u-boot/drivers/spi/atmel-quadspi.c
Tudor Ambarus 24c8ff4684 spi: Add Atmel QuadSPI driver
Backport the driver from linux v5.1-rc5 and adapt it for u-boot.
Tested on sama5d2_xplained Rev B with mx25l25635e spi-nor flash.

Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
2019-07-09 09:26:43 +03:00

537 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Atmel QSPI Controller
*
* Copyright (C) 2015 Atmel Corporation
* Copyright (C) 2018 Cryptera A/S
*
* Author: Cyrille Pitchen <cyrille.pitchen@atmel.com>
* Author: Piotr Bugalski <bugalski.piotr@gmail.com>
*/
#include <asm/io.h>
#include <clk.h>
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <mach/clk.h>
#include <spi.h>
#include <spi-mem.h>
/* QSPI register offsets */
#define QSPI_CR 0x0000 /* Control Register */
#define QSPI_MR 0x0004 /* Mode Register */
#define QSPI_RD 0x0008 /* Receive Data Register */
#define QSPI_TD 0x000c /* Transmit Data Register */
#define QSPI_SR 0x0010 /* Status Register */
#define QSPI_IER 0x0014 /* Interrupt Enable Register */
#define QSPI_IDR 0x0018 /* Interrupt Disable Register */
#define QSPI_IMR 0x001c /* Interrupt Mask Register */
#define QSPI_SCR 0x0020 /* Serial Clock Register */
#define QSPI_IAR 0x0030 /* Instruction Address Register */
#define QSPI_ICR 0x0034 /* Instruction Code Register */
#define QSPI_WICR 0x0034 /* Write Instruction Code Register */
#define QSPI_IFR 0x0038 /* Instruction Frame Register */
#define QSPI_RICR 0x003C /* Read Instruction Code Register */
#define QSPI_SMR 0x0040 /* Scrambling Mode Register */
#define QSPI_SKR 0x0044 /* Scrambling Key Register */
#define QSPI_WPMR 0x00E4 /* Write Protection Mode Register */
#define QSPI_WPSR 0x00E8 /* Write Protection Status Register */
#define QSPI_VERSION 0x00FC /* Version Register */
/* Bitfields in QSPI_CR (Control Register) */
#define QSPI_CR_QSPIEN BIT(0)
#define QSPI_CR_QSPIDIS BIT(1)
#define QSPI_CR_SWRST BIT(7)
#define QSPI_CR_LASTXFER BIT(24)
/* Bitfields in QSPI_MR (Mode Register) */
#define QSPI_MR_SMM BIT(0)
#define QSPI_MR_LLB BIT(1)
#define QSPI_MR_WDRBT BIT(2)
#define QSPI_MR_SMRM BIT(3)
#define QSPI_MR_CSMODE_MASK GENMASK(5, 4)
#define QSPI_MR_CSMODE_NOT_RELOADED (0 << 4)
#define QSPI_MR_CSMODE_LASTXFER (1 << 4)
#define QSPI_MR_CSMODE_SYSTEMATICALLY (2 << 4)
#define QSPI_MR_NBBITS_MASK GENMASK(11, 8)
#define QSPI_MR_NBBITS(n) ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK)
#define QSPI_MR_DLYBCT_MASK GENMASK(23, 16)
#define QSPI_MR_DLYBCT(n) (((n) << 16) & QSPI_MR_DLYBCT_MASK)
#define QSPI_MR_DLYCS_MASK GENMASK(31, 24)
#define QSPI_MR_DLYCS(n) (((n) << 24) & QSPI_MR_DLYCS_MASK)
/* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR */
#define QSPI_SR_RDRF BIT(0)
#define QSPI_SR_TDRE BIT(1)
#define QSPI_SR_TXEMPTY BIT(2)
#define QSPI_SR_OVRES BIT(3)
#define QSPI_SR_CSR BIT(8)
#define QSPI_SR_CSS BIT(9)
#define QSPI_SR_INSTRE BIT(10)
#define QSPI_SR_QSPIENS BIT(24)
