u-boot/arch/x86/cpu/ivybridge/sdram.c
Bin Meng 3e45de6ed4 x86: ivybridge: Enable the MRC cache
This works correctly now, so enable it.

Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Dropped malloc() and adjusted commit message:
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
2015-10-21 07:46:51 -06:00

753 lines
20 KiB
C

/*
* Copyright (c) 2011 The Chromium OS Authors.
* (C) Copyright 2010,2011
* Graeme Russ, <graeme.russ@gmail.com>
*
* Portions from Coreboot mainboard/google/link/romstage.c
* Copyright (C) 2007-2010 coresystems GmbH
* Copyright (C) 2011 Google Inc.
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <errno.h>
#include <fdtdec.h>
#include <malloc.h>
#include <net.h>
#include <rtc.h>
#include <spi.h>
#include <spi_flash.h>
#include <asm/processor.h>
#include <asm/gpio.h>
#include <asm/global_data.h>
#include <asm/mrccache.h>
#include <asm/mtrr.h>
#include <asm/pci.h>
#include <asm/arch/me.h>
#include <asm/arch/pei_data.h>
#include <asm/arch/pch.h>
#include <asm/post.h>
#include <asm/arch/sandybridge.h>
DECLARE_GLOBAL_DATA_PTR;
#define CMOS_OFFSET_MRC_SEED 152
#define CMOS_OFFSET_MRC_SEED_S3 156
#define CMOS_OFFSET_MRC_SEED_CHK 160
/*
* This function looks for the highest region of memory lower than 4GB which
* has enough space for U-Boot where U-Boot is aligned on a page boundary.
* It overrides the default implementation found elsewhere which simply
* picks the end of ram, wherever that may be. The location of the stack,
* the relocation address, and how far U-Boot is moved by relocation are
* set in the global data structure.
*/
ulong board_get_usable_ram_top(ulong total_size)
{
struct memory_info *info = &gd->arch.meminfo;
uintptr_t dest_addr = 0;
struct memory_area *largest = NULL;
int i;
/* Find largest area of memory below 4GB */
for (i = 0; i < info->num_areas; i++) {
struct memory_area *area = &info->area[i];
if (area->start >= 1ULL << 32)
continue;
if (!largest || area->size > largest->size)
largest = area;
}
/* If no suitable area was found, return an error. */
assert(largest);
if (!largest || largest->size < (2 << 20))
panic("No available memory found for relocation");
dest_addr = largest->start + largest->size;
return (ulong)dest_addr;
}
void dram_init_banksize(void)
{
struct memory_info *info = &gd->arch.meminfo;
int num_banks;
int i;
for (i = 0, num_banks = 0; i < info->num_areas; i++) {
struct memory_area *area = &info->area[i];
if (area->start >= 1ULL << 32)
continue;
gd->bd->bi_dram[num_banks].start = area->start;
gd->bd->bi_dram[num_banks].size = area->size;
num_banks++;
}
}
static int read_seed_from_cmos(struct pei_data *pei_data)
{
u16 c1, c2, checksum, seed_checksum;
struct udevice *dev;
int ret = 0;
ret = uclass_get_device(UCLASS_RTC, 0, &dev);
if (ret) {
debug("Cannot find RTC: err=%d\n", ret);
return -ENODEV;
}
/*
* Read scrambler seeds from CMOS RAM. We don't want to store them in
* SPI flash since they change on every boot and that would wear down
* the flash too much. So we store these in CMOS and the large MRC
* data in SPI flash.
