37f2fe7472
New syntax: env export [-t | -b | -c] [-s size] addr [var ...] With this change it is possible to provide a list of variables names that shall be exported. Whenno arguments are given, the whole environment gets exported. NOTE: The new handling of the "size" argument means a change to the user API. Signed-off-by: Wolfgang Denk <wd@denx.de>
768 lines
19 KiB
C
768 lines
19 KiB
C
/*
|
|
* This implementation is based on code from uClibc-0.9.30.3 but was
|
|
* modified and extended for use within U-Boot.
|
|
*
|
|
* Copyright (C) 2010 Wolfgang Denk <wd@denx.de>
|
|
*
|
|
* Original license header:
|
|
*
|
|
* Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
|
|
* This file is part of the GNU C Library.
|
|
* Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
|
|
*
|
|
* The GNU C Library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* The GNU C Library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with the GNU C Library; if not, write to the Free
|
|
* Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
* 02111-1307 USA.
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <malloc.h>
|
|
|
|
#ifdef USE_HOSTCC /* HOST build */
|
|
# include <string.h>
|
|
# include <assert.h>
|
|
# include <ctype.h>
|
|
|
|
# ifndef debug
|
|
# ifdef DEBUG
|
|
# define debug(fmt,args...) printf(fmt ,##args)
|
|
# else
|
|
# define debug(fmt,args...)
|
|
# endif
|
|
# endif
|
|
#else /* U-Boot build */
|
|
# include <common.h>
|
|
# include <linux/string.h>
|
|
# include <linux/ctype.h>
|
|
#endif
|
|
|
|
#ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */
|
|
#define CONFIG_ENV_MIN_ENTRIES 64
|
|
#endif
|
|
#ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */
|
|
#define CONFIG_ENV_MAX_ENTRIES 512
|
|
#endif
|
|
|
|
#include "search.h"
|
|
|
|
/*
|
|
* [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
|
|
* [Knuth] The Art of Computer Programming, part 3 (6.4)
|
|
*/
|
|
|
|
/*
|
|
* The reentrant version has no static variables to maintain the state.
|
|
* Instead the interface of all functions is extended to take an argument
|
|
* which describes the current status.
|
|
*/
|
|
typedef struct _ENTRY {
|
|
int used;
|
|
ENTRY entry;
|
|
} _ENTRY;
|
|
|
|
|
|
/*
|
|
* hcreate()
|
|
*/
|
|
|
|
/*
|
|
* For the used double hash method the table size has to be a prime. To
|
|
* correct the user given table size we need a prime test. This trivial
|
|
* algorithm is adequate because
|
|
* a) the code is (most probably) called a few times per program run and
|
|
* b) the number is small because the table must fit in the core
|
|
* */
|
|
static int isprime(unsigned int number)
|
|
{
|
|
/* no even number will be passed */
|
|
unsigned int div = 3;
|
|
|
|
while (div * div < number && number % div != 0)
|
|
div += 2;
|
|
|
|
return number % div != 0;
|
|
}
|
|
|
|
/*
|
|
* Before using the hash table we must allocate memory for it.
|
|
* Test for an existing table are done. We allocate one element
|
|
* more as the found prime number says. This is done for more effective
|
|
* indexing as explained in the comment for the hsearch function.
|
|
* The contents of the table is zeroed, especially the field used
|
|
* becomes zero.
|
|
*/
|
|
|
|
int hcreate_r(size_t nel, struct hsearch_data *htab)
|
|
{
|
|
/* Test for correct arguments. */
|
|
if (htab == NULL) {
|
|
__set_errno(EINVAL);
|
|
return 0;
|
|
}
|
|
|
|
/* There is still another table active. Return with error. */
|
|
if (htab->table != NULL)
|
|
return 0;
|
|
|
|
/* Change nel to the first prime number not smaller as nel. */
|
|
nel |= 1; /* make odd */
|
|
while (!isprime(nel))
|
|
nel += 2;
|
|
|
|
htab->size = nel;
|
|
htab->filled = 0;
|
|
|
|
/* allocate memory and zero out */
|
|
htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
|
|
if (htab->table == NULL)
|
|
return 0;
|
|
|
|
/* everything went alright */
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* hdestroy()
|
|
*/
|
|
|
|
/*
|
|
* After using the hash table it has to be destroyed. The used memory can
|
|
* be freed and the local static variable can be marked as not used.