#define QSPI_SR_CMD_COMPLETED (QSPI_SR_INSTRE | QSPI_SR_CSR)
/* Bitfields in QSPI_SCR (Serial Clock Register) */
#define QSPI_SCR_CPOL BIT(0)
#define QSPI_SCR_CPHA BIT(1)
#define QSPI_SCR_SCBR_MASK GENMASK(15, 8)
#define QSPI_SCR_SCBR(n) (((n) << 8) & QSPI_SCR_SCBR_MASK)
#define QSPI_SCR_DLYBS_MASK GENMASK(23, 16)
#define QSPI_SCR_DLYBS(n) (((n) << 16) & QSPI_SCR_DLYBS_MASK)
/* Bitfields in QSPI_ICR (Read/Write Instruction Code Register) */
#define QSPI_ICR_INST_MASK GENMASK(7, 0)
#define QSPI_ICR_INST(inst) (((inst) << 0) & QSPI_ICR_INST_MASK)
#define QSPI_ICR_OPT_MASK GENMASK(23, 16)
#define QSPI_ICR_OPT(opt) (((opt) << 16) & QSPI_ICR_OPT_MASK)
/* Bitfields in QSPI_IFR (Instruction Frame Register) */
#define QSPI_IFR_WIDTH_MASK GENMASK(2, 0)
#define QSPI_IFR_WIDTH_SINGLE_BIT_SPI (0 << 0)
#define QSPI_IFR_WIDTH_DUAL_OUTPUT (1 << 0)
#define QSPI_IFR_WIDTH_QUAD_OUTPUT (2 << 0)
#define QSPI_IFR_WIDTH_DUAL_IO (3 << 0)
#define QSPI_IFR_WIDTH_QUAD_IO (4 << 0)
#define QSPI_IFR_WIDTH_DUAL_CMD (5 << 0)
#define QSPI_IFR_WIDTH_QUAD_CMD (6 << 0)
#define QSPI_IFR_INSTEN BIT(4)
#define QSPI_IFR_ADDREN BIT(5)
#define QSPI_IFR_OPTEN BIT(6)
#define QSPI_IFR_DATAEN BIT(7)
#define QSPI_IFR_OPTL_MASK GENMASK(9, 8)
#define QSPI_IFR_OPTL_1BIT (0 << 8)
#define QSPI_IFR_OPTL_2BIT (1 << 8)
#define QSPI_IFR_OPTL_4BIT (2 << 8)
#define QSPI_IFR_OPTL_8BIT (3 << 8)
#define QSPI_IFR_ADDRL BIT(10)
#define QSPI_IFR_TFRTYP_MEM BIT(12)
#define QSPI_IFR_SAMA5D2_WRITE_TRSFR BIT(13)
#define QSPI_IFR_CRM BIT(14)
#define QSPI_IFR_NBDUM_MASK GENMASK(20, 16)
#define QSPI_IFR_NBDUM(n) (((n) << 16) & QSPI_IFR_NBDUM_MASK)
#define QSPI_IFR_APBTFRTYP_READ BIT(24) /* Defined in SAM9X60 */
/* Bitfields in QSPI_SMR (Scrambling Mode Register) */
#define QSPI_SMR_SCREN BIT(0)
#define QSPI_SMR_RVDIS BIT(1)
/* Bitfields in QSPI_WPMR (Write Protection Mode Register) */
#define QSPI_WPMR_WPEN BIT(0)
#define QSPI_WPMR_WPKEY_MASK GENMASK(31, 8)
#define QSPI_WPMR_WPKEY(wpkey) (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK)
/* Bitfields in QSPI_WPSR (Write Protection Status Register) */
#define QSPI_WPSR_WPVS BIT(0)
#define QSPI_WPSR_WPVSRC_MASK GENMASK(15, 8)
#define QSPI_WPSR_WPVSRC(src) (((src) << 8) & QSPI_WPSR_WPVSRC)
struct atmel_qspi_caps {
bool has_qspick;
bool has_ricr;
};
struct atmel_qspi {
void __iomem *regs;
void __iomem *mem;
const struct atmel_qspi_caps *caps;
ulong bus_clk_rate;
u32 mr;
};
struct atmel_qspi_mode {
u8 cmd_buswidth;
u8 addr_buswidth;
u8 data_buswidth;
u32 config;
};
static const struct atmel_qspi_mode atmel_qspi_modes[] = {
{ 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
{ 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
{ 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
{ 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
{ 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
{ 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