*/
ret = rtc_read32(dev, CMOS_OFFSET_MRC_SEED, &pei_data->scrambler_seed);
if (!ret) {
ret = rtc_read32(dev, CMOS_OFFSET_MRC_SEED_S3,
&pei_data->scrambler_seed_s3);
}
if (ret) {
debug("Failed to read from RTC %s\n", dev->name);
return ret;
}
debug("Read scrambler seed 0x%08x from CMOS 0x%02x\n",
pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
debug("Read S3 scrambler seed 0x%08x from CMOS 0x%02x\n",
pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
/* Compute seed checksum and compare */
c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed,
sizeof(u32));
c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3,
sizeof(u32));
checksum = add_ip_checksums(sizeof(u32), c1, c2);
seed_checksum = rtc_read8(dev, CMOS_OFFSET_MRC_SEED_CHK);
seed_checksum |= rtc_read8(dev, CMOS_OFFSET_MRC_SEED_CHK + 1) << 8;
if (checksum != seed_checksum) {
debug("%s: invalid seed checksum\n", __func__);
pei_data->scrambler_seed = 0;
pei_data->scrambler_seed_s3 = 0;
return -EINVAL;
}
return 0;
}
static int prepare_mrc_cache(struct pei_data *pei_data)
{
struct mrc_data_container *mrc_cache;
struct mrc_region entry;
int ret;
ret = read_seed_from_cmos(pei_data);
if (ret)
return ret;
ret = mrccache_get_region(NULL, &entry);
if (ret)
return ret;
mrc_cache = mrccache_find_current(&entry);
if (!mrc_cache)
return -ENOENT;
pei_data->mrc_input = mrc_cache->data;
pei_data->mrc_input_len = mrc_cache->data_size;
debug("%s: at %p, size %x checksum %04x\n", __func__,
pei_data->mrc_input, pei_data->mrc_input_len,
mrc_cache->checksum);
return 0;
}
static int write_seeds_to_cmos(struct pei_data *pei_data)
{
u16 c1, c2, checksum;
struct udevice *dev;
int ret = 0;
ret = uclass_get_device(UCLASS_RTC, 0, &dev);
if (ret) {
debug("Cannot find RTC: err=%d\n", ret);
return -ENODEV;
}
/* Save the MRC seed values to CMOS */
rtc_write32(dev, CMOS_OFFSET_MRC_SEED, pei_data->scrambler_seed);
debug("Save scrambler seed 0x%08x to CMOS 0x%02x\n",
pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
rtc_write32(dev, CMOS_OFFSET_MRC_SEED_S3, pei_data->scrambler_seed_s3);
debug("Save s3 scrambler seed 0x%08x to CMOS 0x%02x\n",
pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
/* Save a simple checksum of the seed values */
c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed,
sizeof(u32));
c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3,
sizeof(u32));
checksum = add_ip_checksums(sizeof(u32), c1, c2);
rtc_write8(dev, CMOS_OFFSET_MRC_SEED_CHK, checksum & 0xff);
rtc_write8(dev, CMOS_OFFSET_MRC_SEED_CHK + 1, (checksum >> 8) & 0xff);
return 0;
}
/* Use this hook to save our SDRAM parameters */
int misc_init_r(void)
{
int ret;
ret = mrccache_save();
if (ret)
printf("Unable to save MRC data: %d\n", ret);
return 0;
}
static const char *const ecc_decoder[] = {
"inactive",
"active on IO",
"disabled on IO",
"active"
};
/*
* Dump in the log memory controller configuration as read from the memory
* controller registers.
*/
static void report_memory_config(void)
{
u32 addr_decoder_common, addr_decode_ch[2];
int i;
addr_decoder_common = readl(MCHBAR_REG(0x5000));
addr_decode_ch[0] = readl(MCHBAR_REG(0x5004));
addr_decode_ch[1] = readl(MCHBAR_REG(0x5008));
debug("memcfg DDR3 clock %d MHz\n",
(readl(MCHBAR_REG(0x5e04)) * 13333 * 2 + 50) / 100);
debug("memcfg channel assignment: A: %d, B % d, C % d\n",
addr_decoder_common & 3,
(addr_decoder_common >> 2) & 3,
(addr_decoder_common >> 4) & 3);
for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) {
u32 ch_conf = addr_decode_ch[i];
debug("memcfg channel[%d] config (%8.8x):\n", i, ch_conf);
debug(" ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]);
debug(" enhanced interleave mode %s\n",
((ch_conf >> 22) & 1) ? "on" : "off");
debug(" rank interleave %s\n",
((ch_conf >> 21) & 1) ? "on" : "off");
debug(" DIMMA %d MB width x%d %s rank%s\n",
((ch_conf >> 0) & 0xff) * 256,
((ch_conf >> 19) & 1) ? 16 : 8,
((ch_conf >> 17) & 1) ? "dual" : "single",
((ch_conf >> 16) & 1) ? "" : ", selected");
debug(" DIMMB %d MB width x%d %s rank%s\n",
((ch_conf >> 8) & 0xff) * 256,
((ch_conf >> 20) & 1) ? 16 : 8,
((ch_conf >> 18) & 1) ? "dual" : "single",
((ch_conf >> 16) & 1) ? ", selected" : "");
}
}
static void post_system_agent_init(struct pei_data *pei_data)
{
/* If PCIe init is skipped, set the PEG clock gating */
if (!pei_data->pcie_init)
setbits_le32(MCHBAR_REG(0x7010), 1);
}
static asmlinkage void console_tx_byte(unsigned char byte)
{
#ifdef DEBUG
putc(byte);
#endif
}
static int recovery_mode_enabled(void)
{
return false;
}
/**
* Find the PEI executable in the ROM and execute it.