|
|
*/
|
|
|
|
void hdestroy_r(struct hsearch_data *htab)
|
|
{
|
|
int i;
|
|
|
|
/* Test for correct arguments. */
|
|
if (htab == NULL) {
|
|
__set_errno(EINVAL);
|
|
return;
|
|
}
|
|
|
|
/* free used memory */
|
|
for (i = 1; i <= htab->size; ++i) {
|
|
if (htab->table[i].used > 0) {
|
|
ENTRY *ep = &htab->table[i].entry;
|
|
|
|
free((void *)ep->key);
|
|
free(ep->data);
|
|
}
|
|
}
|
|
free(htab->table);
|
|
|
|
/* the sign for an existing table is an value != NULL in htable */
|
|
htab->table = NULL;
|
|
}
|
|
|
|
/*
|
|
* hsearch()
|
|
*/
|
|
|
|
/*
|
|
* This is the search function. It uses double hashing with open addressing.
|
|
* The argument item.key has to be a pointer to an zero terminated, most
|
|
* probably strings of chars. The function for generating a number of the
|
|
* strings is simple but fast. It can be replaced by a more complex function
|
|
* like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
|
|
*
|
|
* We use an trick to speed up the lookup. The table is created by hcreate
|
|
* with one more element available. This enables us to use the index zero
|
|
* special. This index will never be used because we store the first hash
|
|
* index in the field used where zero means not used. Every other value
|
|
* means used. The used field can be used as a first fast comparison for
|
|
* equality of the stored and the parameter value. This helps to prevent
|
|
* unnecessary expensive calls of strcmp.
|
|
*
|
|
* This implementation differs from the standard library version of
|
|
* this function in a number of ways:
|
|
*
|
|
* - While the standard version does not make any assumptions about
|
|
* the type of the stored data objects at all, this implementation
|
|
* works with NUL terminated strings only.
|
|
* - Instead of storing just pointers to the original objects, we
|
|
* create local copies so the caller does not need to care about the
|
|
* data any more.
|
|
* - The standard implementation does not provide a way to update an
|
|
* existing entry. This version will create a new entry or update an
|
|
* existing one when both "action == ENTER" and "item.data != NULL".
|
|
* - Instead of returning 1 on success, we return the index into the
|
|
* internal hash table, which is also guaranteed to be positive.
|
|
* This allows us direct access to the found hash table slot for
|
|
* example for functions like hdelete().
|
|
*/
|
|
|
|
/*
|
|
* hstrstr_r - return index to entry whose key and/or data contains match
|
|
*/
|
|
int hstrstr_r(const char *match, int last_idx, ENTRY ** retval,
|
|
struct hsearch_data *htab)
|
|
{
|
|
unsigned int idx;
|
|
|
|
for (idx = last_idx + 1; idx < htab->size; ++idx) {
|
|
if (htab->table[idx].used <= 0)
|
|
continue;
|
|
if (strstr(htab->table[idx].entry.key, match) ||
|
|
strstr(htab->table[idx].entry.data, match)) {
|
|
*retval = &htab->table[idx].entry;
|
|
return idx;
|
|
}
|
|
}
|
|
|
|
__set_errno(ESRCH);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
|
|
struct hsearch_data *htab)
|
|
{
|
|
unsigned int idx;
|
|
size_t key_len = strlen(match);
|
|
|
|
for (idx = last_idx + 1; idx < htab->size; ++idx) {
|
|
if (htab->table[idx].used <= 0)
|
|
continue;
|
|
if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
|
|
*retval = &htab->table[idx].entry;
|
|
return idx;
|
|
}
|
|
}
|
|
|
|
__set_errno(ESRCH);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
|
|
struct hsearch_data *htab)
|
|
{
|
|
unsigned int hval;
|
|
unsigned int count;
|
|
unsigned int len = strlen(item.key);
|
|
unsigned int idx;
|
|
unsigned int first_deleted = 0;
|
|
|
|
/* Compute an value for the given string. Perhaps use a better method. */
|
|
hval = len;
|
|
count = len;
|
|
while (count-- > 0) {
|
|
hval <<= 4;
|
|
hval += item.key[count];
|
|
}
|
|
|
|
/*
|
|
* First hash function:
|
|
* simply take the modul but prevent zero.
