u-boot/drivers/ram/aspeed/sdram_ast2600.c
Tom Rini aa6e94deab global: Move remaining CONFIG_SYS_SDRAM_* to CFG_SYS_SDRAM_*
The rest of the unmigrated CONFIG symbols in the CONFIG_SYS_SDRAM
namespace do not easily transition to Kconfig. In many cases they likely
should come from the device tree instead. Move these out of CONFIG
namespace and in to CFG namespace.

Signed-off-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
2022-12-05 16:06:07 -05:00

1180 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) ASPEED Technology Inc.
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <ram.h>
#include <regmap.h>
#include <reset.h>
#include <asm/io.h>
#include <asm/arch/scu_ast2600.h>
#include <asm/arch/sdram_ast2600.h>
#include <asm/global_data.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/bitfield.h>
#include <dt-bindings/clock/ast2600-clock.h>
#define DDR_PHY_TBL_CHG_ADDR 0xaeeddeea
#define DDR_PHY_TBL_END 0xaeededed
/**
* phyr030[18:16] - Ron PU (PHY side)
* phyr030[14:12] - Ron PD (PHY side)
* b'000 : disable
* b'001 : 240 ohm
* b'010 : 120 ohm
* b'011 : 80 ohm
* b'100 : 60 ohm
* b'101 : 48 ohm
* b'110 : 40 ohm
* b'111 : 34 ohm (default)
*/
#define PHY_RON ((0x7 << 16) | (0x7 << 12))
/**
* phyr030[10:8] - ODT configuration (PHY side)
* b'000 : ODT disabled
* b'001 : 240 ohm
* b'010 : 120 ohm
* b'011 : 80 ohm (default)
* b'100 : 60 ohm
* b'101 : 48 ohm
* b'110 : 40 ohm
* b'111 : 34 ohm
*/
#define PHY_ODT (0x3 << 8)
/**
* MR1[2:1] output driver impedance
* b'00 : 34 ohm (default)
* b'01 : 48 ohm
*/
#define DRAM_RON (0x0 << 1)
/**
* DRAM ODT - synchronous ODT mode
* RTT_WR: disable
* RTT_NOM = RTT_PARK
*
* MR1[10:8] RTT_NOM
* b'000 : RTT_NOM disable
* b'001 : 60 ohm
* b'010 : 120 ohm
* b'011 : 40 ohm
* b'100 : 240 ohm
* b'101 : 48 ohm (default)
* b'110 : 80 ohm
* b'111 : 34 ohm
*
* MR5[8:6] RTT_PARK
* b'000 : RTT_PARK disable
* b'001 : 60 ohm
* b'010 : 120 ohm
* b'011 : 40 ohm
* b'100 : 240 ohm
* b'101 : 48 ohm (default)
* b'110 : 80 ohm
* b'111 : 34 ohm
*
* MR2[11:9] RTT_WR
* b'000 : Dynamic ODT off (default)
* b'001 : 120 ohm
* b'010 : 240 ohm
* b'011 : Hi-Z
* b'100 : 80 ohm
*/
#define RTT_WR (0x0 << 9)
#define RTT_NOM (0x5 << 8)
#define RTT_PARK (0x5 << 6)
/**
* MR6[6] VrefDQ training range
* b'0 : range 1
* b'1 : range 2 (default)
*/
#define VREFDQ_RANGE_2 BIT(6)
/**
* Latency setting:
* AL = PL = 0 (hardware fixed setting)
* -> WL = AL + CWL + PL = CWL
* -> RL = AL + CL + PL = CL
*/
#define CONFIG_WL 9
#define CONFIG_RL 12
#define T_RDDATA_EN ((CONFIG_RL - 2) << 8)
#define T_PHY_WRLAT (CONFIG_WL - 2)
/* MR0 */
#define MR0_CL_12 (BIT(4) | BIT(2))
#define MR0_WR12_RTP6 BIT(9)
#define MR0_DLL_RESET BIT(8)
#define MR0_VAL (MR0_CL_12 | MR0_WR12_RTP6 | MR0_DLL_RESET)
/* MR1 */
#define MR1_VAL (0x0001 | RTT_NOM | DRAM_RON)
/* MR2 */
#define MR2_CWL_9 0
#define MR2_VAL (0x0000 | RTT_WR | MR2_CWL_9)
/* MR3 ~ MR6 */
#define MR3_VAL 0x0000
#define MR4_VAL 0x0000
#define MR5_VAL (0x0400 | RTT_PARK)
#define MR6_VAL 0x0400
/**
* The offset value applied to the DDR PHY write data eye training result
* to fine-tune the write DQ/DQS alignment
*/
#define WR_DATA_EYE_OFFSET (0x10 << 8)
#if defined(CONFIG_ASPEED_DDR4_800)
u32 ast2600_sdramphy_config[165] = {
0x1e6e0100, // start address
0x00000000, // phyr000
0x0c002062, // phyr004
0x1a7a0063, // phyr008
0x5a7a0063, // phyr00c
0x1a7a0063, // phyr010
0x1a7a0063, // phyr014
0x20000000, // phyr018
0x20000000, // phyr01c
0x20000000, // phyr020
0x20000000, // phyr024
0x00000008, // phyr028
0x00000000, // phyr02c
(PHY_RON | PHY_ODT), /* phyr030 */
0x00000000, // phyr034
0x00000000, // phyr038
0x20000000, // phyr03c
0x50506000, // phyr040
0x50505050, // phyr044
0x00002f07, // phyr048
