u-boot/test/dm/rtc.c
Simon Glass 21ddac140e dm: rtc: Try to handle the localtime() race
At present the sandbox timer uses localtime() which can jump around twice
a year when daylight-saving time changes.

It would be tricky to make use of gmtime() since we still need to present
the time in local time, as seems to be required by U-Boot's RTC interface.

The problem can only happen once, so use a loop to detect it and try
again. This should be sufficient to detect either a change in the 'second'
value, or a daylight-saving change. We can assume that the latter also
incorporates a 'second' change, so there is no need to loop more than
twice.

Signed-off-by: Simon Glass <sjg@chromium.org>
2022-09-02 16:21:44 -04:00

317 lines
8.5 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2015 Google, Inc
* Written by Simon Glass <sjg@chromium.org>
*/
#include <common.h>
#include <console.h>
#include <dm.h>
#include <i2c.h>
#include <log.h>
#include <rtc.h>
#include <asm/io.h>
#include <asm/rtc.h>
#include <asm/test.h>
#include <dm/test.h>
#include <test/test.h>
#include <test/ut.h>
/* Simple RTC sanity check */
static int dm_test_rtc_base(struct unit_test_state *uts)
{
struct udevice *dev;
ut_asserteq(-ENODEV, uclass_get_device_by_seq(UCLASS_RTC, 2, &dev));
ut_assertok(uclass_get_device(UCLASS_RTC, 0, &dev));
ut_assertok(uclass_get_device(UCLASS_RTC, 1, &dev));
return 0;
}
DM_TEST(dm_test_rtc_base, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static void show_time(const char *msg, struct rtc_time *time)
{
printf("%s: %02d/%02d/%04d %02d:%02d:%02d\n", msg,
time->tm_mday, time->tm_mon, time->tm_year,
time->tm_hour, time->tm_min, time->tm_sec);
}
static int cmp_times(struct rtc_time *expect, struct rtc_time *time, bool show)
{
bool same;
same = expect->tm_sec == time->tm_sec;
same &= expect->tm_min == time->tm_min;
same &= expect->tm_hour == time->tm_hour;
same &= expect->tm_mday == time->tm_mday;
same &= expect->tm_mon == time->tm_mon;
same &= expect->tm_year == time->tm_year;
if (!same && show) {
show_time("expected", expect);
show_time("actual", time);
}
return same ? 0 : -EINVAL;
}
/* Set and get the time */
static int dm_test_rtc_set_get(struct unit_test_state *uts)
{
struct rtc_time now, time, cmp;
struct udevice *dev, *emul;
long offset, check_offset, old_offset, old_base_time;
int i;
ut_assertok(uclass_get_device(UCLASS_RTC, 0, &dev));
ut_assertok(i2c_emul_find(dev, &emul));
ut_assertnonnull(emul);
/* Get the offset, putting the RTC into manual mode */
i = 0;
do {
check_offset = sandbox_i2c_rtc_set_offset(emul, false, 0);
ut_assertok(dm_rtc_get(dev, &now));
/* Tell the RTC to go into manual mode */
old_offset = sandbox_i2c_rtc_set_offset(emul, false, 0);
/* If the times changed in that period, read it again */
} while (++i < 2 && check_offset != old_offset);
ut_asserteq(check_offset, old_offset);
old_base_time = sandbox_i2c_rtc_get_set_base_time(emul, -1);
memset(&time, '\0', sizeof(time));
time.tm_mday = 3;
time.tm_mon = 6;
time.tm_year = 2004;
time.tm_sec = 0;
time.tm_min = 18;
time.tm_hour = 18;
ut_assertok(dm_rtc_set(dev, &time));
memset(&cmp, '\0', sizeof(cmp));
ut_assertok(dm_rtc_get(dev, &cmp));
ut_assertok(cmp_times(&time, &cmp, true));
memset(&time, '\0', sizeof(time));
time.tm_mday = 31;
time.tm_mon = 8;
time.tm_year = 2004;
time.tm_sec = 0;
time.tm_min = 18;
time.tm_hour = 18;
ut_assertok(dm_rtc_set(dev, &time));
memset(&cmp, '\0', sizeof(cmp));
