tree */
ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images,
&images.ft_addr, &images.ft_len);
if (ret) {
puts("Could not find a valid device tree\n");
return 1;
}
set_working_fdt_addr(images.ft_addr);
#endif
}
return 0;
}
#define BOOTM_ERR_RESET -1
#define BOOTM_ERR_OVERLAP -2
#define BOOTM_ERR_UNIMPLEMENTED -3
static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end,
int boot_progress)
{
image_info_t os = images->os;
uint8_t comp = os.comp;
ulong load = os.load;
ulong blob_start = os.start;
ulong blob_end = os.end;
ulong image_start = os.image_start;
ulong image_len = os.image_len;
__maybe_unused uint unc_len = CONFIG_SYS_BOOTM_LEN;
int no_overlap = 0;
void *load_buf, *image_buf;
#if defined(CONFIG_LZMA) || defined(CONFIG_LZO)
int ret;
#endif /* defined(CONFIG_LZMA) || defined(CONFIG_LZO) */
const char *type_name = genimg_get_type_name(os.type);
load_buf = map_sysmem(load, image_len);
image_buf = map_sysmem(image_start, image_len);
switch (comp) {
case IH_COMP_NONE:
if (load == blob_start || load == image_start) {
printf(" XIP %s ... ", type_name);
no_overlap = 1;
} else {
printf(" Loading %s ... ", type_name);
memmove_wd(load_buf, image_buf, image_len, CHUNKSZ);
}
*load_end = load + image_len;
puts("OK\n");
break;
#ifdef CONFIG_GZIP
case IH_COMP_GZIP:
printf(" Uncompressing %s ... ", type_name);
if (gunzip(load_buf, unc_len, image_buf, &image_len) != 0) {
puts("GUNZIP: uncompress, out-of-mem or overwrite "
"error - must RESET board to recover\n");
if (boot_progress)
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
return BOOTM_ERR_RESET;
}
*load_end = load + image_len;
break;
#endif /* CONFIG_GZIP */
#ifdef CONFIG_BZIP2
case IH_COMP_BZIP2:
printf(" Uncompressing %s ... ", type_name);
/*
* If we've got less than 4 MB of malloc() space,
* use slower decompression algorithm which requires
* at most 2300 KB of memory.
*/
int i = BZ2_bzBuffToBuffDecompress(load_buf, &unc_len,
image_buf, image_len,
CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0);
if (i != BZ_OK) {
printf("BUNZIP2: uncompress or overwrite error %d "
"- must RESET board to recover\n", i);
if (boot_progress)
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
return BOOTM_ERR_RESET;
}
*load_end = load + unc_len;
break;
#endif /* CONFIG_BZIP2 */
#ifdef CONFIG_LZMA
case IH_COMP_LZMA: {
SizeT lzma_len = unc_len;
printf(" Uncompressing %s ... ", type_name);
ret = lzmaBuffToBuffDecompress(load_buf, &lzma_len,
image_buf, image_len);
unc_len = lzma_len;
if (ret != SZ_OK) {
printf("LZMA: uncompress or overwrite error %d "
"- must RESET board to recover\n", ret);
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
return BOOTM_ERR_RESET;
}
*load_end = load + unc_len;
break;
}
#endif /* CONFIG_LZMA */
#ifdef CONFIG_LZO
case IH_COMP_LZO:
printf(" Uncompressing %s ... ", type_name);
ret = lzop_decompress(image_buf, image_len, load_buf,
&unc_len);
if (ret != LZO_E_OK) {
printf("LZO: uncompress or overwrite error %d "
"- must RESET board to recover\n", ret);
if (boot_progress)
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
return BOOTM_ERR_RESET;
}
*load_end = load + unc_len;
break;
#endif /* CONFIG_LZO */
default:
printf("Unimplemented compression type %d\n", comp);
return BOOTM_ERR_UNIMPLEMENTED;
}
flush_cache(load, (*load_end - load) * sizeof(ulong));
puts("OK\n");
debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, *load_end);
bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED);
if (!no_overlap && (load < blob_end) && (*load_end > blob_start)) {
debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n",
blob_start, blob_end);
debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load,
*load_end);
/* Check what type of image this is. */
if (images->legacy_hdr_valid) {
if (image_get_type(&images->legacy_hdr_os_copy)
== IH_TYPE_MULTI)
puts("WARNING: legacy format multi component image overwritten\n");
return BOOTM_ERR_OVERLAP;
} else {
puts("ERROR: new format image overwritten - must RESET the board to recover\n");
bootstage_error(BOOTSTAGE_ID_OVERWRITTEN);
return BOOTM_ERR_RESET;
}
}
return 0;
}
static int bootm_start_standalone(int argc, char * const argv[])
{
char *s;
int (*appl)(int, char * const []);
