u-boot/doc/README.uniphier
Andre Przywara 971a54193c doc: fix incorrect usage of DT node unit address
The DT spec demands a unit-address in a node name to match the "reg"
property in that node. Newer dtc versions will throw warnings if this is
not the case.
Fix all occurences in various documentation files where this was not
observed, to not give bad examples to the reader.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
2018-01-15 18:29:21 -07:00

408 lines
13 KiB
Plaintext

U-Boot for UniPhier SoC family
==============================
Recommended toolchains
----------------------
The UniPhier platform is well tested with Linaro toolchains.
You can download pre-built toolchains from:
http://www.linaro.org/downloads/
Compile the source
------------------
The source can be configured and built with the following commands:
$ make <defconfig>
$ make CROSS_COMPILE=<toolchain-prefix> DEVICE_TREE=<device-tree>
The recommended <toolchain-prefix> is `arm-linux-gnueabihf-` for 32bit SoCs,
`aarch64-linux-gnu-` for 64bit SoCs, but you may wish to change it to use your
favorite compiler.
The following tables show <defconfig> and <device-tree> for each board.
32bit SoC boards:
Board | <defconfig> | <device-tree>
---------------|-----------------------------|------------------------------
LD4 reference | uniphier_ld4_sld8_defconfig | uniphier-ld4-ref (default)
sld8 reference | uniphier_ld4_sld8_defconfig | uniphier-sld8-def
Pro4 reference | uniphier_v7_defconfig | uniphier-pro4-ref
Pro4 Ace | uniphier_v7_defconfig | uniphier-pro4-ace
Pro4 Sanji | uniphier_v7_defconfig | uniphier-pro4-sanji
Pro5 4KBOX | uniphier_v7_defconfig | uniphier-pro5-4kbox
PXs2 Gentil | uniphier_v7_defconfig | uniphier-pxs2-gentil
PXs2 Vodka | uniphier_v7_defconfig | uniphier-pxs2-vodka (default)
LD6b reference | uniphier_v7_defconfig | uniphier-ld6b-ref
64bit SoC boards:
Board | <defconfig> | <device-tree>
---------------|-----------------------|----------------------------
LD11 reference | uniphier_v8_defconfig | uniphier-ld11-ref
LD11 Global | uniphier_v8_defconfig | uniphier-ld11-global
LD20 reference | uniphier_v8_defconfig | uniphier-ld20-ref (default)
LD20 Global | uniphier_v8_defconfig | uniphier-ld20-global
PXs3 reference | uniphier_v8_defconfig | uniphier-pxs3-ref
For example, to compile the source for PXs2 Vodka board, run the following:
$ make uniphier_v7_defconfig
$ make CROSS_COMPILE=arm-linux-gnueabihf- DEVICE_TREE=uniphier-pxs2-vodka
The device tree marked as (default) can be omitted. `uniphier-pxs2-vodka` is
the default device tree for the configuration `uniphier_v7_defconfig`, so the
following gives the same result.
$ make uniphier_v7_defconfig
$ make CROSS_COMPILE=arm-linux-gnueabihf-
Booting 32bit SoC boards
------------------------
The build command will generate the following:
- u-boot.bin
- spl/u-boot.bin
U-Boot can boot UniPhier 32bit SoC boards by itself. Flash the generated images
to the storage device (NAND or eMMC) on your board.
- spl/u-boot-spl.bin at the offset address 0x00000000
- u-boot.bin at the offset address 0x00020000
The `u-boot-with-spl.bin` is the concatenation of the two (with appropriate
padding), so you can also do:
- u-boot-with-spl.bin at the offset address 0x00000000
If a TFTP server is available, the images can be easily updated.
Just copy the u-boot-spl.bin and u-boot.bin to the TFTP public directory,
and run the following command at the U-Boot command line:
To update the images in NAND:
=> run nandupdate
To update the images in eMMC:
=> run emmcupdate
Booting 64bit SoC boards
------------------------
The build command will generate the following:
- u-boot.bin
However, U-Boot is not the first stage loader for UniPhier 64bit SoC boards.
U-Boot serves as a non-secure boot loader loaded by [ARM Trusted Firmware],
so you need to provide the `u-boot.bin` to the build command of ARM Trusted
Firmware.
[ARM Trusted Firmware]: https://github.com/ARM-software/arm-trusted-firmware
Verified Boot
-------------
U-Boot supports an image verification method called "Verified Boot".
This is a brief tutorial to utilize this feature for the UniPhier platform.
You will find details documents in the doc/uImage.FIT directory.
Here, we take LD20 reference board for example, but it should work for any
other boards including 32 bit SoCs.