ut_assertok(dm_rtc_get(dev, &cmp));
ut_assertok(cmp_times(&time, &cmp, true));
/* Increment by 1 second */
offset = sandbox_i2c_rtc_set_offset(emul, false, 0);
sandbox_i2c_rtc_set_offset(emul, false, offset + 1);
memset(&cmp, '\0', sizeof(cmp));
ut_assertok(dm_rtc_get(dev, &cmp));
ut_asserteq(1, cmp.tm_sec);
/* Check against original offset */
sandbox_i2c_rtc_set_offset(emul, false, old_offset);
ut_assertok(dm_rtc_get(dev, &cmp));
ut_assertok(cmp_times(&now, &cmp, true));
/* Back to the original offset */
sandbox_i2c_rtc_set_offset(emul, false, 0);
memset(&cmp, '\0', sizeof(cmp));
ut_assertok(dm_rtc_get(dev, &cmp));
ut_assertok(cmp_times(&now, &cmp, true));
/* Increment the base time by 1 emul */
sandbox_i2c_rtc_get_set_base_time(emul, old_base_time + 1);
memset(&cmp, '\0', sizeof(cmp));
ut_assertok(dm_rtc_get(dev, &cmp));
if (now.tm_sec == 59) {
ut_asserteq(0, cmp.tm_sec);
} else {
ut_asserteq(now.tm_sec + 1, cmp.tm_sec);
}
/* return RTC to normal mode */
sandbox_i2c_rtc_set_offset(emul, true, 0);
return 0;
}
DM_TEST(dm_test_rtc_set_get, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_rtc_read_write(struct unit_test_state *uts)
{
struct rtc_time time;
struct udevice *dev, *emul;
long old_offset;
u8 buf[4], reg;
ut_assertok(uclass_get_device(UCLASS_RTC, 0, &dev));
memcpy(buf, "car", 4);
ut_assertok(dm_rtc_write(dev, REG_AUX0, buf, 4));
memset(buf, '\0', sizeof(buf));
ut_assertok(dm_rtc_read(dev, REG_AUX0, buf, 4));
ut_asserteq(memcmp(buf, "car", 4), 0);
reg = 'b';
ut_assertok(dm_rtc_write(dev, REG_AUX0, &reg, 1));
memset(buf, '\0', sizeof(buf));
ut_assertok(dm_rtc_read(dev, REG_AUX0, buf, 4));
ut_asserteq(memcmp(buf, "bar", 4), 0);
reg = 't';
ut_assertok(dm_rtc_write(dev, REG_AUX2, &reg, 1));
memset(buf, '\0', sizeof(buf));
ut_assertok(dm_rtc_read(dev, REG_AUX1, buf, 3));
ut_asserteq(memcmp(buf, "at", 3), 0);
ut_assertok(i2c_emul_find(dev, &emul));
ut_assertnonnull(emul);
old_offset = sandbox_i2c_rtc_set_offset(emul, false, 0);
ut_assertok(dm_rtc_get(dev, &time));
ut_assertok(dm_rtc_read(dev, REG_SEC, &reg, 1));
ut_asserteq(time.tm_sec, reg);
ut_assertok(dm_rtc_read(dev, REG_MDAY, &reg, 1));
ut_asserteq(time.tm_mday, reg);
sandbox_i2c_rtc_set_offset(emul, true, old_offset);
return 0;
}
DM_TEST(dm_test_rtc_read_write, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Test 'rtc list' command */
static int dm_test_rtc_cmd_list(struct unit_test_state *uts)
{
console_record_reset();
run_command("rtc list", 0);
ut_assert_nextline("RTC #0 - rtc@43");
ut_assert_nextline("RTC #1 - rtc@61");
ut_assert_console_end();
return 0;
}
DM_TEST(dm_test_rtc_cmd_list, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Test 'rtc read' and 'rtc write' commands */
static int dm_test_rtc_cmd_rw(struct unit_test_state *uts)
{
console_record_reset();
run_command("rtc dev 0", 0);
ut_assert_nextline("RTC #0 - rtc@43");
ut_assert_console_end();
run_command("rtc write 0x30 aabb", 0);
ut_assert_console_end();
run_command("rtc read 0x30 2", 0);
ut_assert_nextline("00000030: aa bb ..");
ut_assert_console_end();
run_command("rtc dev 1", 0);
ut_assert_nextline("RTC #1 - rtc@61");
ut_assert_console_end();
run_command("rtc write 0x30 ccdd", 0);
ut_assert_console_end();
run_command("rtc read 0x30 2", 0);
ut_assert_nextline("00000030: cc dd ..");
ut_assert_console_end();
/*
* Switch back to device #0, check that its aux registers
* still have the same values.