{ 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
};
static inline bool atmel_qspi_is_compatible(const struct spi_mem_op *op,
const struct atmel_qspi_mode *mode)
{
if (op->cmd.buswidth != mode->cmd_buswidth)
return false;
if (op->addr.nbytes && op->addr.buswidth != mode->addr_buswidth)
return false;
if (op->data.nbytes && op->data.buswidth != mode->data_buswidth)
return false;
return true;
}
static int atmel_qspi_find_mode(const struct spi_mem_op *op)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(atmel_qspi_modes); i++)
if (atmel_qspi_is_compatible(op, &atmel_qspi_modes[i]))
return i;
return -ENOTSUPP;
}
static bool atmel_qspi_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
if (atmel_qspi_find_mode(op) < 0)
return false;
/* special case not supported by hardware */
if (op->addr.nbytes == 2 && op->cmd.buswidth != op->addr.buswidth &&
op->dummy.nbytes == 0)
return false;
return true;
}
static int atmel_qspi_set_cfg(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 *offset)
{
u32 iar, icr, ifr;
u32 dummy_cycles = 0;
int mode;
iar = 0;
icr = QSPI_ICR_INST(op->cmd.opcode);
ifr = QSPI_IFR_INSTEN;
mode = atmel_qspi_find_mode(op);
if (mode < 0)
return mode;
ifr |= atmel_qspi_modes[mode].config;
if (op->dummy.buswidth && op->dummy.nbytes)
dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
/*
* The controller allows 24 and 32-bit addressing while NAND-flash
* requires 16-bit long. Handling 8-bit long addresses is done using
* the option field. For the 16-bit addresses, the workaround depends
* of the number of requested dummy bits. If there are 8 or more dummy
* cycles, the address is shifted and sent with the first dummy byte.
* Otherwise opcode is disabled and the first byte of the address
* contains the command opcode (works only if the opcode and address
* use the same buswidth). The limitation is when the 16-bit address is
* used without enough dummy cycles and the opcode is using a different
* buswidth than the address.
*/
if (op->addr.buswidth) {
switch (op->addr.nbytes) {
case 0:
break;
case 1:
ifr |= QSPI_IFR_OPTEN | QSPI_IFR_OPTL_8BIT;
icr |= QSPI_ICR_OPT(op->addr.val & 0xff);
break;
case 2:
if (dummy_cycles < 8 / op->addr.buswidth) {
ifr &= ~QSPI_IFR_INSTEN;
ifr |= QSPI_IFR_ADDREN;
iar = (op->cmd.opcode << 16) |
(op->addr.val & 0xffff);
} else {
ifr |= QSPI_IFR_ADDREN;
iar = (op->addr.val << 8) & 0xffffff;
dummy_cycles -= 8 / op->addr.buswidth;
}
break;
case 3:
ifr |= QSPI_IFR_ADDREN;
iar = op->addr.val & 0xffffff;
break;
case 4:
ifr |= QSPI_IFR_ADDREN | QSPI_IFR_ADDRL;
iar = op->addr.val & 0x7ffffff;
break;
default:
return -ENOTSUPP;
}
}
/* offset of the data access in the QSPI memory space */
*offset = iar;
/* Set number of dummy cycles */
if (dummy_cycles)
ifr |= QSPI_IFR_NBDUM(dummy_cycles);
/* Set data enable */
if (op->data.nbytes)
ifr |= QSPI_IFR_DATAEN;
/*
* If the QSPI controller is set in regular SPI mode, set it in
* Serial Memory Mode (SMM).