/* Don't start if "autostart" is set to "no" */
if (((s = getenv("autostart")) != NULL) && (strcmp(s, "no") == 0)) {
setenv_hex("filesize", images.os.image_len);
return 0;
}
appl = (int (*)(int, char * const []))(ulong)ntohl(images.ep);
(*appl)(argc, argv);
return 0;
}
/* we overload the cmd field with our state machine info instead of a
* function pointer */
static cmd_tbl_t cmd_bootm_sub[] = {
U_BOOT_CMD_MKENT(start, 0, 1, (void *)BOOTM_STATE_START, "", ""),
U_BOOT_CMD_MKENT(loados, 0, 1, (void *)BOOTM_STATE_LOADOS, "", ""),
#ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
U_BOOT_CMD_MKENT(ramdisk, 0, 1, (void *)BOOTM_STATE_RAMDISK, "", ""),
#endif
#ifdef CONFIG_OF_LIBFDT
U_BOOT_CMD_MKENT(fdt, 0, 1, (void *)BOOTM_STATE_FDT, "", ""),
#endif
U_BOOT_CMD_MKENT(cmdline, 0, 1, (void *)BOOTM_STATE_OS_CMDLINE, "", ""),
U_BOOT_CMD_MKENT(bdt, 0, 1, (void *)BOOTM_STATE_OS_BD_T, "", ""),
U_BOOT_CMD_MKENT(prep, 0, 1, (void *)BOOTM_STATE_OS_PREP, "", ""),
U_BOOT_CMD_MKENT(fake, 0, 1, (void *)BOOTM_STATE_OS_FAKE_GO, "", ""),
U_BOOT_CMD_MKENT(go, 0, 1, (void *)BOOTM_STATE_OS_GO, "", ""),
};
static int boot_selected_os(int argc, char * const argv[], int state,
bootm_headers_t *images, boot_os_fn *boot_fn)
{
if (images->os.type == IH_TYPE_STANDALONE) {
/* This may return when 'autostart' is 'no' */
bootm_start_standalone(argc, argv);
return 0;
}
#ifdef CONFIG_SILENT_CONSOLE
if (images->os.os == IH_OS_LINUX)
fixup_silent_linux();
#endif
arch_preboot_os();
boot_fn(state, argc, argv, images);
if (state == BOOTM_STATE_OS_FAKE_GO) /* We expect to return */
return 0;
bootstage_error(BOOTSTAGE_ID_BOOT_OS_RETURNED);
#ifdef DEBUG
puts("\n## Control returned to monitor - resetting...\n");
#endif
return BOOTM_ERR_RESET;
}
/**
* bootm_disable_interrupts() - Disable interrupts in preparation for load/boot
*
* @return interrupt flag (0 if interrupts were disabled, non-zero if they were
* enabled)
*/
static ulong bootm_disable_interrupts(void)
{
ulong iflag;
/*
* We have reached the point of no return: we are going to
* overwrite all exception vector code, so we cannot easily
* recover from any failures any more...
*/
iflag = disable_interrupts();
#ifdef CONFIG_NETCONSOLE
/* Stop the ethernet stack if NetConsole could have left it up */
eth_halt();
#endif
#if defined(CONFIG_CMD_USB)
/*
* turn off USB to prevent the host controller from writing to the
* SDRAM while Linux is booting. This could happen (at least for OHCI
* controller), because the HCCA (Host Controller Communication Area)
* lies within the SDRAM and the host controller writes continously to
* this area (as busmaster!). The HccaFrameNumber is for example
* updated every 1 ms within the HCCA structure in SDRAM! For more
* details see the OpenHCI specification.
*/
usb_stop();
#endif
return iflag;
}
/**
* Execute selected states of the bootm command.
*
* Note the arguments to this state must be the first argument, Any 'bootm'
* or sub-command arguments must have already been taken.
*
* Note that if states contains more than one flag it MUST contain
* BOOTM_STATE_START, since this handles and consumes the command line args.
*
* Also note that aside from boot_os_fn functions and bootm_load_os no other
* functions we store the return value of in 'ret' may use a negative return
* value, without special handling.
*
* @param cmdtp Pointer to bootm command table entry
* @param flag Command flags (CMD_FLAG_...)
* @param argc Number of subcommand arguments (0 = no arguments)
* @param argv Arguments
* @param states Mask containing states to run (BOOTM_STATE_...)
* @param images Image header information
* @param boot_progress 1 to show boot progress, 0 to not do this
* @return 0 if ok, something else on error. Some errors will cause this
* function to perform a reboot! If states contains BOOTM_STATE_OS_GO
* then the intent is to boot an OS, so this function will not return
* unless the image type is standalone.
*/
static int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[], int states, bootm_headers_t *images,
int boot_progress)
{
boot_os_fn *boot_fn;
ulong iflag = 0;
int ret = 0;
images->state |= states;
/*
* Work through the states and see how far we get. We stop on
* any error.