0x00003080, // phyr04c
0x04000000, // phyr050
((MR3_VAL << 16) | MR2_VAL), /* phyr054 */
((MR0_VAL << 16) | MR1_VAL), /* phyr058 */
((MR5_VAL << 16) | MR4_VAL), /* phyr05c */
((0x0800 << 16) | MR6_VAL | VREFDQ_RANGE_2 | 0xe), /* phyr060 */
0x00000000, // phyr064
0x00180008, // phyr068
0x00e00400, // phyr06c
0x00140206, // phyr070
0x1d4c0000, // phyr074
(0x493e0100 | T_PHY_WRLAT), /* phyr078 */
0x08060404, // phyr07c
(0x90000000 | T_RDDATA_EN), /* phyr080 */
0x06420618, // phyr084
0x00001002, // phyr088
0x05701016, // phyr08c
0x10000000, // phyr090
0xaeeddeea, // change address
0x1e6e019c, // new address
0x20202020, // phyr09c
0x20202020, // phyr0a0
0x00002020, // phyr0a4
0x00002020, // phyr0a8
0x00000001, // phyr0ac
0xaeeddeea, // change address
0x1e6e01cc, // new address
0x01010101, // phyr0cc
0x01010101, // phyr0d0
0x80808080, // phyr0d4
0x80808080, // phyr0d8
0xaeeddeea, // change address
0x1e6e0288, // new address
0x80808080, // phyr188
0x80808080, // phyr18c
0x80808080, // phyr190
0x80808080, // phyr194
0xaeeddeea, // change address
0x1e6e02f8, // new address
0x90909090, // phyr1f8
0x88888888, // phyr1fc
0xaeeddeea, // change address
0x1e6e0300, // new address
0x00000000, // phyr200
0xaeeddeea, // change address
0x1e6e0194, // new address
0x80118260, // phyr094
0xaeeddeea, // change address
0x1e6e019c, // new address
0x20202020, // phyr09c
0x20202020, // phyr0a0
0x00002020, // phyr0a4
0x00000000, /* phyr0a8 */
0x00000001, // phyr0ac
0xaeeddeea, // change address
0x1e6e0318, // new address
0x09222719, // phyr218
0x00aa4403, // phyr21c
0xaeeddeea, // change address
0x1e6e0198, // new address
0x08060000, // phyr098
0xaeeddeea, // change address
0x1e6e01b0, // new address
0x00000000, // phyr0b0
0x00000000, // phyr0b4
0x00000000, // phyr0b8
0x00000000, // phyr0bc
0x00000000, // phyr0c0
0x00000000, // phyr0c4
0x000aff2c, // phyr0c8
0xaeeddeea, // change address
0x1e6e01dc, // new address
0x00080000, // phyr0dc
0x00000000, // phyr0e0
0xaa55aa55, // phyr0e4
0x55aa55aa, // phyr0e8
0xaaaa5555, // phyr0ec
0x5555aaaa, // phyr0f0
0xaa55aa55, // phyr0f4
0x55aa55aa, // phyr0f8
0xaaaa5555, // phyr0fc
0x5555aaaa, // phyr100
0xaa55aa55, // phyr104
0x55aa55aa, // phyr108
0xaaaa5555, // phyr10c
0x5555aaaa, // phyr110
0xaa55aa55, // phyr114
0x55aa55aa, // phyr118
0xaaaa5555, // phyr11c
0x5555aaaa, // phyr120
0x20202020, // phyr124
0x20202020, // phyr128
0x20202020, // phyr12c
0x20202020, // phyr130
0x20202020, // phyr134
0x20202020, // phyr138
0x20202020, // phyr13c
0x20202020, // phyr140
0x20202020, // phyr144
0x20202020, // phyr148
0x20202020, // phyr14c
0x20202020, // phyr150
0x20202020, // phyr154
0x20202020, // phyr158
0x20202020, // phyr15c
0x20202020, // phyr160
0x20202020, // phyr164
0x20202020, // phyr168
0x20202020, // phyr16c
0x20202020, // phyr170
0xaeeddeea, // change address
0x1e6e0298, // new address
0x20200000, /* phyr198 */
0x20202020, // phyr19c
0x20202020, // phyr1a0
0x20202020, // phyr1a4
0x20202020, // phyr1a8
0x20202020, // phyr1ac
0x20202020, // phyr1b0
0x20202020, // phyr1b4
0x20202020, // phyr1b8
0x20202020, // phyr1bc
0x20202020, // phyr1c0
0x20202020, // phyr1c4
0x20202020, // phyr1c8
0x20202020, // phyr1cc
0x20202020, // phyr1d0
0x20202020, // phyr1d4
0x20202020, // phyr1d8
0x20202020, // phyr1dc
0x20202020, // phyr1e0
0x20202020, // phyr1e4
0x00002020, // phyr1e8
0xaeeddeea, // change address
0x1e6e0304, // new address
(0x00000001 | WR_DATA_EYE_OFFSET), /* phyr204 */
0xaeeddeea, // change address
0x1e6e027c, // new address
0x4e400000, // phyr17c
0x59595959, // phyr180
0x40404040, // phyr184
0xaeeddeea, // change address
0x1e6e02f4, // new address
0x00000059, // phyr1f4
0xaeededed, // end
};
#else