*/
run_command("rtc dev 0", 0);
ut_assert_nextline("RTC #0 - rtc@43");
ut_assert_console_end();
run_command("rtc read 0x30 2", 0);
ut_assert_nextline("00000030: aa bb ..");
ut_assert_console_end();
return 0;
}
DM_TEST(dm_test_rtc_cmd_rw, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Reset the time */
static int dm_test_rtc_reset(struct unit_test_state *uts)
{
struct rtc_time now;
struct udevice *dev, *emul;
long old_base_time, base_time;
int i;
ut_assertok(uclass_get_device(UCLASS_RTC, 0, &dev));
ut_assertok(dm_rtc_get(dev, &now));
ut_assertok(i2c_emul_find(dev, &emul));
ut_assertnonnull(emul);
i = 0;
do {
old_base_time = sandbox_i2c_rtc_get_set_base_time(emul, 0);
ut_asserteq(0, sandbox_i2c_rtc_get_set_base_time(emul, -1));
ut_assertok(dm_rtc_reset(dev));
base_time = sandbox_i2c_rtc_get_set_base_time(emul, -1);
/*
* Resetting the RTC should put the base time back to normal.
* Allow for a one-timeadjustment in case the time flips over
* while this test process is pre-empted (either by a second
* or a daylight-saving change), since reset_time() in
* i2c_rtc_emul.c reads the time from the OS.
*/
} while (++i < 2 && base_time != old_base_time);
ut_asserteq(old_base_time, base_time);
return 0;
}
DM_TEST(dm_test_rtc_reset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Check that two RTC devices can be used independently */
static int dm_test_rtc_dual(struct unit_test_state *uts)
{
struct rtc_time now1, now2, cmp;
struct udevice *dev1, *dev2;
struct udevice *emul1, *emul2;
long offset;
ut_assertok(uclass_get_device(UCLASS_RTC, 0, &dev1));
ut_assertok(dm_rtc_get(dev1, &now1));
ut_assertok(uclass_get_device(UCLASS_RTC, 1, &dev2));
ut_assertok(dm_rtc_get(dev2, &now2));
ut_assertok(i2c_emul_find(dev1, &emul1));
ut_assertnonnull(emul1);
ut_assertok(i2c_emul_find(dev2, &emul2));
ut_assertnonnull(emul2);
offset = sandbox_i2c_rtc_set_offset(emul1, false, -1);
sandbox_i2c_rtc_set_offset(emul2, false, offset + 1);
memset(&cmp, '\0', sizeof(cmp));
ut_assertok(dm_rtc_get(dev2, &cmp));
ut_asserteq(-EINVAL, cmp_times(&now1, &cmp, false));
memset(&cmp, '\0', sizeof(cmp));
ut_assertok(dm_rtc_get(dev1, &cmp));
ut_assertok(cmp_times(&now1, &cmp, true));
return 0;
}
DM_TEST(dm_test_rtc_dual, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);