1. Generate key to sign with
$ mkdir keys
$ openssl genpkey -algorithm RSA -out keys/dev.key \
-pkeyopt rsa_keygen_bits:2048 -pkeyopt rsa_keygen_pubexp:65537
$ openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt
Two files "dev.key" and "dev.crt" will be created. The base name is arbitrary,
but need to match to the "key-name-hint" property described below.
2. Describe FIT source
You need to write an FIT (Flattened Image Tree) source file to describe the
structure of the image container.
The following is an example for a simple usecase:
---------------------------------------->8----------------------------------------
/dts-v1/;
/ {
description = "Kernel, DTB and Ramdisk for UniPhier LD20 Reference Board";
#address-cells = <1>;
images {
kernel {
description = "linux";
data = /incbin/("PATH/TO/YOUR/LINUX/DIR/arch/arm64/boot/Image.gz");
type = "kernel";
arch = "arm64";
os = "linux";
compression = "gzip";
load = <0x82080000>;
entry = <0x82080000>;
hash-1 {
algo = "sha256";
};
};
fdt-1 {
description = "fdt";
data = /incbin/("PATH/TO/YOUR/LINUX/DIR/arch/arm64/boot/dts/socionext/uniphier-ld20-ref.dtb");
type = "flat_dt";
arch = "arm64";
compression = "none";
hash-1 {
algo = "sha256";
};
};
ramdisk {
description = "ramdisk";
data = /incbin/("PATH/TO/YOUR/ROOTFS/DIR/rootfs.cpio");
type = "ramdisk";
arch = "arm64";
os = "linux";
compression = "none";
hash-1 {
algo = "sha256";
};
};
};
configurations {
default = "config-1";
config-1 {
description = "Configuration0";
kernel = "kernel";
fdt = "fdt-1";
ramdisk = "ramdisk";
signature-1 {
algo = "sha256,rsa2048";
key-name-hint = "dev";
sign-images = "kernel", "fdt", "ramdisk";
};
};
};
};
---------------------------------------->8----------------------------------------
You need to change the three '/incbin/' lines, depending on the location of
your kernel image, device tree blob, and init ramdisk. The "load" and "entry"
properties also need to be adjusted if you want to change the physical placement
of the kernel.
The "key-name-hint" must specify the key name you have created in the step 1.
The FIT file name is arbitrary. Let's say you saved it into "fit.its".
3. Compile U-Boot with FIT and signature enabled
To use the Verified Boot, you need to enable the following two options:
CONFIG_FIT
CONFIG_FIT_SIGNATURE
They are disabled by default for UniPhier defconfig files. So, you need to
tweak the configuration from "make menuconfig" or friends.
$ make uniphier_v8_defconfig
$ make menuconfig
[ enable CONFIG_FIT and CONFIG_FIT_SIGNATURE ]
$ make CROSS_COMPILE=aarch64-linux-gnu-
4. Build the image tree blob
After building U-Boot, you will see tools/mkimage. With this tool, you can
create an image tree blob as follows:
$ tools/mkimage -f fit.its -k keys -K dts/dt.dtb -r -F fitImage
The -k option must specify the key directory you have created in step 1.
A file "fitImage" will be created. This includes kernel, DTB, Init-ramdisk,
hash data for each of the three, and signature data.
The public key needed for the run-time verification is stored in "dts/dt.dtb".
5. Compile U-Boot again
Since the "dt.dtb" has been updated in step 4, you need to re-compile the
U-Boot.
$ make CROSS_COMPILE=aarch64-linux-gnu-
The re-compiled "u-boot.bin" is appended with DTB that contains the public key.
6. Flash the image
Flash the "fitImage" to a storage device (NAND, eMMC, or whatever) on your
board.
Please note the "u-boot.bin" must be signed, and verified by someone when it is
loaded. For ARMv8 SoCs, the "someone" is generally ARM Trusted Firmware BL2.
ARM Trusted Firmware supports an image authentication mechanism called Trusted
Board Boot (TBB). The verification process must be chained from the moment of
the system reset. If the Chain of Trust has a breakage somewhere, the verified
boot process is entirely pointless.
7. Boot verified kernel
Load the fitImage to memory and run the following from the U-Boot command line.
> bootm <addr>
Here, <addr> is the base address of the fitImage.