*/
if (states & BOOTM_STATE_START)
ret = bootm_start(cmdtp, flag, argc, argv);
if (!ret && (states & BOOTM_STATE_FINDOS))
ret = bootm_find_os(cmdtp, flag, argc, argv);
if (!ret && (states & BOOTM_STATE_FINDOTHER)) {
ret = bootm_find_other(cmdtp, flag, argc, argv);
argc = 0; /* consume the args */
}
/* Load the OS */
if (!ret && (states & BOOTM_STATE_LOADOS)) {
ulong load_end;
iflag = bootm_disable_interrupts();
ret = bootm_load_os(images, &load_end, 0);
if (ret && ret != BOOTM_ERR_OVERLAP)
goto err;
if (ret == 0)
lmb_reserve(&images->lmb, images->os.load,
(load_end - images->os.load));
else if (ret == BOOTM_ERR_OVERLAP)
ret = 0;
}
/* Relocate the ramdisk */
#ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
if (!ret && (states & BOOTM_STATE_RAMDISK)) {
ulong rd_len = images->rd_end - images->rd_start;
ret = boot_ramdisk_high(&images->lmb, images->rd_start,
rd_len, &images->initrd_start, &images->initrd_end);
if (!ret) {
setenv_hex("initrd_start", images->initrd_start);
setenv_hex("initrd_end", images->initrd_end);
}
}
#endif
#if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_LMB)
if (!ret && (states & BOOTM_STATE_FDT)) {
boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr);
ret = boot_relocate_fdt(&images->lmb, &images->ft_addr,
&images->ft_len);
}
#endif
/* From now on, we need the OS boot function */
if (ret)
return ret;
boot_fn = boot_os[images->os.os];
if (boot_fn == NULL) {
if (iflag)
enable_interrupts();
printf("ERROR: booting os '%s' (%d) is not supported\n",
genimg_get_os_name(images->os.os), images->os.os);
bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS);
return 1;
}
/* Call various other states that are not generally used */
if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);
if (!ret && (states & BOOTM_STATE_OS_BD_T))
ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);
if (!ret && (states & BOOTM_STATE_OS_PREP))
ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);
/* Check for unsupported subcommand. */
if (ret) {
puts("subcommand not supported\n");
return ret;
}
#ifdef CONFIG_TRACE
/* Pretend to run the OS, then run a user command */
if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) {
char *cmd_list = getenv("fakegocmd");
ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO,
images, boot_fn);
if (!ret && cmd_list)
ret = run_command_list(cmd_list, -1, flag);
}
#endif
/* Now run the OS! We hope this doesn't return */
if (!ret && (states & BOOTM_STATE_OS_GO)) {
ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,
images, boot_fn);
if (ret)
goto err;
}
return ret;
/* Deal with any fallout */
err:
if (iflag)
enable_interrupts();
if (ret == BOOTM_ERR_UNIMPLEMENTED)
bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL);
else if (ret == BOOTM_ERR_RESET)
do_reset(cmdtp, flag, argc, argv);
return ret;
}
static int do_bootm_subcommand(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[])
{
int ret = 0;
long state;
cmd_tbl_t *c;
c = find_cmd_tbl(argv[0], &cmd_bootm_sub[0], ARRAY_SIZE(cmd_bootm_sub));
argc--; argv++;
if (c) {
state = (long)c->cmd;
if (state == BOOTM_STATE_START)
state |= BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER;
} else {
/* Unrecognized command */
return CMD_RET_USAGE;
}
if (state != BOOTM_STATE_START && images.state >= state) {
printf("Trying to execute a command out of order\n");
return CMD_RET_USAGE;
}
ret = do_bootm_states(cmdtp, flag, argc, argv, state, &images, 0);
return ret;
}
/*******************************************************************/
/* bootm - boot application image from image in memory */
/*******************************************************************/
int do_bootm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
#ifdef CONFIG_NEEDS_MANUAL_RELOC
static int relocated = 0;
if (!relocated) {
int i;
/* relocate boot function table */
for (i = 0; i < ARRAY_SIZE(boot_os); i++)
if (boot_os[i] != NULL)
boot_os[i] += gd->reloc_off;
/* relocate names of sub-command table */
for (i = 0; i < ARRAY_SIZE(cmd_bootm_sub); i++)
cmd_bootm_sub[i].name += gd->reloc_off;
relocated = 1;
}
#endif
/* determine if we have a sub command */
argc--; argv++;
if (argc > 0) {
char *endp;
simple_strtoul(argv[0], &endp, 16);
/* endp pointing to NULL means that argv[0] was just a
* valid number, pass it along to the normal bootm processing
*
* If endp is ':' or '#' assume a FIT identifier so pass
* along for normal processing.
*
* Right now we assume the first arg should never be '-'
*/
if ((*endp != 0) && (*endp != ':') && (*endp != '#'))
return do_bootm_subcommand(cmdtp, flag, argc, argv);
}
return do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_START |
BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER |
BOOTM_STATE_LOADOS | BOOTM_STATE_OS_PREP |
BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO, &images, 1);
}
int bootm_maybe_autostart(cmd_tbl_t *cmdtp, const char *cmd)
{
const char *ep = getenv("autostart");
if (ep && !strcmp(ep, "yes")) {
char *local_args[2];
local_args[0] = (char *)cmd;
local_args[1] = NULL;
printf("Automatic boot of image at addr 0x%08lX ...\n", load_addr);
return do_bootm(cmdtp, 0, 1, local_args);
}
return 0;
}
/**
* image_get_kernel - verify legacy format kernel image
* @img_addr: in RAM address of the legacy format image to be verified
* @verify: data CRC verification flag
*
* image_get_kernel() verifies legacy image integrity and returns pointer to
* legacy image header if image verification was completed successfully.