*
* @param pei_data: configuration data for UEFI PEI reference code
*/
int sdram_initialise(struct pei_data *pei_data)
{
unsigned version;
const char *data;
uint16_t done;
int ret;
report_platform_info();
/* Wait for ME to be ready */
ret = intel_early_me_init();
if (ret)
return ret;
ret = intel_early_me_uma_size();
if (ret < 0)
return ret;
debug("Starting UEFI PEI System Agent\n");
/*
* Do not pass MRC data in for recovery mode boot,
* Always pass it in for S3 resume.
*/
if (!recovery_mode_enabled() ||
pei_data->boot_mode == PEI_BOOT_RESUME) {
ret = prepare_mrc_cache(pei_data);
if (ret)
debug("prepare_mrc_cache failed: %d\n", ret);
}
/* If MRC data is not found we cannot continue S3 resume. */
if (pei_data->boot_mode == PEI_BOOT_RESUME && !pei_data->mrc_input) {
debug("Giving up in sdram_initialize: No MRC data\n");
reset_cpu(0);
}
/* Pass console handler in pei_data */
pei_data->tx_byte = console_tx_byte;
debug("PEI data at %p, size %x:\n", pei_data, sizeof(*pei_data));
data = (char *)CONFIG_X86_MRC_ADDR;
if (data) {
int rv;
int (*func)(struct pei_data *);
ulong start;
debug("Calling MRC at %p\n", data);
post_code(POST_PRE_MRC);
start = get_timer(0);
func = (int (*)(struct pei_data *))data;
rv = func(pei_data);
post_code(POST_MRC);
if (rv) {
switch (rv) {
case -1:
printf("PEI version mismatch.\n");
break;
case -2:
printf("Invalid memory frequency.\n");
break;
default:
printf("MRC returned %x.\n", rv);
}
printf("Nonzero MRC return value.\n");
return -EFAULT;
}
debug("MRC execution time %lu ms\n", get_timer(start));
} else {
printf("UEFI PEI System Agent not found.\n");
return -ENOSYS;
}
#if CONFIG_USBDEBUG
/* mrc.bin reconfigures USB, so reinit it to have debug */
early_usbdebug_init();
#endif
version = readl(MCHBAR_REG(0x5034));
debug("System Agent Version %d.%d.%d Build %d\n",
version >> 24 , (version >> 16) & 0xff,
(version >> 8) & 0xff, version & 0xff);
debug("MRC output data length %#x at %p\n", pei_data->mrc_output_len,
pei_data->mrc_output);
/*
* Send ME init done for SandyBridge here. This is done inside the
* SystemAgent binary on IvyBridge
*/
done = x86_pci_read_config32(PCH_DEV, PCI_DEVICE_ID);
done &= BASE_REV_MASK;
if (BASE_REV_SNB == done)
intel_early_me_init_done(ME_INIT_STATUS_SUCCESS);
else
intel_early_me_status();
post_system_agent_init(pei_data);
report_memory_config();
/* S3 resume: don't save scrambler seed or MRC data */
if (pei_data->boot_mode != PEI_BOOT_RESUME) {
/*
* This will be copied to SDRAM in reserve_arch(), then written
* to SPI flash in mrccache_save()
*/
gd->arch.mrc_output = (char *)pei_data->mrc_output;
gd->arch.mrc_output_len = pei_data->mrc_output_len;
ret = write_seeds_to_cmos(pei_data);
if (ret)
debug("Failed to write seeds to CMOS: %d\n", ret);
}
return 0;
}
int reserve_arch(void)
{
return mrccache_reserve();
}
static int copy_spd(struct pei_data *peid)
{
const int gpio_vector[] = {41, 42, 43, 10, -1};
int spd_index;
const void *blob = gd->fdt_blob;
int node, spd_node;
int ret, i;
for (i = 0; ; i++) {
if (gpio_vector[i] == -1)
break;
ret = gpio_requestf(gpio_vector[i], "spd_id%d", i);