|
|
*/
|
|
hval %= htab->size;
|
|
if (hval == 0)
|
|
++hval;
|
|
|
|
/* The first index tried. */
|
|
idx = hval;
|
|
|
|
if (htab->table[idx].used) {
|
|
/*
|
|
* Further action might be required according to the
|
|
* action value.
|
|
*/
|
|
unsigned hval2;
|
|
|
|
if (htab->table[idx].used == -1
|
|
&& !first_deleted)
|
|
first_deleted = idx;
|
|
|
|
if (htab->table[idx].used == hval
|
|
&& strcmp(item.key, htab->table[idx].entry.key) == 0) {
|
|
/* Overwrite existing value? */
|
|
if ((action == ENTER) && (item.data != NULL)) {
|
|
free(htab->table[idx].entry.data);
|
|
htab->table[idx].entry.data =
|
|
strdup(item.data);
|
|
if (!htab->table[idx].entry.data) {
|
|
__set_errno(ENOMEM);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
}
|
|
/* return found entry */
|
|
*retval = &htab->table[idx].entry;
|
|
return idx;
|
|
}
|
|
|
|
/*
|
|
* Second hash function:
|
|
* as suggested in [Knuth]
|
|
*/
|
|
hval2 = 1 + hval % (htab->size - 2);
|
|
|
|
do {
|
|
/*
|
|
* Because SIZE is prime this guarantees to
|
|
* step through all available indices.
|
|
*/
|
|
if (idx <= hval2)
|
|
idx = htab->size + idx - hval2;
|
|
else
|
|
idx -= hval2;
|
|
|
|
/*
|
|
* If we visited all entries leave the loop
|
|
* unsuccessfully.
|
|
*/
|
|
if (idx == hval)
|
|
break;
|
|
|
|
/* If entry is found use it. */
|
|
if ((htab->table[idx].used == hval)
|
|
&& strcmp(item.key, htab->table[idx].entry.key) == 0) {
|
|
/* Overwrite existing value? */
|
|
if ((action == ENTER) && (item.data != NULL)) {
|
|
free(htab->table[idx].entry.data);
|
|
htab->table[idx].entry.data =
|
|
strdup(item.data);
|
|
if (!htab->table[idx].entry.data) {
|
|
__set_errno(ENOMEM);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
}
|
|
/* return found entry */
|
|
*retval = &htab->table[idx].entry;
|
|
return idx;
|
|
}
|
|
}
|
|
while (htab->table[idx].used);
|
|
}
|
|
|
|
/* An empty bucket has been found. */
|
|
if (action == ENTER) {
|
|
/*
|
|
* If table is full and another entry should be
|
|
* entered return with error.
|
|
*/
|
|
if (htab->filled == htab->size) {
|
|
__set_errno(ENOMEM);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create new entry;
|
|
* create copies of item.key and item.data
|
|
*/
|
|
if (first_deleted)
|
|
idx = first_deleted;
|
|
|
|
htab->table[idx].used = hval;
|
|
htab->table[idx].entry.key = strdup(item.key);
|
|
htab->table[idx].entry.data = strdup(item.data);
|
|
if (!htab->table[idx].entry.key ||
|
|
!htab->table[idx].entry.data) {
|
|
__set_errno(ENOMEM);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
++htab->filled;
|
|
|
|
/* return new entry */
|
|
*retval = &htab->table[idx].entry;
|
|
return 1;
|
|
}
|
|
|
|
__set_errno(ESRCH);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* hdelete()
|
|
*/
|
|
|
|
/*
|
|
* The standard implementation of hsearch(3) does not provide any way
|
|
* to delete any entries from the hash table. We extend the code to
|
|
* do that.