*
* returns:
* pointer to a legacy image header if valid image was found
* otherwise return NULL
*/
static image_header_t *image_get_kernel(ulong img_addr, int verify)
{
image_header_t *hdr = (image_header_t *)img_addr;
if (!image_check_magic(hdr)) {
puts("Bad Magic Number\n");
bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC);
return NULL;
}
bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER);
if (!image_check_hcrc(hdr)) {
puts("Bad Header Checksum\n");
bootstage_error(BOOTSTAGE_ID_CHECK_HEADER);
return NULL;
}
bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM);
image_print_contents(hdr);
if (verify) {
puts(" Verifying Checksum ... ");
if (!image_check_dcrc(hdr)) {
printf("Bad Data CRC\n");
bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM);
return NULL;
}
puts("OK\n");
}
bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH);
if (!image_check_target_arch(hdr)) {
printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr));
bootstage_error(BOOTSTAGE_ID_CHECK_ARCH);
return NULL;
}
return hdr;
}
/**
* boot_get_kernel - find kernel image
* @os_data: pointer to a ulong variable, will hold os data start address
* @os_len: pointer to a ulong variable, will hold os data length
*
* boot_get_kernel() tries to find a kernel image, verifies its integrity
* and locates kernel data.
*
* returns:
* pointer to image header if valid image was found, plus kernel start
* address and length, otherwise NULL
*/
static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[], bootm_headers_t *images, ulong *os_data,
ulong *os_len)
{
image_header_t *hdr;
ulong img_addr;
const void *buf;
#if defined(CONFIG_FIT)
const char *fit_uname_config = NULL;
const char *fit_uname_kernel = NULL;
int os_noffset;
#endif
/* find out kernel image address */
if (argc < 1) {
img_addr = load_addr;
debug("* kernel: default image load address = 0x%08lx\n",
load_addr);
#if defined(CONFIG_FIT)
} else if (fit_parse_conf(argv[0], load_addr, &img_addr,
&fit_uname_config)) {
debug("* kernel: config '%s' from image at 0x%08lx\n",
fit_uname_config, img_addr);
} else if (fit_parse_subimage(argv[0], load_addr, &img_addr,
&fit_uname_kernel)) {
debug("* kernel: subimage '%s' from image at 0x%08lx\n",
fit_uname_kernel, img_addr);
#endif
} else {
img_addr = simple_strtoul(argv[0], NULL, 16);
debug("* kernel: cmdline image address = 0x%08lx\n", img_addr);
}
bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);
/* copy from dataflash if needed */
img_addr = genimg_get_image(img_addr);
/* check image type, for FIT images get FIT kernel node */
*os_data = *os_len = 0;
buf = map_sysmem(img_addr, 0);
switch (genimg_get_format(buf)) {
case IMAGE_FORMAT_LEGACY:
printf("## Booting kernel from Legacy Image at %08lx ...\n",
img_addr);
hdr = image_get_kernel(img_addr, images->verify);
if (!hdr)
return NULL;
bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);
/* get os_data and os_len */
switch (image_get_type(hdr)) {
case IH_TYPE_KERNEL:
case IH_TYPE_KERNEL_NOLOAD:
*os_data = image_get_data(hdr);
*os_len = image_get_data_size(hdr);
break;
case IH_TYPE_MULTI:
image_multi_getimg(hdr, 0, os_data, os_len);
break;
case IH_TYPE_STANDALONE:
*os_data = image_get_data(hdr);
*os_len = image_get_data_size(hdr);
break;
default:
printf("Wrong Image Type for %s command\n",
cmdtp->name);
bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
return NULL;
}
/*
* copy image header to allow for image overwrites during
* kernel decompression.
*/
memmove(&images->legacy_hdr_os_copy, hdr,
sizeof(image_header_t));
/* save pointer to image header */
images->legacy_hdr_os = hdr;
images->legacy_hdr_valid = 1;
bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);
break;
#if defined(CONFIG_FIT)
case IMAGE_FORMAT_FIT:
os_noffset = fit_image_load(images, FIT_KERNEL_PROP,
img_addr,
&fit_uname_kernel, fit_uname_config,
IH_ARCH_DEFAULT, IH_TYPE_KERNEL,
BOOTSTAGE_ID_FIT_KERNEL_START,
FIT_LOAD_IGNORED, os_data, os_len);
if (os_noffset < 0)
return NULL;
images->fit_hdr_os = map_sysmem(img_addr, 0);
images->fit_uname_os = fit_uname_kernel;
images->fit_noffset_os = os_noffset;
break;
#endif
default:
