u-boot/doc/arch/arm64.rst
Tom Rini 0017931971 Revert most of the series for adding vexpress_aemv8r support
Per a request from Andre Przywara and agreed with by Peter Hoyes, the
vexpress aemv8r support wasn't quite ready to be merged, but the
discussion had moved off list.  We should keep the first patch in the
series for now, but revert the rest.  This reverts the following
commits:

e0bd6f31ce doc: Add documentation for the Arm vexpress board configs
30e5a449e8 arm: Use armv8_switch_to_el1 env to switch to EL1
b53bbca63b vexpress64: Add BASER_FVP vexpress board variant
2f5b7b7490 armv8: Add ARMv8 MPU configuration logic
37a757e227 armv8: Ensure EL1&0 VMSA is enabled

Signed-off-by: Tom Rini <trini@konsulko.com>
2021-09-03 10:42:15 -04:00

60 lines
2.4 KiB
ReStructuredText

.. SPDX-License-Identifier: GPL-2.0+
ARM64
=====
Summary
-------
The initial arm64 U-Boot port was developed before hardware was available,
so the first supported platforms were the Foundation and Fast Model for ARMv8.
These days U-Boot runs on a variety of 64-bit capable ARM hardware, from
embedded development boards to servers.
Notes
-----
1. U-Boot can run at any exception level it is entered in, it is
recommened to enter it in EL3 if U-Boot takes some responsibilities of a
classical firmware (like initial hardware setup, CPU errata workarounds
or SMP bringup). U-Boot can be entered in EL2 when its main purpose is
that of a boot loader. It can drop to lower exception levels before
entering the OS.
2. U-Boot for arm64 is compiled with AArch64-gcc. AArch64-gcc
use rela relocation format, a tool(tools/relocate-rela) by Scott Wood
is used to encode the initial addend of rela to u-boot.bin. After running,
the U-Boot will be relocated to destination again.
3. Earlier Linux kernel versions required the FDT to be placed at a
2 MB boundary and within the same 512 MB section as the kernel image,
resulting in fdt_high to be defined specially.
Since kernel version 4.2 Linux is more relaxed about the DT location, so it
can be placed anywhere in memory.
Please reference linux/Documentation/arm64/booting.txt for detail.
4. Spin-table is used to wake up secondary processors. One location
(or per processor location) is defined to hold the kernel entry point
for secondary processors. It must be ensured that the location is
accessible and zero immediately after secondary processor
enter slave_cpu branch execution in start.S. The location address
is encoded in cpu node of DTS. Linux kernel store the entry point
of secondary processors to it and send event to wakeup secondary
processors.
Please reference linux/Documentation/arm64/booting.txt for detail.
5. Generic board is supported.
6. CONFIG_ARM64 instead of CONFIG_ARMV8 is used to distinguish aarch64 and
aarch32 specific codes.
Contributors
------------
* Tom Rini <trini@ti.com>
* Scott Wood <scottwood@freescale.com>
* York Sun <yorksun@freescale.com>
* Simon Glass <sjg@chromium.org>
* Sharma Bhupesh <bhupesh.sharma@freescale.com>
* Rob Herring <robherring2@gmail.com>
* Sergey Temerkhanov <s.temerkhanov@gmail.com>