*/
if (aq->mr != QSPI_MR_SMM) {
writel(QSPI_MR_SMM, aq->regs + QSPI_MR);
aq->mr = QSPI_MR_SMM;
}
/* Clear pending interrupts */
(void)readl(aq->regs + QSPI_SR);
if (aq->caps->has_ricr) {
if (!op->addr.nbytes && op->data.dir == SPI_MEM_DATA_IN)
ifr |= QSPI_IFR_APBTFRTYP_READ;
/* Set QSPI Instruction Frame registers */
writel(iar, aq->regs + QSPI_IAR);
if (op->data.dir == SPI_MEM_DATA_IN)
writel(icr, aq->regs + QSPI_RICR);
else
writel(icr, aq->regs + QSPI_WICR);
writel(ifr, aq->regs + QSPI_IFR);
} else {
if (op->data.dir == SPI_MEM_DATA_OUT)
ifr |= QSPI_IFR_SAMA5D2_WRITE_TRSFR;
/* Set QSPI Instruction Frame registers */
writel(iar, aq->regs + QSPI_IAR);
writel(icr, aq->regs + QSPI_ICR);
writel(ifr, aq->regs + QSPI_IFR);
}
return 0;
}
static int atmel_qspi_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct atmel_qspi *aq = dev_get_priv(slave->dev->parent);
u32 sr, imr, offset;
int err;
err = atmel_qspi_set_cfg(aq, op, &offset);
if (err)
return err;
/* Skip to the final steps if there is no data */
if (op->data.nbytes) {
/* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */
(void)readl(aq->regs + QSPI_IFR);
/* Send/Receive data */
if (op->data.dir == SPI_MEM_DATA_IN)
memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
else
memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
/* Release the chip-select */
writel(QSPI_CR_LASTXFER, aq->regs + QSPI_CR);
}
/* Poll INSTruction End and Chip Select Rise flags. */
imr = QSPI_SR_INSTRE | QSPI_SR_CSR;
return readl_poll_timeout(aq->regs + QSPI_SR, sr, (sr & imr) == imr,
1000000);
}
static int atmel_qspi_set_speed(struct udevice *bus, uint hz)
{
struct atmel_qspi *aq = dev_get_priv(bus);
u32 scr, scbr, mask, new_value;
/* Compute the QSPI baudrate */
scbr = DIV_ROUND_UP(aq->bus_clk_rate, hz);
if (scbr > 0)
scbr--;
new_value = QSPI_SCR_SCBR(scbr);
mask = QSPI_SCR_SCBR_MASK;
scr = readl(aq->regs + QSPI_SCR);
if ((scr & mask) == new_value)
return 0;
scr = (scr & ~mask) | new_value;
writel(scr, aq->regs + QSPI_SCR);
return 0;
}
static int atmel_qspi_set_mode(struct udevice *bus, uint mode)
{
struct atmel_qspi *aq = dev_get_priv(bus);
u32 scr, mask, new_value = 0;
if (mode & SPI_CPOL)
new_value = QSPI_SCR_CPOL;
if (mode & SPI_CPHA)
new_value = QSPI_SCR_CPHA;
mask = QSPI_SCR_CPOL | QSPI_SCR_CPHA;
scr = readl(aq->regs + QSPI_SCR);
if ((scr & mask) == new_value)
return 0;
scr = (scr & ~mask) | new_value;
writel(scr, aq->regs + QSPI_SCR);
return 0;
}
static int atmel_qspi_enable_clk(struct udevice *dev)
{
struct atmel_qspi *aq = dev_get_priv(dev);
struct clk pclk, qspick;
int ret;
ret = clk_get_by_name(dev, "pclk", &pclk);
if (ret)
ret = clk_get_by_index(dev, 0, &pclk);
if (ret) {