printf("Wrong Image Format for %s command\n", cmdtp->name);
bootstage_error(BOOTSTAGE_ID_FIT_KERNEL_INFO);
return NULL;
}
debug(" kernel data at 0x%08lx, len = 0x%08lx (%ld)\n",
*os_data, *os_len, *os_len);
return buf;
}
#ifdef CONFIG_SYS_LONGHELP
static char bootm_help_text[] =
"[addr [arg ...]]\n - boot application image stored in memory\n"
"\tpassing arguments 'arg ...'; when booting a Linux kernel,\n"
"\t'arg' can be the address of an initrd image\n"
#if defined(CONFIG_OF_LIBFDT)
"\tWhen booting a Linux kernel which requires a flat device-tree\n"
"\ta third argument is required which is the address of the\n"
"\tdevice-tree blob. To boot that kernel without an initrd image,\n"
"\tuse a '-' for the second argument. If you do not pass a third\n"
"\ta bd_info struct will be passed instead\n"
#endif
#if defined(CONFIG_FIT)
"\t\nFor the new multi component uImage format (FIT) addresses\n"
"\tmust be extened to include component or configuration unit name:\n"
"\taddr:<subimg_uname> - direct component image specification\n"
"\taddr#<conf_uname> - configuration specification\n"
"\tUse iminfo command to get the list of existing component\n"
"\timages and configurations.\n"
#endif
"\nSub-commands to do part of the bootm sequence. The sub-commands "
"must be\n"
"issued in the order below (it's ok to not issue all sub-commands):\n"
"\tstart [addr [arg ...]]\n"
"\tloados - load OS image\n"
#if defined(CONFIG_SYS_BOOT_RAMDISK_HIGH)
"\tramdisk - relocate initrd, set env initrd_start/initrd_end\n"
#endif
#if defined(CONFIG_OF_LIBFDT)
"\tfdt - relocate flat device tree\n"
#endif
"\tcmdline - OS specific command line processing/setup\n"
"\tbdt - OS specific bd_t processing\n"
"\tprep - OS specific prep before relocation or go\n"
"\tgo - start OS";
#endif
U_BOOT_CMD(
bootm, CONFIG_SYS_MAXARGS, 1, do_bootm,
"boot application image from memory", bootm_help_text
);
/*******************************************************************/
/* bootd - boot default image */
/*******************************************************************/
#if defined(CONFIG_CMD_BOOTD)
int do_bootd(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
int rcode = 0;
if (run_command(getenv("bootcmd"), flag) < 0)
rcode = 1;
return rcode;
}
U_BOOT_CMD(
boot, 1, 1, do_bootd,
"boot default, i.e., run 'bootcmd'",
""
);
/* keep old command name "bootd" for backward compatibility */
U_BOOT_CMD(
bootd, 1, 1, do_bootd,
"boot default, i.e., run 'bootcmd'",
""
);
#endif
/*******************************************************************/
/* iminfo - print header info for a requested image */
/*******************************************************************/
#if defined(CONFIG_CMD_IMI)
static int do_iminfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
int arg;
ulong addr;
int rcode = 0;
if (argc < 2) {
return image_info(load_addr);
}
for (arg = 1; arg < argc; ++arg) {
addr = simple_strtoul(argv[arg], NULL, 16);
if (image_info(addr) != 0)
rcode = 1;
}
return rcode;
}
static int image_info(ulong addr)
{
void *hdr = (void *)addr;
printf("\n## Checking Image at %08lx ...\n", addr);
switch (genimg_get_format(hdr)) {
case IMAGE_FORMAT_LEGACY:
puts(" Legacy image found\n");
if (!image_check_magic(hdr)) {
puts(" Bad Magic Number\n");
return 1;
}
if (!image_check_hcrc(hdr)) {
puts(" Bad Header Checksum\n");
return 1;
}
image_print_contents(hdr);
puts(" Verifying Checksum ... ");
if (!image_check_dcrc(hdr)) {
puts(" Bad Data CRC\n");
return 1;
}
puts("OK\n");
return 0;
#if defined(CONFIG_FIT)
case IMAGE_FORMAT_FIT:
puts(" FIT image found\n");
if (!fit_check_format(hdr)) {
puts("Bad FIT image format!\n");
return 1;
}
fit_print_contents(hdr);
if (!fit_all_image_verify(hdr)) {
puts("Bad hash in FIT image!\n");
return 1;
}
return 0;
#endif
default:
puts("Unknown image format!\n");
break;
}
return 1;
}
U_BOOT_CMD(
iminfo, CONFIG_SYS_MAXARGS, 1, do_iminfo,
"print header information for application image",
"addr [addr ...]\n"
" - print header information for application image starting at\n"
" address 'addr' in memory; this includes verification of the\n"
" image contents (magic number, header and payload checksums)"