if (ret) {
debug("%s: Could not request gpio %d\n", __func__,
gpio_vector[i]);
return ret;
}
}
spd_index = gpio_get_values_as_int(gpio_vector);
debug("spd index %d\n", spd_index);
node = fdtdec_next_compatible(blob, 0, COMPAT_MEMORY_SPD);
if (node < 0) {
printf("SPD data not found.\n");
return -ENOENT;
}
for (spd_node = fdt_first_subnode(blob, node);
spd_node > 0;
spd_node = fdt_next_subnode(blob, spd_node)) {
const char *data;
int len;
if (fdtdec_get_int(blob, spd_node, "reg", -1) != spd_index)
continue;
data = fdt_getprop(blob, spd_node, "data", &len);
if (len < sizeof(peid->spd_data[0])) {
printf("Missing SPD data\n");
return -EINVAL;
}
debug("Using SDRAM SPD data for '%s'\n",
fdt_get_name(blob, spd_node, NULL));
memcpy(peid->spd_data[0], data, sizeof(peid->spd_data[0]));
break;
}
if (spd_node < 0) {
printf("No SPD data found for index %d\n", spd_index);
return -ENOENT;
}
return 0;
}
/**
* add_memory_area() - Add a new usable memory area to our list
*
* Note: @start and @end must not span the first 4GB boundary
*
* @info: Place to store memory info
* @start: Start of this memory area
* @end: End of this memory area + 1
*/
static int add_memory_area(struct memory_info *info,
uint64_t start, uint64_t end)
{
struct memory_area *ptr;
if (info->num_areas == CONFIG_NR_DRAM_BANKS)
return -ENOSPC;
ptr = &info->area[info->num_areas];
ptr->start = start;
ptr->size = end - start;
info->total_memory += ptr->size;
if (ptr->start < (1ULL << 32))
info->total_32bit_memory += ptr->size;
debug("%d: memory %llx size %llx, total now %llx / %llx\n",
info->num_areas, ptr->start, ptr->size,
info->total_32bit_memory, info->total_memory);
info->num_areas++;
return 0;
}
/**
* sdram_find() - Find available memory
*
* This is a bit complicated since on x86 there are system memory holes all
* over the place. We create a list of available memory blocks
*/
static int sdram_find(pci_dev_t dev)
{
struct memory_info *info = &gd->arch.meminfo;
uint32_t tseg_base, uma_size, tolud;
uint64_t tom, me_base, touud;
uint64_t uma_memory_base = 0;
uint64_t uma_memory_size;
unsigned long long tomk;
uint16_t ggc;
/* Total Memory 2GB example:
*
* 00000000 0000MB-1992MB 1992MB RAM (writeback)
* 7c800000 1992MB-2000MB 8MB TSEG (SMRR)
* 7d000000 2000MB-2002MB 2MB GFX GTT (uncached)
* 7d200000 2002MB-2034MB 32MB GFX UMA (uncached)
* 7f200000 2034MB TOLUD
* 7f800000 2040MB MEBASE
* 7f800000 2040MB-2048MB 8MB ME UMA (uncached)
* 80000000 2048MB TOM
* 100000000 4096MB-4102MB 6MB RAM (writeback)
*
* Total Memory 4GB example:
*
* 00000000 0000MB-2768MB 2768MB RAM (writeback)
* ad000000 2768MB-2776MB 8MB TSEG (SMRR)
* ad800000 2776MB-2778MB 2MB GFX GTT (uncached)
* ada00000 2778MB-2810MB 32MB GFX UMA (uncached)
* afa00000 2810MB TOLUD
* ff800000 4088MB MEBASE
* ff800000 4088MB-4096MB 8MB ME UMA (uncached)
* 100000000 4096MB TOM
* 100000000 4096MB-5374MB 1278MB RAM (writeback)
* 14fe00000 5368MB TOUUD
*/
/* Top of Upper Usable DRAM, including remap */
touud = x86_pci_read_config32(dev, TOUUD+4);
touud <<= 32;
touud |= x86_pci_read_config32(dev, TOUUD);