|
|
*/
|
|
|
|
int hdelete_r(const char *key, struct hsearch_data *htab)
|
|
{
|
|
ENTRY e, *ep;
|
|
int idx;
|
|
|
|
debug("hdelete: DELETE key \"%s\"\n", key);
|
|
|
|
e.key = (char *)key;
|
|
|
|
if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) {
|
|
__set_errno(ESRCH);
|
|
return 0; /* not found */
|
|
}
|
|
|
|
/* free used ENTRY */
|
|
debug("hdelete: DELETING key \"%s\"\n", key);
|
|
|
|
free((void *)ep->key);
|
|
free(ep->data);
|
|
htab->table[idx].used = -1;
|
|
|
|
--htab->filled;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* hexport()
|
|
*/
|
|
|
|
/*
|
|
* Export the data stored in the hash table in linearized form.
|
|
*
|
|
* Entries are exported as "name=value" strings, separated by an
|
|
* arbitrary (non-NUL, of course) separator character. This allows to
|
|
* use this function both when formatting the U-Boot environment for
|
|
* external storage (using '\0' as separator), but also when using it
|
|
* for the "printenv" command to print all variables, simply by using
|
|
* as '\n" as separator. This can also be used for new features like
|
|
* exporting the environment data as text file, including the option
|
|
* for later re-import.
|
|
*
|
|
* The entries in the result list will be sorted by ascending key
|
|
* values.
|
|
*
|
|
* If the separator character is different from NUL, then any
|
|
* separator characters and backslash characters in the values will
|
|
* be escaped by a preceeding backslash in output. This is needed for
|
|
* example to enable multi-line values, especially when the output
|
|
* shall later be parsed (for example, for re-import).
|
|
*
|
|
* There are several options how the result buffer is handled:
|
|
*
|
|
* *resp size
|
|
* -----------
|
|
* NULL 0 A string of sufficient length will be allocated.
|
|
* NULL >0 A string of the size given will be
|
|
* allocated. An error will be returned if the size is
|
|
* not sufficient. Any unused bytes in the string will
|
|
* be '\0'-padded.
|
|
* !NULL 0 The user-supplied buffer will be used. No length
|
|
* checking will be performed, i. e. it is assumed that
|
|
* the buffer size will always be big enough. DANGEROUS.
|
|
* !NULL >0 The user-supplied buffer will be used. An error will
|
|
* be returned if the size is not sufficient. Any unused
|
|
* bytes in the string will be '\0'-padded.
|
|
*/
|
|
|
|
static int cmpkey(const void *p1, const void *p2)
|
|
{
|
|
ENTRY *e1 = *(ENTRY **) p1;
|
|
ENTRY *e2 = *(ENTRY **) p2;
|
|
|
|
return (strcmp(e1->key, e2->key));
|
|
}
|
|
|
|
ssize_t hexport_r(struct hsearch_data *htab, const char sep,
|
|
char **resp, size_t size,
|
|
int argc, char * const argv[])
|
|
{
|
|
ENTRY *list[htab->size];
|
|
char *res, *p;
|
|
size_t totlen;
|
|
int i, n;
|
|
|
|
/* Test for correct arguments. */
|
|
if ((resp == NULL) || (htab == NULL)) {
|
|
__set_errno(EINVAL);
|
|
return (-1);
|
|
}
|
|
|
|
debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %d\n",
|
|
htab, htab->size, htab->filled, size);
|
|
/*
|
|
* Pass 1:
|
|
* search used entries,
|
|
* save addresses and compute total length
|
|
*/
|
|
for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
|
|
|
|
if (htab->table[i].used > 0) {
|
|
ENTRY *ep = &htab->table[i].entry;
|
|
int arg, found = 0;
|
|
|
|
for (arg = 0; arg < argc; ++arg) {
|
|
if (strcmp(argv[arg], ep->key) == 0) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if ((argc > 0) && (found == 0))