);
#endif
/*******************************************************************/
/* imls - list all images found in flash */
/*******************************************************************/
#if defined(CONFIG_CMD_IMLS)
static int do_imls_nor(void)
{
flash_info_t *info;
int i, j;
void *hdr;
for (i = 0, info = &flash_info[0];
i < CONFIG_SYS_MAX_FLASH_BANKS; ++i, ++info) {
if (info->flash_id == FLASH_UNKNOWN)
goto next_bank;
for (j = 0; j < info->sector_count; ++j) {
hdr = (void *)info->start[j];
if (!hdr)
goto next_sector;
switch (genimg_get_format(hdr)) {
case IMAGE_FORMAT_LEGACY:
if (!image_check_hcrc(hdr))
goto next_sector;
printf("Legacy Image at %08lX:\n", (ulong)hdr);
image_print_contents(hdr);
puts(" Verifying Checksum ... ");
if (!image_check_dcrc(hdr)) {
puts("Bad Data CRC\n");
} else {
puts("OK\n");
}
break;
#if defined(CONFIG_FIT)
case IMAGE_FORMAT_FIT:
if (!fit_check_format(hdr))
goto next_sector;
printf("FIT Image at %08lX:\n", (ulong)hdr);
fit_print_contents(hdr);
break;
#endif
default:
goto next_sector;
}
next_sector: ;
}
next_bank: ;
}
return 0;
}
#endif
#if defined(CONFIG_CMD_IMLS_NAND)
static int nand_imls_legacyimage(nand_info_t *nand, int nand_dev, loff_t off,
size_t len)
{
void *imgdata;
int ret;
imgdata = malloc(len);
if (!imgdata) {
printf("May be a Legacy Image at NAND device %d offset %08llX:\n",
nand_dev, off);
printf(" Low memory(cannot allocate memory for image)\n");
return -ENOMEM;
}
ret = nand_read_skip_bad(nand, off, &len,
imgdata);
if (ret < 0 && ret != -EUCLEAN) {
free(imgdata);
return ret;
}
if (!image_check_hcrc(imgdata)) {
free(imgdata);
return 0;
}
printf("Legacy Image at NAND device %d offset %08llX:\n",
nand_dev, off);
image_print_contents(imgdata);
puts(" Verifying Checksum ... ");
if (!image_check_dcrc(imgdata))
puts("Bad Data CRC\n");
else
puts("OK\n");
free(imgdata);
return 0;
}
static int nand_imls_fitimage(nand_info_t *nand, int nand_dev, loff_t off,
size_t len)
{
void *imgdata;
int ret;
imgdata = malloc(len);
if (!imgdata) {
printf("May be a FIT Image at NAND device %d offset %08llX:\n",
nand_dev, off);
printf(" Low memory(cannot allocate memory for image)\n");
return -ENOMEM;
}
ret = nand_read_skip_bad(nand, off, &len,
imgdata);
if (ret < 0 && ret != -EUCLEAN) {
free(imgdata);
return ret;
}
if (!fit_check_format(imgdata)) {
free(imgdata);
return 0;
}
printf("FIT Image at NAND device %d offset %08llX:\n", nand_dev, off);
fit_print_contents(imgdata);
free(imgdata);
return 0;
}
static int do_imls_nand(void)
{
nand_info_t *nand;
int nand_dev = nand_curr_device;
size_t len;
loff_t off;
u32 buffer[16];
if (nand_dev < 0 || nand_dev >= CONFIG_SYS_MAX_NAND_DEVICE) {
puts("\nNo NAND devices available\n");
return -ENODEV;
}
printf("\n");
for (nand_dev = 0; nand_dev < CONFIG_SYS_MAX_NAND_DEVICE; nand_dev++) {
nand = &nand_info[nand_dev];
if (!nand->name || !nand->size)
continue;
for (off = 0; off < nand->size; off += nand->erasesize) {
const image_header_t *header;
int ret;
if (nand_block_isbad(nand, off))
continue;
len = sizeof(buffer);
ret = nand_read(nand, off, &len, (u8 *)buffer);
if (ret < 0 && ret != -EUCLEAN) {
printf("NAND read error %d at offset %08llX\n",
ret, off);
continue;
}
switch (genimg_get_format(buffer)) {
case IMAGE_FORMAT_LEGACY:
header = (const image_header_t *)buffer;
len = image_get_image_size(header);
nand_imls_legacyimage(nand, nand_dev, off, len);
break;
#if defined(CONFIG_FIT)
case IMAGE_FORMAT_FIT:
len = fit_get_size(buffer);
nand_imls_fitimage(nand, nand_dev, off, len);
break;
#endif
}
}
}
return 0;
}
#endif
#if defined(CONFIG_CMD_IMLS) || defined(CONFIG_CMD_IMLS_NAND)
static int do_imls(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
int ret_nor = 0, ret_nand = 0;
#if defined(CONFIG_CMD_IMLS)
ret_nor = do_imls_nor();
#endif
#if defined(CONFIG_CMD_IMLS_NAND)
ret_nand = do_imls_nand();
#endif
if (ret_nor)
return ret_nor;
if (ret_nand)
return ret_nand;
return (0);
}
U_BOOT_CMD(
imls, 1, 1, do_imls,
"list all images found in flash",
"\n"
" - Prints information about all images found at sector/block\n"
" boundaries in nor/nand flash."