u32 ast2600_sdramphy_config[165] = {
0x1e6e0100, // start address
0x00000000, // phyr000
0x0c002062, // phyr004
0x1a7a0063, // phyr008
0x5a7a0063, // phyr00c
0x1a7a0063, // phyr010
0x1a7a0063, // phyr014
0x20000000, // phyr018
0x20000000, // phyr01c
0x20000000, // phyr020
0x20000000, // phyr024
0x00000008, // phyr028
0x00000000, // phyr02c
(PHY_RON | PHY_ODT), /* phyr030 */
0x00000000, // phyr034
0x00000000, // phyr038
0x20000000, // phyr03c
0x50506000, // phyr040
0x50505050, // phyr044
0x00002f07, // phyr048
0x00003080, // phyr04c
0x04000000, // phyr050
((MR3_VAL << 16) | MR2_VAL), /* phyr054 */
((MR0_VAL << 16) | MR1_VAL), /* phyr058 */
((MR5_VAL << 16) | MR4_VAL), /* phyr05c */
((0x0800 << 16) | MR6_VAL | VREFDQ_RANGE_2 | 0xe), /* phyr060 */
0x00000000, // phyr064
0x00180008, // phyr068
0x00e00400, // phyr06c
0x00140206, // phyr070
0x1d4c0000, // phyr074
(0x493e0100 | T_PHY_WRLAT), /* phyr078 */
0x08060404, // phyr07c
(0x90000000 | T_RDDATA_EN), /* phyr080 */
0x06420c30, // phyr084
0x00001002, // phyr088
0x05701016, // phyr08c
0x10000000, // phyr090
0xaeeddeea, // change address
0x1e6e019c, // new address
0x20202020, // phyr09c
0x20202020, // phyr0a0
0x00002020, // phyr0a4
0x00002020, // phyr0a8
0x00000001, // phyr0ac
0xaeeddeea, // change address
0x1e6e01cc, // new address
0x01010101, // phyr0cc
0x01010101, // phyr0d0
0x80808080, // phyr0d4
0x80808080, // phyr0d8
0xaeeddeea, // change address
0x1e6e0288, // new address
0x80808080, // phyr188
0x80808080, // phyr18c
0x80808080, // phyr190
0x80808080, // phyr194
0xaeeddeea, // change address
0x1e6e02f8, // new address
0x90909090, // phyr1f8
0x88888888, // phyr1fc
0xaeeddeea, // change address
0x1e6e0300, // new address
0x00000000, // phyr200
0xaeeddeea, // change address
0x1e6e0194, // new address
0x801112e0, // phyr094
0xaeeddeea, // change address
0x1e6e019c, // new address
0x20202020, // phyr09c
0x20202020, // phyr0a0
0x00002020, // phyr0a4
0x00000000, /* phyr0a8 */
0x00000001, // phyr0ac
0xaeeddeea, // change address
0x1e6e0318, // new address
0x09222719, // phyr218
0x00aa4403, // phyr21c
0xaeeddeea, // change address
0x1e6e0198, // new address
0x08060000, // phyr098
0xaeeddeea, // change address
0x1e6e01b0, // new address
0x00000000, // phyr0b0
0x00000000, // phyr0b4
0x00000000, // phyr0b8
0x00000000, // phyr0bc
0x00000000, // phyr0c0 - ori
0x00000000, // phyr0c4
0x000aff2c, // phyr0c8
0xaeeddeea, // change address
0x1e6e01dc, // new address
0x00080000, // phyr0dc
0x00000000, // phyr0e0
0xaa55aa55, // phyr0e4
0x55aa55aa, // phyr0e8
0xaaaa5555, // phyr0ec
0x5555aaaa, // phyr0f0
0xaa55aa55, // phyr0f4
0x55aa55aa, // phyr0f8
0xaaaa5555, // phyr0fc
0x5555aaaa, // phyr100
0xaa55aa55, // phyr104
0x55aa55aa, // phyr108
0xaaaa5555, // phyr10c
0x5555aaaa, // phyr110
0xaa55aa55, // phyr114
0x55aa55aa, // phyr118
0xaaaa5555, // phyr11c
0x5555aaaa, // phyr120
0x20202020, // phyr124
0x20202020, // phyr128
0x20202020, // phyr12c
0x20202020, // phyr130
0x20202020, // phyr134
0x20202020, // phyr138
0x20202020, // phyr13c
0x20202020, // phyr140
0x20202020, // phyr144
0x20202020, // phyr148
0x20202020, // phyr14c
0x20202020, // phyr150
0x20202020, // phyr154
0x20202020, // phyr158
0x20202020, // phyr15c
0x20202020, // phyr160
0x20202020, // phyr164
0x20202020, // phyr168
0x20202020, // phyr16c
0x20202020, // phyr170
0xaeeddeea, // change address
0x1e6e0298, // new address
0x20200000, /* phyr198 */
0x20202020, // phyr19c
0x20202020, // phyr1a0
0x20202020, // phyr1a4
0x20202020, // phyr1a8
0x20202020, // phyr1ac
0x20202020, // phyr1b0
0x20202020, // phyr1b4
0x20202020, // phyr1b8
0x20202020, // phyr1bc
0x20202020, // phyr1c0
0x20202020, // phyr1c4
0x20202020, // phyr1c8
0x20202020, // phyr1cc