|
|
continue;
|
|
|
|
list[n++] = ep;
|
|
|
|
totlen += strlen(ep->key) + 2;
|
|
|
|
if (sep == '\0') {
|
|
totlen += strlen(ep->data);
|
|
} else { /* check if escapes are needed */
|
|
char *s = ep->data;
|
|
|
|
while (*s) {
|
|
++totlen;
|
|
/* add room for needed escape chars */
|
|
if ((*s == sep) || (*s == '\\'))
|
|
++totlen;
|
|
++s;
|
|
}
|
|
}
|
|
totlen += 2; /* for '=' and 'sep' char */
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/* Pass 1a: print unsorted list */
|
|
printf("Unsorted: n=%d\n", n);
|
|
for (i = 0; i < n; ++i) {
|
|
printf("\t%3d: %p ==> %-10s => %s\n",
|
|
i, list[i], list[i]->key, list[i]->data);
|
|
}
|
|
#endif
|
|
|
|
/* Sort list by keys */
|
|
qsort(list, n, sizeof(ENTRY *), cmpkey);
|
|
|
|
/* Check if the user supplied buffer size is sufficient */
|
|
if (size) {
|
|
if (size < totlen + 1) { /* provided buffer too small */
|
|
printf("Env export buffer too small: %d, but need %d\n",
|
|
size, totlen + 1);
|
|
__set_errno(ENOMEM);
|
|
return (-1);
|
|
}
|
|
} else {
|
|
size = totlen + 1;
|
|
}
|
|
|
|
/* Check if the user provided a buffer */
|
|
if (*resp) {
|
|
/* yes; clear it */
|
|
res = *resp;
|
|
memset(res, '\0', size);
|
|
} else {
|
|
/* no, allocate and clear one */
|
|
*resp = res = calloc(1, size);
|
|
if (res == NULL) {
|
|
__set_errno(ENOMEM);
|
|
return (-1);
|
|
}
|
|
}
|
|
/*
|
|
* Pass 2:
|
|
* export sorted list of result data
|
|
*/
|
|
for (i = 0, p = res; i < n; ++i) {
|
|
const char *s;
|
|
|
|
s = list[i]->key;
|
|
while (*s)
|
|
*p++ = *s++;
|
|
*p++ = '=';
|
|
|
|
s = list[i]->data;
|
|
|
|
while (*s) {
|
|
if ((*s == sep) || (*s == '\\'))
|
|
*p++ = '\\'; /* escape */
|
|
*p++ = *s++;
|
|
}
|
|
*p++ = sep;
|
|
}
|
|
*p = '\0'; /* terminate result */
|
|
|
|
return size;
|
|
}
|
|
|
|
|
|
/*
|
|
* himport()
|
|
*/
|
|
|
|
/*
|
|
* Import linearized data into hash table.
|
|
*
|
|
* This is the inverse function to hexport(): it takes a linear list
|
|
* of "name=value" pairs and creates hash table entries from it.
|
|
*
|
|
* Entries without "value", i. e. consisting of only "name" or
|
|
* "name=", will cause this entry to be deleted from the hash table.
|
|
*
|
|
* The "flag" argument can be used to control the behaviour: when the
|
|
* H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
|
|
* new data will be added to an existing hash table; otherwise, old
|
|
* data will be discarded and a new hash table will be created.
|
|
*
|
|
* The separator character for the "name=value" pairs can be selected,
|
|
* so we both support importing from externally stored environment
|
|
* data (separated by NUL characters) and from plain text files
|
|
* (entries separated by newline characters).
|
|
*
|
|
* To allow for nicely formatted text input, leading white space
|
|
* (sequences of SPACE and TAB chars) is ignored, and entries starting
|
|
* (after removal of any leading white space) with a '#' character are
|
|
* considered comments and ignored.
|
|
*
|
|
* [NOTE: this means that a variable name cannot start with a '#'
|
|
* character.]
|
|
*
|
|
* When using a non-NUL separator character, backslash is used as
|
|
* escape character in the value part, allowing for example for
|
|
* multi-line values.
|
|
*
|
|
* In theory, arbitrary separator characters can be used, but only
|
|
* '\0' and '\n' have really been tested.