);
#endif
/*******************************************************************/
/* helper routines */
/*******************************************************************/
#if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
#define CONSOLE_ARG "console="
#define CONSOLE_ARG_LEN (sizeof(CONSOLE_ARG) - 1)
static void fixup_silent_linux(void)
{
char *buf;
const char *env_val;
char *cmdline = getenv("bootargs");
/* Only fix cmdline when requested */
if (!(gd->flags & GD_FLG_SILENT))
return;
debug("before silent fix-up: %s\n", cmdline);
if (cmdline && (cmdline[0] != '\0')) {
char *start = strstr(cmdline, CONSOLE_ARG);
/* Allocate space for maximum possible new command line */
buf = malloc(strlen(cmdline) + 1 + CONSOLE_ARG_LEN + 1);
if (!buf) {
debug("%s: out of memory\n", __func__);
return;
}
if (start) {
char *end = strchr(start, ' ');
int num_start_bytes = start - cmdline + CONSOLE_ARG_LEN;
strncpy(buf, cmdline, num_start_bytes);
if (end)
strcpy(buf + num_start_bytes, end);
else
buf[num_start_bytes] = '\0';
} else {
sprintf(buf, "%s %s", cmdline, CONSOLE_ARG);
}
env_val = buf;
} else {
buf = NULL;
env_val = CONSOLE_ARG;
}
setenv("bootargs", env_val);
debug("after silent fix-up: %s\n", env_val);
free(buf);
}
#endif /* CONFIG_SILENT_CONSOLE */
#if defined(CONFIG_BOOTM_NETBSD) || defined(CONFIG_BOOTM_PLAN9)
static void copy_args(char *dest, int argc, char * const argv[], char delim)
{
int i;
for (i = 0; i < argc; i++) {
if (i > 0)
*dest++ = delim;
strcpy(dest, argv[i]);
dest += strlen(argv[i]);
}
}
#endif
/*******************************************************************/
/* OS booting routines */
/*******************************************************************/
#ifdef CONFIG_BOOTM_NETBSD
static int do_bootm_netbsd(int flag, int argc, char * const argv[],
bootm_headers_t *images)
{
void (*loader)(bd_t *, image_header_t *, char *, char *);
image_header_t *os_hdr, *hdr;
ulong kernel_data, kernel_len;
char *consdev;
char *cmdline;
if ((flag != 0) && (flag != BOOTM_STATE_OS_GO))
return 1;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("NetBSD");
return 1;
}
#endif
hdr = images->legacy_hdr_os;
/*
* Booting a (NetBSD) kernel image
*
* This process is pretty similar to a standalone application:
* The (first part of an multi-) image must be a stage-2 loader,
* which in turn is responsible for loading & invoking the actual
* kernel. The only differences are the parameters being passed:
* besides the board info strucure, the loader expects a command
* line, the name of the console device, and (optionally) the
* address of the original image header.
*/
os_hdr = NULL;
if (image_check_type(&images->legacy_hdr_os_copy, IH_TYPE_MULTI)) {
image_multi_getimg(hdr, 1, &kernel_data, &kernel_len);
if (kernel_len)
os_hdr = hdr;
}
consdev = "";
#if defined(CONFIG_8xx_CONS_SMC1)
consdev = "smc1";
#elif defined(CONFIG_8xx_CONS_SMC2)
consdev = "smc2";
#elif defined(CONFIG_8xx_CONS_SCC2)
consdev = "scc2";
#elif defined(CONFIG_8xx_CONS_SCC3)
consdev = "scc3";
#endif
if (argc > 0) {
ulong len;
int i;
for (i = 0, len = 0; i < argc; i += 1)
len += strlen(argv[i]) + 1;
cmdline = malloc(len);
copy_args(cmdline, argc, argv, ' ');
} else if ((cmdline = getenv("bootargs")) == NULL) {
cmdline = "";
}
loader = (void (*)(bd_t *, image_header_t *, char *, char *))images->ep;
printf("## Transferring control to NetBSD stage-2 loader "
"(at address %08lx) ...\n",
(ulong)loader);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
/*
* NetBSD Stage-2 Loader Parameters:
* r3: ptr to board info data
* r4: image address
* r5: console device
* r6: boot args string
*/
(*loader)(gd->bd, os_hdr, consdev, cmdline);
return 1;
}
#endif /* CONFIG_BOOTM_NETBSD*/
#ifdef CONFIG_LYNXKDI
static int do_bootm_lynxkdi(int flag, int argc, char * const argv[],
bootm_headers_t *images)
{
image_header_t *hdr = &images->legacy_hdr_os_copy;
if ((flag != 0) && (flag != BOOTM_STATE_OS_GO))
return 1;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("Lynx");
return 1;
}
#endif
lynxkdi_boot((image_header_t *)hdr);
return 1;
}
#endif /* CONFIG_LYNXKDI */
#ifdef CONFIG_BOOTM_RTEMS
static int do_bootm_rtems(int flag, int argc, char * const argv[],
bootm_headers_t *images)
{
void (*entry_point)(bd_t *);
if ((flag != 0) && (flag != BOOTM_STATE_OS_GO))
return 1;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("RTEMS");
return 1;
}
#endif
entry_point = (void (*)(bd_t *))images->ep;
printf("## Transferring control to RTEMS (at address %08lx) ...\n",
(ulong)entry_point);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
/*
* RTEMS Parameters:
* r3: ptr to board info data
*/
(*entry_point)(gd->bd);
return 1;
}
#endif /* CONFIG_BOOTM_RTEMS */
#if defined(CONFIG_BOOTM_OSE)
static int do_bootm_ose(int flag, int argc, char * const argv[],
bootm_headers_t *images)
{
void (*entry_point)(void);
if ((flag != 0) && (flag != BOOTM_STATE_OS_GO))
return 1;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("OSE");