0x20202020, // phyr1d0
0x20202020, // phyr1d4
0x20202020, // phyr1d8
0x20202020, // phyr1dc
0x20202020, // phyr1e0
0x20202020, // phyr1e4
0x00002020, // phyr1e8
0xaeeddeea, // change address
0x1e6e0304, // new address
(0x00000001 | WR_DATA_EYE_OFFSET), /* phyr204 */
0xaeeddeea, // change address
0x1e6e027c, // new address
0x4e400000, // phyr17c
0x59595959, // phyr180
0x40404040, // phyr184
0xaeeddeea, // change address
0x1e6e02f4, // new address
0x00000059, // phyr1f4
0xaeededed, // end
};
#endif
/* MPLL configuration */
#define SCU_MPLL_FREQ_400M 0x0008405F
#define SCU_MPLL_EXT_400M 0x0000002F
#define SCU_MPLL_FREQ_333M 0x00488299
#define SCU_MPLL_EXT_333M 0x0000014C
#define SCU_MPLL_FREQ_200M 0x0078007F
#define SCU_MPLL_EXT_200M 0x0000003F
#define SCU_MPLL_FREQ_100M 0x0078003F
#define SCU_MPLL_EXT_100M 0x0000001F
#if defined(CONFIG_ASPEED_DDR4_1600)
#define SCU_MPLL_FREQ_CFG SCU_MPLL_FREQ_400M
#define SCU_MPLL_EXT_CFG SCU_MPLL_EXT_400M
#elif defined(CONFIG_ASPEED_DDR4_1333)
#define SCU_MPLL_FREQ_CFG SCU_MPLL_FREQ_333M
#define SCU_MPLL_EXT_CFG SCU_MPLL_EXT_333M
#elif defined(CONFIG_ASPEED_DDR4_800)
#define SCU_MPLL_FREQ_CFG SCU_MPLL_FREQ_200M
#define SCU_MPLL_EXT_CFG SCU_MPLL_EXT_200M
#elif defined(CONFIG_ASPEED_DDR4_400)
#define SCU_MPLL_FREQ_CFG SCU_MPLL_FREQ_100M
#define SCU_MPLL_EXT_CFG SCU_MPLL_EXT_100M
#else
#error "undefined DDR4 target rate\n"
#endif
/*
* AC timing and SDRAM mode register setting
* for real chip are derived from the model GDDR4-1600
*/
#define DDR4_MR01_MODE ((MR1_VAL << 16) | MR0_VAL)
#define DDR4_MR23_MODE ((MR3_VAL << 16) | MR2_VAL)
#define DDR4_MR45_MODE ((MR5_VAL << 16) | MR4_VAL)
#define DDR4_MR6_MODE MR6_VAL
#define DDR4_TRFC_1600 0x467299f1
#define DDR4_TRFC_1333 0x3a5f80c9
#define DDR4_TRFC_800 0x23394c78
#define DDR4_TRFC_400 0x111c263c
#if defined(CONFIG_ASPEED_DDR4_1600)
#define DDR4_TRFC DDR4_TRFC_1600
#define DDR4_PHY_TRAIN_TRFC 0xc30
#elif defined(CONFIG_ASPEED_DDR4_1333)
#define DDR4_TRFC DDR4_TRFC_1333
#define DDR4_PHY_TRAIN_TRFC 0xa25
#elif defined(CONFIG_ASPEED_DDR4_800)
#define DDR4_TRFC DDR4_TRFC_800
#define DDR4_PHY_TRAIN_TRFC 0x618
#elif defined(CONFIG_ASPEED_DDR4_400)
#define DDR4_TRFC DDR4_TRFC_400
#define DDR4_PHY_TRAIN_TRFC 0x30c
#else
#error "undefined tRFC setting"
#endif
/* supported SDRAM size */
#define SDRAM_SIZE_1KB (1024U)
#define SDRAM_SIZE_1MB (SDRAM_SIZE_1KB * SDRAM_SIZE_1KB)
#define SDRAM_MIN_SIZE (256 * SDRAM_SIZE_1MB)
#define SDRAM_MAX_SIZE (2048 * SDRAM_SIZE_1MB)
DECLARE_GLOBAL_DATA_PTR;
static const u32 ddr4_ac_timing[4] = {
0x040e0307, 0x0f4711f1, 0x0e060304, 0x00001240 };
static const u32 ddr_max_grant_params[4] = {
0x44444444, 0x44444444, 0x44444444, 0x44444444 };
struct dram_info {
struct ram_info info;
struct clk ddr_clk;
struct ast2600_sdrammc_regs *regs;
struct ast2600_scu *scu;
struct ast2600_ddr_phy *phy;
void __iomem *phy_setting;
void __iomem *phy_status;
ulong clock_rate;
};
static void ast2600_sdramphy_kick_training(struct dram_info *info)
{
u32 data;
struct ast2600_sdrammc_regs *regs = info->regs;
writel(SDRAM_PHYCTRL0_NRST, &regs->phy_ctrl[0]);
udelay(5);
writel(SDRAM_PHYCTRL0_NRST | SDRAM_PHYCTRL0_INIT, &regs->phy_ctrl[0]);
udelay(1000);
while (1) {
data = readl(&regs->phy_ctrl[0]) & SDRAM_PHYCTRL0_INIT;
if (data == 0)
break;
}
}
/**
* @brief load DDR-PHY configurations table to the PHY registers
* @param[in] p_tbl - pointer to the configuration table
* @param[in] info - pointer to the DRAM info struct
*
* There are two sets of MRS (Mode Registers) configuration in ast2600 memory
* system: one is in the SDRAM MC (memory controller) which is used in run
* time, and the other is in the DDR-PHY IP which is used during DDR-PHY
* training.