|
|
*/
|
|
|
|
int himport_r(struct hsearch_data *htab,
|
|
const char *env, size_t size, const char sep, int flag)
|
|
{
|
|
char *data, *sp, *dp, *name, *value;
|
|
|
|
/* Test for correct arguments. */
|
|
if (htab == NULL) {
|
|
__set_errno(EINVAL);
|
|
return 0;
|
|
}
|
|
|
|
/* we allocate new space to make sure we can write to the array */
|
|
if ((data = malloc(size)) == NULL) {
|
|
debug("himport_r: can't malloc %d bytes\n", size);
|
|
__set_errno(ENOMEM);
|
|
return 0;
|
|
}
|
|
memcpy(data, env, size);
|
|
dp = data;
|
|
|
|
if ((flag & H_NOCLEAR) == 0) {
|
|
/* Destroy old hash table if one exists */
|
|
debug("Destroy Hash Table: %p table = %p\n", htab,
|
|
htab->table);
|
|
if (htab->table)
|
|
hdestroy_r(htab);
|
|
}
|
|
|
|
/*
|
|
* Create new hash table (if needed). The computation of the hash
|
|
* table size is based on heuristics: in a sample of some 70+
|
|
* existing systems we found an average size of 39+ bytes per entry
|
|
* in the environment (for the whole key=value pair). Assuming a
|
|
* size of 8 per entry (= safety factor of ~5) should provide enough
|
|
* safety margin for any existing environment definitions and still
|
|
* allow for more than enough dynamic additions. Note that the
|
|
* "size" argument is supposed to give the maximum enviroment size
|
|
* (CONFIG_ENV_SIZE). This heuristics will result in
|
|
* unreasonably large numbers (and thus memory footprint) for
|
|
* big flash environments (>8,000 entries for 64 KB
|
|
* envrionment size), so we clip it to a reasonable value.
|
|
* On the other hand we need to add some more entries for free
|
|
* space when importing very small buffers. Both boundaries can
|
|
* be overwritten in the board config file if needed.
|
|
*/
|
|
|
|
if (!htab->table) {
|
|
int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
|
|
|
|
if (nent > CONFIG_ENV_MAX_ENTRIES)
|
|
nent = CONFIG_ENV_MAX_ENTRIES;
|
|
|
|
debug("Create Hash Table: N=%d\n", nent);
|
|
|
|
if (hcreate_r(nent, htab) == 0) {
|
|
free(data);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Parse environment; allow for '\0' and 'sep' as separators */
|
|
do {
|
|
ENTRY e, *rv;
|
|
|
|
/* skip leading white space */
|
|
while (isblank(*dp))
|
|
++dp;
|
|
|
|
/* skip comment lines */
|
|
if (*dp == '#') {
|
|
while (*dp && (*dp != sep))
|
|
++dp;
|
|
++dp;
|
|
continue;
|
|
}
|
|
|
|
/* parse name */
|
|
for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
|
|
;
|
|
|
|
/* deal with "name" and "name=" entries (delete var) */
|
|
if (*dp == '\0' || *(dp + 1) == '\0' ||
|
|
*dp == sep || *(dp + 1) == sep) {
|
|
if (*dp == '=')
|
|
*dp++ = '\0';
|
|
*dp++ = '\0'; /* terminate name */
|
|
|
|
debug("DELETE CANDIDATE: \"%s\"\n", name);
|
|
|
|
if (hdelete_r(name, htab) == 0)
|
|
debug("DELETE ERROR ##############################\n");
|
|
|
|
continue;
|
|
}
|
|
*dp++ = '\0'; /* terminate name */
|
|
|
|
/* parse value; deal with escapes */
|
|
for (value = sp = dp; *dp && (*dp != sep); ++dp) {
|
|
if ((*dp == '\\') && *(dp + 1))
|
|
++dp;
|
|
*sp++ = *dp;
|
|
}
|
|
*sp++ = '\0'; /* terminate value */
|
|
++dp;
|
|
|
|
/* enter into hash table */
|
|
e.key = name;
|
|
e.data = value;
|
|
|
|
hsearch_r(e, ENTER, &rv, htab);
|
|
if (rv == NULL) {
|
|
printf("himport_r: can't insert \"%s=%s\" into hash table\n",
|
|
name, value);
|
|
return 0;
|
|
}
|
|
|
|
debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
|
|
htab, htab->filled, htab->size,
|
|
rv, name, value);
|
|
} while ((dp < data + size) && *dp); /* size check needed for text */
|
|
/* without '\0' termination */
|
|
debug("INSERT: free(data = %p)\n", data);
|
|
free(data);
|
|
|
|
debug("INSERT: done\n");
|
|
return 1; /* everything OK */
|
|
}
|