/* Top of Lower Usable DRAM */
tolud = x86_pci_read_config32(dev, TOLUD);
/* Top of Memory - does not account for any UMA */
tom = x86_pci_read_config32(dev, 0xa4);
tom <<= 32;
tom |= x86_pci_read_config32(dev, 0xa0);
debug("TOUUD %llx TOLUD %08x TOM %llx\n", touud, tolud, tom);
/* ME UMA needs excluding if total memory <4GB */
me_base = x86_pci_read_config32(dev, 0x74);
me_base <<= 32;
me_base |= x86_pci_read_config32(dev, 0x70);
debug("MEBASE %llx\n", me_base);
/* TODO: Get rid of all this shifting by 10 bits */
tomk = tolud >> 10;
if (me_base == tolud) {
/* ME is from MEBASE-TOM */
uma_size = (tom - me_base) >> 10;
/* Increment TOLUD to account for ME as RAM */
tolud += uma_size << 10;
/* UMA starts at old TOLUD */
uma_memory_base = tomk * 1024ULL;
uma_memory_size = uma_size * 1024ULL;
debug("ME UMA base %llx size %uM\n", me_base, uma_size >> 10);
}
/* Graphics memory comes next */
ggc = x86_pci_read_config16(dev, GGC);
if (!(ggc & 2)) {
debug("IGD decoded, subtracting ");
/* Graphics memory */
uma_size = ((ggc >> 3) & 0x1f) * 32 * 1024ULL;
debug("%uM UMA", uma_size >> 10);
tomk -= uma_size;
uma_memory_base = tomk * 1024ULL;
uma_memory_size += uma_size * 1024ULL;
/* GTT Graphics Stolen Memory Size (GGMS) */
uma_size = ((ggc >> 8) & 0x3) * 1024ULL;
tomk -= uma_size;
uma_memory_base = tomk * 1024ULL;
uma_memory_size += uma_size * 1024ULL;
debug(" and %uM GTT\n", uma_size >> 10);
}
/* Calculate TSEG size from its base which must be below GTT */
tseg_base = x86_pci_read_config32(dev, 0xb8);
uma_size = (uma_memory_base - tseg_base) >> 10;
tomk -= uma_size;
uma_memory_base = tomk * 1024ULL;
uma_memory_size += uma_size * 1024ULL;
debug("TSEG base 0x%08x size %uM\n", tseg_base, uma_size >> 10);
debug("Available memory below 4GB: %lluM\n", tomk >> 10);
/* Report the memory regions */
add_memory_area(info, 1 << 20, 2 << 28);
add_memory_area(info, (2 << 28) + (2 << 20), 4 << 28);
add_memory_area(info, (4 << 28) + (2 << 20), tseg_base);
add_memory_area(info, 1ULL << 32, touud);
/* Add MTRRs for memory */
mtrr_add_request(MTRR_TYPE_WRBACK, 0, 2ULL << 30);
mtrr_add_request(MTRR_TYPE_WRBACK, 2ULL << 30, 512 << 20);
mtrr_add_request(MTRR_TYPE_WRBACK, 0xaULL << 28, 256 << 20);
mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base, 16 << 20);
mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base + (16 << 20),
32 << 20);
/*
* If >= 4GB installed then memory from TOLUD to 4GB
* is remapped above TOM, TOUUD will account for both
*/
if (touud > (1ULL << 32ULL)) {
debug("Available memory above 4GB: %lluM\n",
(touud >> 20) - 4096);
}
return 0;
}
static void rcba_config(void)
{
/*
* GFX INTA -> PIRQA (MSI)
* D28IP_P3IP WLAN INTA -> PIRQB
* D29IP_E1P EHCI1 INTA -> PIRQD
* D26IP_E2P EHCI2 INTA -> PIRQF
* D31IP_SIP SATA INTA -> PIRQF (MSI)
* D31IP_SMIP SMBUS INTB -> PIRQH
* D31IP_TTIP THRT INTC -> PIRQA
* D27IP_ZIP HDA INTA -> PIRQA (MSI)
*
* TRACKPAD -> PIRQE (Edge Triggered)
* TOUCHSCREEN -> PIRQG (Edge Triggered)
*/
/* Device interrupt pin register (board specific) */
writel((INTC << D31IP_TTIP) | (NOINT << D31IP_SIP2) |