*/
static void ast2600_sdramphy_init(u32 *p_tbl, struct dram_info *info)
{
u32 reg_base = (u32)info->phy_setting;
u32 addr = p_tbl[0];
u32 data;
int i = 1;
writel(0, &info->regs->phy_ctrl[0]);
udelay(10);
while (1) {
if (addr < reg_base) {
debug("invalid DDR-PHY addr: 0x%08x\n", addr);
break;
}
data = p_tbl[i++];
if (data == DDR_PHY_TBL_END) {
break;
} else if (data == DDR_PHY_TBL_CHG_ADDR) {
addr = p_tbl[i++];
} else {
writel(data, addr);
addr += 4;
}
}
data = readl(info->phy_setting + 0x84) & ~GENMASK(16, 0);
data |= DDR4_PHY_TRAIN_TRFC;
writel(data, info->phy_setting + 0x84);
}
static int ast2600_sdramphy_check_status(struct dram_info *info)
{
u32 value, tmp;
u32 reg_base = (u32)info->phy_status;
int need_retrain = 0;
debug("\nSDRAM PHY training report:\n");
/* training status */
value = readl(reg_base + 0x00);
debug("rO_DDRPHY_reg offset 0x00 = 0x%08x\n", value);
if (value & BIT(3))
debug("\tinitial PVT calibration fail\n");
if (value & BIT(5))
debug("\truntime calibration fail\n");
/* PU & PD */
value = readl(reg_base + 0x30);
debug("rO_DDRPHY_reg offset 0x30 = 0x%08x\n", value);
debug(" PU = 0x%02x\n", value & 0xff);
debug(" PD = 0x%02x\n", (value >> 16) & 0xff);
/* read eye window */
value = readl(reg_base + 0x68);
if (0 == (value & GENMASK(7, 0)))
need_retrain = 1;
debug("rO_DDRPHY_reg offset 0x68 = 0x%08x\n", value);
debug(" rising edge of read data eye training pass window\n");
tmp = (((value & GENMASK(7, 0)) >> 0) * 100) / 255;
debug(" B0:%d%%\n", tmp);
tmp = (((value & GENMASK(15, 8)) >> 8) * 100) / 255;
debug(" B1:%d%%\n", tmp);
value = readl(reg_base + 0xC8);
debug("rO_DDRPHY_reg offset 0xC8 = 0x%08x\n", value);
debug(" falling edge of read data eye training pass window\n");
tmp = (((value & GENMASK(7, 0)) >> 0) * 100) / 255;
debug(" B0:%d%%\n", tmp);
tmp = (((value & GENMASK(15, 8)) >> 8) * 100) / 255;
debug(" B1:%d%%\n", tmp);
/* write eye window */
value = readl(reg_base + 0x7c);
if (0 == (value & GENMASK(7, 0)))
need_retrain = 1;
debug("rO_DDRPHY_reg offset 0x7C = 0x%08x\n", value);
debug(" rising edge of write data eye training pass window\n");
tmp = (((value & GENMASK(7, 0)) >> 0) * 100) / 255;
debug(" B0:%d%%\n", tmp);
tmp = (((value & GENMASK(15, 8)) >> 8) * 100) / 255;
debug(" B1:%d%%\n", tmp);
/* read Vref training result */
value = readl(reg_base + 0x88);
debug("rO_DDRPHY_reg offset 0x88 = 0x%08x\n", value);
debug(" read Vref training result\n");
tmp = (((value & GENMASK(7, 0)) >> 0) * 100) / 127;
debug(" B0:%d%%\n", tmp);
tmp = (((value & GENMASK(15, 8)) >> 8) * 100) / 127;
debug(" B1:%d%%\n", tmp);
/* write Vref training result */
value = readl(reg_base + 0x90);
debug("rO_DDRPHY_reg offset 0x90 = 0x%08x\n", value);
/* gate train */
value = readl(reg_base + 0x50);
if ((0 == (value & GENMASK(15, 0))) ||
(0 == (value & GENMASK(31, 16)))) {
need_retrain = 1;
}
debug("rO_DDRPHY_reg offset 0x50 = 0x%08x\n", value);
return need_retrain;
}
#ifndef CONFIG_ASPEED_BYPASS_SELFTEST
#define MC_TEST_PATTERN_N 8
static u32 as2600_sdrammc_test_pattern[MC_TEST_PATTERN_N] = {
0xcc33cc33, 0xff00ff00, 0xaa55aa55, 0x88778877,
0x92cc4d6e, 0x543d3cde, 0xf1e843c7, 0x7c61d253 };
#define TIMEOUT_DRAM 5000000
int ast2600_sdrammc_dg_test(struct dram_info *info, unsigned int datagen, u32 mode)
{
unsigned int data;
unsigned int timeout = 0;
struct ast2600_sdrammc_regs *regs = info->regs;
writel(0, &regs->ecc_test_ctrl);
if (mode == 0)
writel(0x00000085 | (datagen << 3), &regs->ecc_test_ctrl);
else
writel(0x000000C1 | (datagen << 3), &regs->ecc_test_ctrl);
do {
data = readl(&regs->ecc_test_ctrl) & GENMASK(13, 12);