If it is successful, you will see messages like follows:
---------------------------------------->8----------------------------------------
## Loading kernel from FIT Image at 84100000 ...
Using 'config-1' configuration
Verifying Hash Integrity ... sha256,rsa2048:dev+ OK
Trying 'kernel' kernel subimage
Description: linux
Created: 2017-10-20 14:32:29 UTC
Type: Kernel Image
Compression: gzip compressed
Data Start: 0x841000c8
Data Size: 6957818 Bytes = 6.6 MiB
Architecture: AArch64
OS: Linux
Load Address: 0x82080000
Entry Point: 0x82080000
Hash algo: sha256
Hash value: 82a37b7f11ae55f4e07aa25bf77e4067cb9dc1014d52d6cd4d588f92eee3aaad
Verifying Hash Integrity ... sha256+ OK
## Loading ramdisk from FIT Image at 84100000 ...
Using 'config-1' configuration
Trying 'ramdisk' ramdisk subimage
Description: ramdisk
Created: 2017-10-20 14:32:29 UTC
Type: RAMDisk Image
Compression: uncompressed
Data Start: 0x847a5cc0
Data Size: 5264365 Bytes = 5 MiB
Architecture: AArch64
OS: Linux
Load Address: unavailable
Entry Point: unavailable
Hash algo: sha256
Hash value: 44980a2874154a2e31ed59222c9f8ea968867637f35c81e4107a984de7014deb
Verifying Hash Integrity ... sha256+ OK
## Loading fdt from FIT Image at 84100000 ...
Using 'config-1' configuration
Trying 'fdt-1' fdt subimage
Description: fdt
Created: 2017-10-20 14:32:29 UTC
Type: Flat Device Tree
Compression: uncompressed
Data Start: 0x847a2cb0
Data Size: 12111 Bytes = 11.8 KiB
Architecture: AArch64
Hash algo: sha256
Hash value: c517099db537f6d325e6be46b25c871a41331ad5af0283883fd29d40bfc14e1d
Verifying Hash Integrity ... sha256+ OK
Booting using the fdt blob at 0x847a2cb0
Uncompressing Kernel Image ... OK
reserving fdt memory region: addr=80000000 size=2000000
Loading Device Tree to 000000009fffa000, end 000000009fffff4e ... OK
Starting kernel ...
---------------------------------------->8----------------------------------------
Please pay attention to the lines that start with "Verifying Hash Integrity".
"Verifying Hash Integrity ... sha256,rsa2048:dev+ OK" means the signature check
passed.
"Verifying Hash Integrity ... sha256+ OK" (3 times) means the hash check passed
for kernel, DTB, and Init ramdisk.
If they are not displayed, the Verified Boot is not working.
UniPhier specific commands
--------------------------
- pinmon (enabled by CONFIG_CMD_PINMON)
shows the boot mode pins that has been latched at the power-on reset
- ddrphy (enabled by CONFIG_CMD_DDRPHY_DUMP)
shows the DDR PHY parameters set by the PHY training
- ddrmphy (enabled by CONFIG_CMD_DDRMPHY_DUMP)
shows the DDR Multi PHY parameters set by the PHY training
Supported devices
-----------------
- UART (on-chip)
- NAND
- SD/eMMC
- USB 2.0 (EHCI)
- USB 3.0 (xHCI)
- GPIO
- LAN (on-board SMSC9118)
- I2C
- EEPROM (connected to the on-board I2C bus)
- Support card (SRAM, NOR flash, some peripherals)
Micro Support Card
------------------
The recommended bit switch settings are as follows:
SW2 OFF(1)/ON(0) Description
------------------------------------------
bit 1 <---- BKSZ[0]
bit 2 ----> BKSZ[1]
bit 3 <---- SoC Bus Width 16/32
bit 4 <---- SERIAL_SEL[0]
bit 5 ----> SERIAL_SEL[1]
bit 6 ----> BOOTSWAP_EN
bit 7 <---- CS1/CS5
bit 8 <---- SOC_SERIAL_DISABLE
SW8 OFF(1)/ON(0) Description
------------------------------------------
bit 1 <---- CS1_SPLIT
bit 2 <---- CASE9_ON
bit 3 <---- CASE10_ON
bit 4 Don't Care Reserve
bit 5 Don't Care Reserve
bit 6 Don't Care Reserve
bit 7 ----> BURST_EN
bit 8 ----> FLASHBUS32_16
The BKSZ[1:0] specifies the address range of memory slot and peripherals
as follows:
BKSZ Description RAM slot Peripherals
--------------------------------------------------------------------
0b00 15MB RAM / 1MB Peri 00000000-00efffff 00f00000-00ffffff
0b01 31MB RAM / 1MB Peri 00000000-01efffff 01f00000-01ffffff
0b10 64MB RAM / 1MB Peri 00000000-03efffff 03f00000-03ffffff
0b11 127MB RAM / 1MB Peri 00000000-07efffff 07f00000-07ffffff
Set BSKZ[1:0] to 0b01 for U-Boot.
This mode is the most handy because EA[24] is always supported by the save pin
mode of the system bus. On the other hand, EA[25] is not supported for some
newer SoCs. Even if it is, EA[25] is not connected on most of the boards.
--
Masahiro Yamada <yamada.masahiro@socionext.com>
Oct. 2017