(INTB << D31IP_SMIP) | (INTA << D31IP_SIP), RCB_REG(D31IP));
writel(NOINT << D30IP_PIP, RCB_REG(D30IP));
writel(INTA << D29IP_E1P, RCB_REG(D29IP));
writel(INTA << D28IP_P3IP, RCB_REG(D28IP));
writel(INTA << D27IP_ZIP, RCB_REG(D27IP));
writel(INTA << D26IP_E2P, RCB_REG(D26IP));
writel(NOINT << D25IP_LIP, RCB_REG(D25IP));
writel(NOINT << D22IP_MEI1IP, RCB_REG(D22IP));
/* Device interrupt route registers */
writel(DIR_ROUTE(PIRQB, PIRQH, PIRQA, PIRQC), RCB_REG(D31IR));
writel(DIR_ROUTE(PIRQD, PIRQE, PIRQF, PIRQG), RCB_REG(D29IR));
writel(DIR_ROUTE(PIRQB, PIRQC, PIRQD, PIRQE), RCB_REG(D28IR));
writel(DIR_ROUTE(PIRQA, PIRQH, PIRQA, PIRQB), RCB_REG(D27IR));
writel(DIR_ROUTE(PIRQF, PIRQE, PIRQG, PIRQH), RCB_REG(D26IR));
writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D25IR));
writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D22IR));
/* Enable IOAPIC (generic) */
writew(0x0100, RCB_REG(OIC));
/* PCH BWG says to read back the IOAPIC enable register */
(void)readw(RCB_REG(OIC));
/* Disable unused devices (board specific) */
setbits_le32(RCB_REG(FD), PCH_DISABLE_ALWAYS);
}
int dram_init(void)
{
struct pei_data pei_data __aligned(8) = {
.pei_version = PEI_VERSION,
.mchbar = DEFAULT_MCHBAR,
.dmibar = DEFAULT_DMIBAR,
.epbar = DEFAULT_EPBAR,
.pciexbar = CONFIG_PCIE_ECAM_BASE,
.smbusbar = SMBUS_IO_BASE,
.wdbbar = 0x4000000,
.wdbsize = 0x1000,
.hpet_address = CONFIG_HPET_ADDRESS,
.rcba = DEFAULT_RCBABASE,
.pmbase = DEFAULT_PMBASE,
.gpiobase = DEFAULT_GPIOBASE,
.thermalbase = 0xfed08000,
.system_type = 0, /* 0 Mobile, 1 Desktop/Server */
.tseg_size = CONFIG_SMM_TSEG_SIZE,
.ts_addresses = { 0x00, 0x00, 0x00, 0x00 },
.ec_present = 1,
.ddr3lv_support = 1,
/*
* 0 = leave channel enabled
* 1 = disable dimm 0 on channel
* 2 = disable dimm 1 on channel
* 3 = disable dimm 0+1 on channel
*/
.dimm_channel0_disabled = 2,
.dimm_channel1_disabled = 2,
.max_ddr3_freq = 1600,
.usb_port_config = {
/*
* Empty and onboard Ports 0-7, set to un-used pin
* OC3
*/
{ 0, 3, 0x0000 }, /* P0= Empty */
{ 1, 0, 0x0040 }, /* P1= Left USB 1 (OC0) */
{ 1, 1, 0x0040 }, /* P2= Left USB 2 (OC1) */
{ 1, 3, 0x0040 }, /* P3= SDCARD (no OC) */
{ 0, 3, 0x0000 }, /* P4= Empty */
{ 1, 3, 0x0040 }, /* P5= WWAN (no OC) */
{ 0, 3, 0x0000 }, /* P6= Empty */
{ 0, 3, 0x0000 }, /* P7= Empty */
/*
* Empty and onboard Ports 8-13, set to un-used pin
* OC4
*/
{ 1, 4, 0x0040 }, /* P8= Camera (no OC) */
{ 1, 4, 0x0040 }, /* P9= Bluetooth (no OC) */
{ 0, 4, 0x0000 }, /* P10= Empty */
{ 0, 4, 0x0000 }, /* P11= Empty */
{ 0, 4, 0x0000 }, /* P12= Empty */
{ 0, 4, 0x0000 }, /* P13= Empty */
},
};
pci_dev_t dev = PCI_BDF(0, 0, 0);
int ret;
debug("Boot mode %d\n", gd->arch.pei_boot_mode);
debug("mrc_input %p\n", pei_data.mrc_input);
pei_data.boot_mode = gd->arch.pei_boot_mode;
ret = copy_spd(&pei_data);
if (!ret)
ret = sdram_initialise(&pei_data);
if (ret)
return ret;
rcba_config();
quick_ram_check();
writew(0xCAFE, MCHBAR_REG(SSKPD));
post_code(POST_DRAM);
ret = sdram_find(dev);
if (ret)
return ret;
gd->ram_size = gd->arch.meminfo.total_32bit_memory;
return 0;
}