if (data & BIT(13))
return 0;
if (++timeout > TIMEOUT_DRAM) {
debug("Timeout!!\n");
writel(0, &regs->ecc_test_ctrl);
return -1;
}
} while (!data);
writel(0, &regs->ecc_test_ctrl);
return 0;
}
int ast2600_sdrammc_cbr_test(struct dram_info *info)
{
u32 i;
struct ast2600_sdrammc_regs *regs = info->regs;
clrsetbits_le32(&regs->test_addr, GENMASK(30, 4), 0x7ffff0);
/* single */
for (i = 0; i < 8; i++)
if (ast2600_sdrammc_dg_test(info, i, 0))
return -1;
/* burst */
for (i = 0; i < 8; i++)
if (ast2600_sdrammc_dg_test(info, i, i))
return -1;
return 0;
}
static int ast2600_sdrammc_test(struct dram_info *info)
{
struct ast2600_sdrammc_regs *regs = info->regs;
u32 pass_cnt = 0;
u32 fail_cnt = 0;
u32 target_cnt = 2;
u32 test_cnt = 0;
u32 pattern;
u32 i = 0;
bool finish = false;
debug("sdram mc test:\n");
while (!finish) {
pattern = as2600_sdrammc_test_pattern[i++];
i = i % MC_TEST_PATTERN_N;
debug(" pattern = %08X : ", pattern);
writel(pattern, &regs->test_init_val);
if (ast2600_sdrammc_cbr_test(info)) {
debug("fail\n");
fail_cnt++;
} else {
debug("pass\n");
pass_cnt++;
}
if (++test_cnt == target_cnt)
finish = true;
}
debug("statistics: pass/fail/total:%d/%d/%d\n", pass_cnt, fail_cnt,
target_cnt);
return fail_cnt;
}
#endif
/*
* scu500[14:13]
* 2b'00: VGA memory size = 16MB
* 2b'01: VGA memory size = 16MB
* 2b'10: VGA memory size = 32MB
* 2b'11: VGA memory size = 64MB
*
* mcr04[3:2]
* 2b'00: VGA memory size = 8MB
* 2b'01: VGA memory size = 16MB
* 2b'10: VGA memory size = 32MB
* 2b'11: VGA memory size = 64MB
*/
static size_t ast2600_sdrammc_get_vga_mem_size(struct dram_info *info)
{
u32 vga_hwconf;
size_t vga_mem_size_base = 8 * 1024 * 1024;
vga_hwconf =
(readl(&info->scu->hwstrap1) & SCU_HWSTRAP1_VGA_MEM_MASK) >>
SCU_HWSTRAP1_VGA_MEM_SHIFT;
if (vga_hwconf == 0) {
vga_hwconf = 1;
writel(vga_hwconf << SCU_HWSTRAP1_VGA_MEM_SHIFT,
&info->scu->hwstrap1);
}
clrsetbits_le32(&info->regs->config, SDRAM_CONF_VGA_SIZE_MASK,
((vga_hwconf << SDRAM_CONF_VGA_SIZE_SHIFT) &
SDRAM_CONF_VGA_SIZE_MASK));
/* no need to reserve VGA memory if efuse[VGA disable] is set */
if (readl(&info->scu->efuse) & SCU_EFUSE_DIS_VGA)
return 0;
return vga_mem_size_base << vga_hwconf;
}
/*
* Find out RAM size and save it in dram_info
*
* The procedure is taken from Aspeed SDK
*/
static void ast2600_sdrammc_calc_size(struct dram_info *info)
{
/* The controller supports 256/512/1024/2048 MB ram */
size_t ram_size = SDRAM_MIN_SIZE;
const int write_test_offset = 0x100000;
u32 test_pattern = 0xdeadbeef;
u32 cap_param = SDRAM_CONF_CAP_2048M;
u32 refresh_timing_param = DDR4_TRFC;
const u32 write_addr_base = CFG_SYS_SDRAM_BASE + write_test_offset;
for (ram_size = SDRAM_MAX_SIZE; ram_size > SDRAM_MIN_SIZE;
ram_size >>= 1) {
writel(test_pattern, write_addr_base + (ram_size >> 1));
test_pattern = (test_pattern >> 4) | (test_pattern << 28);
}
/* One last write to overwrite all wrapped values */
writel(test_pattern, write_addr_base);
/* Reset the pattern and see which value was really written */
test_pattern = 0xdeadbeef;
for (ram_size = SDRAM_MAX_SIZE; ram_size > SDRAM_MIN_SIZE;
ram_size >>= 1) {
if (readl(write_addr_base + (ram_size >> 1)) == test_pattern)
break;
--cap_param;
refresh_timing_param >>= 8;
test_pattern = (test_pattern >> 4) | (test_pattern << 28);
}
clrsetbits_le32(&info->regs->ac_timing[1],
(SDRAM_AC_TRFC_MASK << SDRAM_AC_TRFC_SHIFT),
((refresh_timing_param & SDRAM_AC_TRFC_MASK)
<< SDRAM_AC_TRFC_SHIFT));
info->info.base = CFG_SYS_SDRAM_BASE;
info->info.size = ram_size - ast2600_sdrammc_get_vga_mem_size(info);