return 1;
}
#endif
entry_point = (void (*)(void))images->ep;
printf("## Transferring control to OSE (at address %08lx) ...\n",
(ulong)entry_point);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
/*
* OSE Parameters:
* None
*/
(*entry_point)();
return 1;
}
#endif /* CONFIG_BOOTM_OSE */
#if defined(CONFIG_BOOTM_PLAN9)
static int do_bootm_plan9(int flag, int argc, char * const argv[],
bootm_headers_t *images)
{
void (*entry_point)(void);
char *s;
if ((flag != 0) && (flag != BOOTM_STATE_OS_GO))
return 1;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("Plan 9");
return 1;
}
#endif
/* See README.plan9 */
s = getenv("confaddr");
if (s != NULL) {
char *confaddr = (char *)simple_strtoul(s, NULL, 16);
if (argc > 0) {
copy_args(confaddr, argc, argv, '\n');
} else {
s = getenv("bootargs");
if (s != NULL)
strcpy(confaddr, s);
}
}
entry_point = (void (*)(void))images->ep;
printf("## Transferring control to Plan 9 (at address %08lx) ...\n",
(ulong)entry_point);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
/*
* Plan 9 Parameters:
* None
*/
(*entry_point)();
return 1;
}
#endif /* CONFIG_BOOTM_PLAN9 */
#if defined(CONFIG_CMD_ELF)
static int do_bootm_vxworks(int flag, int argc, char * const argv[],
bootm_headers_t *images)
{
char str[80];
if ((flag != 0) && (flag != BOOTM_STATE_OS_GO))
return 1;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("VxWorks");
return 1;
}
#endif
sprintf(str, "%lx", images->ep); /* write entry-point into string */
setenv("loadaddr", str);
do_bootvx(NULL, 0, 0, NULL);
return 1;
}
static int do_bootm_qnxelf(int flag, int argc, char * const argv[],
bootm_headers_t *images)
{
char *local_args[2];
char str[16];
if ((flag != 0) && (flag != BOOTM_STATE_OS_GO))
return 1;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("QNX");
return 1;
}
#endif
sprintf(str, "%lx", images->ep); /* write entry-point into string */
local_args[0] = argv[0];
local_args[1] = str; /* and provide it via the arguments */
do_bootelf(NULL, 0, 2, local_args);
return 1;
}
#endif
#ifdef CONFIG_INTEGRITY
static int do_bootm_integrity(int flag, int argc, char * const argv[],
bootm_headers_t *images)
{
void (*entry_point)(void);
if ((flag != 0) && (flag != BOOTM_STATE_OS_GO))
return 1;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("INTEGRITY");
return 1;
}
#endif
entry_point = (void (*)(void))images->ep;
printf("## Transferring control to INTEGRITY (at address %08lx) ...\n",
(ulong)entry_point);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
/*
* INTEGRITY Parameters:
* None
*/
(*entry_point)();
return 1;
}
#endif
#ifdef CONFIG_CMD_BOOTZ
static int __bootz_setup(void *image, void **start, void **end)
{
/* Please define bootz_setup() for your platform */
puts("Your platform's zImage format isn't supported yet!\n");
return -1;
}
int bootz_setup(void *image, void **start, void **end)
__attribute__((weak, alias("__bootz_setup")));
/*
* zImage booting support
*/
static int bootz_start(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[], bootm_headers_t *images)
{
int ret;
void *zi_start, *zi_end;
ret = do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_START,
images, 1);
/* Setup Linux kernel zImage entry point */
if (argc < 2) {
images->ep = load_addr;
debug("* kernel: default image load address = 0x%08lx\n",
load_addr);
} else {
images->ep = simple_strtoul(argv[1], NULL, 16);
debug("* kernel: cmdline image address = 0x%08lx\n",
images->ep);
}
ret = bootz_setup((void *)images->ep, &zi_start, &zi_end);
if (ret != 0)
return 1;
lmb_reserve(&images->lmb, images->ep, zi_end - zi_start);
ret = do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_FINDOTHER,
images, 1);
return ret;
}
int do_bootz(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
bootm_headers_t images;
int ret;
if (bootz_start(cmdtp, flag, argc, argv, &images))
return 1;
/*
* We are doing the BOOTM_STATE_LOADOS state ourselves, so must
* disable interrupts ourselves
*/
bootm_disable_interrupts();
ret = do_bootm_states(cmdtp, flag, argc, argv,
BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO,
&images, 1);
return ret;
}
#ifdef CONFIG_SYS_LONGHELP
static char bootz_help_text[] =
"[addr [initrd[:size]] [fdt]]\n"
" - boot Linux zImage stored in memory\n"
"\tThe argument 'initrd' is optional and specifies the address\n"
"\tof the initrd in memory. The optional argument ':size' allows\n"
"\tspecifying the size of RAW initrd.\n"
#if defined(CONFIG_OF_LIBFDT)
"\tWhen booting a Linux kernel which requires a flat device-tree\n"
"\ta third argument is required which is the address of the\n"
"\tdevice-tree blob. To boot that kernel without an initrd image,\n"
"\tuse a '-' for the second argument. If you do not pass a third\n"
"\ta bd_info struct will be passed instead\n"
#endif
"";
#endif
U_BOOT_CMD(
bootz, CONFIG_SYS_MAXARGS, 1, do_bootz,
"boot Linux zImage image from memory", bootz_help_text
);
#endif /* CONFIG_CMD_BOOTZ */