dev_err(dev, "Missing QSPI peripheral clock\n");
return ret;
}
ret = clk_enable(&pclk);
if (ret) {
dev_err(dev, "Failed to enable QSPI peripheral clock\n");
goto free_pclk;
}
if (aq->caps->has_qspick) {
/* Get the QSPI system clock */
ret = clk_get_by_name(dev, "qspick", &qspick);
if (ret) {
dev_err(dev, "Missing QSPI peripheral clock\n");
goto free_pclk;
}
ret = clk_enable(&qspick);
if (ret)
dev_err(dev, "Failed to enable QSPI system clock\n");
clk_free(&qspick);
}
aq->bus_clk_rate = clk_get_rate(&pclk);
if (!aq->bus_clk_rate)
ret = -EINVAL;
free_pclk:
clk_free(&pclk);
return ret;
}
static void atmel_qspi_init(struct atmel_qspi *aq)
{
/* Reset the QSPI controller */
writel(QSPI_CR_SWRST, aq->regs + QSPI_CR);
/* Set the QSPI controller by default in Serial Memory Mode */
writel(QSPI_MR_SMM, aq->regs + QSPI_MR);
aq->mr = QSPI_MR_SMM;
/* Enable the QSPI controller */
writel(QSPI_CR_QSPIEN, aq->regs + QSPI_CR);
}
static int atmel_qspi_probe(struct udevice *dev)
{
struct atmel_qspi *aq = dev_get_priv(dev);
struct resource res;
int ret;
aq->caps = (struct atmel_qspi_caps *)dev_get_driver_data(dev);
if (!aq->caps) {
dev_err(dev, "Could not retrieve QSPI caps\n");
return -EINVAL;
};
/* Map the registers */
ret = dev_read_resource_byname(dev, "qspi_base", &res);
if (ret) {
dev_err(dev, "missing registers\n");
return ret;
}
aq->regs = devm_ioremap(dev, res.start, resource_size(&res));
if (IS_ERR(aq->regs))
return PTR_ERR(aq->regs);
/* Map the AHB memory */
ret = dev_read_resource_byname(dev, "qspi_mmap", &res);
if (ret) {
dev_err(dev, "missing AHB memory\n");
return ret;
}
aq->mem = devm_ioremap(dev, res.start, resource_size(&res));
if (IS_ERR(aq->mem))
return PTR_ERR(aq->mem);
ret = atmel_qspi_enable_clk(dev);
if (ret)
return ret;
atmel_qspi_init(aq);
return 0;
}
static const struct spi_controller_mem_ops atmel_qspi_mem_ops = {
.supports_op = atmel_qspi_supports_op,
.exec_op = atmel_qspi_exec_op,
};
static const struct dm_spi_ops atmel_qspi_ops = {
.set_speed = atmel_qspi_set_speed,
.set_mode = atmel_qspi_set_mode,
.mem_ops = &atmel_qspi_mem_ops,
};
static const struct atmel_qspi_caps atmel_sama5d2_qspi_caps = {};
static const struct atmel_qspi_caps atmel_sam9x60_qspi_caps = {
.has_qspick = true,
.has_ricr = true,
};
static const struct udevice_id atmel_qspi_ids[] = {
{
.compatible = "atmel,sama5d2-qspi",
.data = (ulong)&atmel_sama5d2_qspi_caps,
},
{
.compatible = "microchip,sam9x60-qspi",
.data = (ulong)&atmel_sam9x60_qspi_caps,
},
{ /* sentinel */ }
};
U_BOOT_DRIVER(atmel_qspi) = {
.name = "atmel_qspi",
.id = UCLASS_SPI,
.of_match = atmel_qspi_ids,
.ops = &atmel_qspi_ops,
.priv_auto_alloc_size = sizeof(struct atmel_qspi),
.probe = atmel_qspi_probe,
};