clrsetbits_le32(&info->regs->config, SDRAM_CONF_CAP_MASK,
((cap_param << SDRAM_CONF_CAP_SHIFT) & SDRAM_CONF_CAP_MASK));
}
static int ast2600_sdrammc_init_ddr4(struct dram_info *info)
{
const u32 power_ctrl = MCR34_CKE_EN | MCR34_AUTOPWRDN_EN |
MCR34_MREQ_BYPASS_DIS | MCR34_RESETN_DIS |
MCR34_ODT_EN | MCR34_ODT_AUTO_ON |
(0x1 << MCR34_ODT_EXT_SHIFT);
/* init SDRAM-PHY only on real chip */
ast2600_sdramphy_init(ast2600_sdramphy_config, info);
writel((MCR34_CKE_EN | MCR34_MREQI_DIS | MCR34_RESETN_DIS),
&info->regs->power_ctrl);
udelay(5);
ast2600_sdramphy_kick_training(info);
udelay(500);
writel(SDRAM_RESET_DLL_ZQCL_EN, &info->regs->refresh_timing);
writel(MCR30_SET_MR(3), &info->regs->mode_setting_control);
writel(MCR30_SET_MR(6), &info->regs->mode_setting_control);
writel(MCR30_SET_MR(5), &info->regs->mode_setting_control);
writel(MCR30_SET_MR(4), &info->regs->mode_setting_control);
writel(MCR30_SET_MR(2), &info->regs->mode_setting_control);
writel(MCR30_SET_MR(1), &info->regs->mode_setting_control);
writel(MCR30_SET_MR(0) | MCR30_RESET_DLL_DELAY_EN,
&info->regs->mode_setting_control);
writel(SDRAM_REFRESH_EN | SDRAM_RESET_DLL_ZQCL_EN |
(0x5f << SDRAM_REFRESH_PERIOD_SHIFT),
&info->regs->refresh_timing);
/* wait self-refresh idle */
while (readl(&info->regs->power_ctrl) &
MCR34_SELF_REFRESH_STATUS_MASK)
;
writel(SDRAM_REFRESH_EN | SDRAM_LOW_PRI_REFRESH_EN |
SDRAM_REFRESH_ZQCS_EN |
(0x5f << SDRAM_REFRESH_PERIOD_SHIFT) |
(0x42aa << SDRAM_REFRESH_PERIOD_ZQCS_SHIFT),
&info->regs->refresh_timing);
writel(power_ctrl, &info->regs->power_ctrl);
udelay(500);
return 0;
}
static void ast2600_sdrammc_unlock(struct dram_info *info)
{
writel(SDRAM_UNLOCK_KEY, &info->regs->protection_key);
while (!readl(&info->regs->protection_key))
;
}
static void ast2600_sdrammc_lock(struct dram_info *info)
{
writel(~SDRAM_UNLOCK_KEY, &info->regs->protection_key);
while (readl(&info->regs->protection_key))
;
}
static void ast2600_sdrammc_common_init(struct ast2600_sdrammc_regs *regs)
{
int i;
u32 reg;
writel(MCR34_MREQI_DIS | MCR34_RESETN_DIS, &regs->power_ctrl);
writel(SDRAM_VIDEO_UNLOCK_KEY, &regs->gm_protection_key);
writel(0x10 << MCR38_RW_MAX_GRANT_CNT_RQ_SHIFT,
&regs->arbitration_ctrl);
writel(0xFFBBFFF4, &regs->req_limit_mask);
for (i = 0; i < ARRAY_SIZE(ddr_max_grant_params); ++i)
writel(ddr_max_grant_params[i], &regs->max_grant_len[i]);
writel(MCR50_RESET_ALL_INTR, &regs->intr_ctrl);
writel(0x07FFFFFF, &regs->ecc_range_ctrl);
writel(0, &regs->ecc_test_ctrl);
writel(0x80000001, &regs->test_addr);
writel(0, &regs->test_fail_dq_bit);
writel(0, &regs->test_init_val);
writel(0xFFFFFFFF, &regs->req_input_ctrl);
writel(0, &regs->req_high_pri_ctrl);
udelay(600);
#ifdef CONFIG_ASPEED_DDR4_DUALX8
writel(0x37, &regs->config);
#else
writel(0x17, &regs->config);
#endif
/* load controller setting */
for (i = 0; i < ARRAY_SIZE(ddr4_ac_timing); ++i)
writel(ddr4_ac_timing[i], &regs->ac_timing[i]);
/* update CL and WL */
reg = readl(&regs->ac_timing[1]);
reg &= ~(SDRAM_WL_SETTING | SDRAM_CL_SETTING);
reg |= FIELD_PREP(SDRAM_WL_SETTING, CONFIG_WL - 5) |
FIELD_PREP(SDRAM_CL_SETTING, CONFIG_RL - 5);
writel(reg, &regs->ac_timing[1]);
writel(DDR4_MR01_MODE, &regs->mr01_mode_setting);
writel(DDR4_MR23_MODE, &regs->mr23_mode_setting);
writel(DDR4_MR45_MODE, &regs->mr45_mode_setting);
writel(DDR4_MR6_MODE, &regs->mr6_mode_setting);
}
/*
* Update size info according to the ECC HW setting
*
* Assume SDRAM has been initialized by SPL or the host. To get the RAM size, we
* don't need to calculate the ECC size again but read from MCR04 and derive the
* size from its value.
*/
static void ast2600_sdrammc_update_size(struct dram_info *info)
{
struct ast2600_sdrammc_regs *regs = info->regs;
u32 conf = readl(&regs->config);
u32 cap_param;
size_t ram_size = SDRAM_MAX_SIZE;
size_t hw_size;
cap_param = (conf & SDRAM_CONF_CAP_MASK) >> SDRAM_CONF_CAP_SHIFT;
switch (cap_param) {
case SDRAM_CONF_CAP_2048M:
ram_size = 2048 * SDRAM_SIZE_1MB;
break;
case SDRAM_CONF_CAP_1024M:
ram_size = 1024 * SDRAM_SIZE_1MB;
break;
case SDRAM_CONF_CAP_512M:
ram_size = 512 * SDRAM_SIZE_1MB;
break;
case SDRAM_CONF_CAP_256M:
ram_size = 256 * SDRAM_SIZE_1MB;
break;
}
info->info.base = CFG_SYS_SDRAM_BASE;
info->info.size = ram_size - ast2600_sdrammc_get_vga_mem_size(info);
if (0 == (conf & SDRAM_CONF_ECC_SETUP))
return;
hw_size = readl(&regs->ecc_range_ctrl) & SDRAM_ECC_RANGE_ADDR_MASK;
hw_size += (1 << SDRAM_ECC_RANGE_ADDR_SHIFT);
info->info.size = hw_size;
}
#ifdef CONFIG_ASPEED_ECC
static void ast2600_sdrammc_ecc_enable(struct dram_info *info)
{
struct ast2600_sdrammc_regs *regs = info->regs;
size_t conf_size;
u32 reg;
conf_size = CONFIG_ASPEED_ECC_SIZE * SDRAM_SIZE_1MB;
if (conf_size > info->info.size) {
printf("warning: ECC configured %dMB but actual size is %dMB\n",
CONFIG_ASPEED_ECC_SIZE,
info->info.size / SDRAM_SIZE_1MB);
conf_size = info->info.size;
} else if (conf_size == 0) {
conf_size = info->info.size;
}
info->info.size = (((conf_size / 9) * 8) >> 20) << 20;
writel(((info->info.size >> 20) - 1) << 20, &regs->ecc_range_ctrl);
reg = readl(&regs->config) | SDRAM_CONF_ECC_SETUP;
writel(reg, &regs->config);
writel(0, &regs->test_init_val);
writel(0x80000001, &regs->test_addr);
writel(0x221, &regs->ecc_test_ctrl);
while (0 == (readl(&regs->ecc_test_ctrl) & BIT(12)))
;
writel(0, &regs->ecc_test_ctrl);
writel(BIT(31), &regs->intr_ctrl);
writel(0, &regs->intr_ctrl);
}
#endif
static int ast2600_sdrammc_probe(struct udevice *dev)
{
int ret;
u32 reg;
struct dram_info *priv = (struct dram_info *)dev_get_priv(dev);
struct ast2600_sdrammc_regs *regs = priv->regs;
struct udevice *clk_dev;
/* find SCU base address from clock device */
ret = uclass_get_device_by_driver(UCLASS_CLK,
DM_DRIVER_GET(aspeed_ast2600_scu), &clk_dev);
if (ret) {
debug("clock device not defined\n");
return ret;
}
priv->scu = devfdt_get_addr_ptr(clk_dev);
if (IS_ERR(priv->scu)) {
debug("%s(): can't get SCU\n", __func__);
return PTR_ERR(priv->scu);
}
if (readl(&priv->scu->dram_hdshk) & SCU_DRAM_HDSHK_RDY) {
printf("already initialized, ");
ast2600_sdrammc_update_size(priv);
return 0;
}
reg = readl(&priv->scu->mpll);
reg &= ~(SCU_PLL_BYPASS | SCU_PLL_DIV_MASK |
SCU_PLL_DENUM_MASK | SCU_PLL_NUM_MASK);
reg |= (SCU_PLL_RST | SCU_PLL_OFF | SCU_MPLL_FREQ_CFG);
writel(reg, &priv->scu->mpll);
writel(SCU_MPLL_EXT_CFG, &priv->scu->mpll_ext);
udelay(100);
reg &= ~(SCU_PLL_RST | SCU_PLL_OFF);
writel(reg, &priv->scu->mpll);
while ((readl(&priv->scu->mpll_ext) & BIT(31)) == 0)
;
ast2600_sdrammc_unlock(priv);
ast2600_sdrammc_common_init(regs);
L_ast2600_sdramphy_train:
ast2600_sdrammc_init_ddr4(priv);
if (ast2600_sdramphy_check_status(priv) != 0) {
printf("DDR4 PHY training fail, retrain\n");
goto L_ast2600_sdramphy_train;
}
ast2600_sdrammc_calc_size(priv);
#ifndef CONFIG_ASPEED_BYPASS_SELFTEST
if (ast2600_sdrammc_test(priv) != 0) {
printf("%s: DDR4 init fail\n", __func__);
return -EINVAL;
}
#endif
#ifdef CONFIG_ASPEED_ECC
ast2600_sdrammc_ecc_enable(priv);
#endif
writel(readl(&priv->scu->dram_hdshk) | SCU_DRAM_HDSHK_RDY,
&priv->scu->dram_hdshk);
clrbits_le32(&regs->intr_ctrl, MCR50_RESET_ALL_INTR);
ast2600_sdrammc_lock(priv);
return 0;
}
static int ast2600_sdrammc_of_to_plat(struct udevice *dev)
{
struct dram_info *priv = dev_get_priv(dev);
priv->regs = (void *)(uintptr_t)devfdt_get_addr_index(dev, 0);
priv->phy_setting = (void *)(uintptr_t)devfdt_get_addr_index(dev, 1);
priv->phy_status = (void *)(uintptr_t)devfdt_get_addr_index(dev, 2);
priv->clock_rate = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
"clock-frequency", 0);
if (!priv->clock_rate) {
debug("DDR Clock Rate not defined\n");
return -EINVAL;
}
return 0;
}
static int ast2600_sdrammc_get_info(struct udevice *dev, struct ram_info *info)
{
struct dram_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops ast2600_sdrammc_ops = {
.get_info = ast2600_sdrammc_get_info,
};
static const struct udevice_id ast2600_sdrammc_ids[] = {
{ .compatible = "aspeed,ast2600-sdrammc" },
{ }
};
U_BOOT_DRIVER(sdrammc_ast2600) = {
.name = "aspeed_ast2600_sdrammc",
.id = UCLASS_RAM,
.of_match = ast2600_sdrammc_ids,
.ops = &ast2600_sdrammc_ops,
.of_to_plat = ast2600_sdrammc_of_to_plat,
.probe = ast2600_sdrammc_probe,
.priv_auto = sizeof(struct dram_info),
};