u-boot/drivers/i2c/mvtwsi.c
Tom Rini 35661f86eb global: Migrate CONFIG_I2C_MVTWSI_BASE1 to CFG
Perform a simple rename of CONFIG_I2C_MVTWSI_BASE1 to CFG_I2C_MVTWSI_BASE1

Signed-off-by: Tom Rini <trini@konsulko.com>
2022-12-23 10:10:40 -05:00

919 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Driver for the TWSI (i2c) controller found on the Marvell
* orion5x and kirkwood SoC families.
*
* Author: Albert Aribaud <albert.u.boot@aribaud.net>
* Copyright (c) 2010 Albert Aribaud.
*/
#include <common.h>
#include <i2c.h>
#include <log.h>
#include <asm/global_data.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <linux/bitops.h>
#include <linux/compat.h>
#if CONFIG_IS_ENABLED(DM_I2C)
#include <clk.h>
#include <dm.h>
#include <reset.h>
#endif
DECLARE_GLOBAL_DATA_PTR;
/*
* Include a file that will provide CONFIG_I2C_MVTWSI_BASE*, and possibly other
* settings
*/
#if !CONFIG_IS_ENABLED(DM_I2C)
#if defined(CONFIG_ARCH_ORION5X)
#include <asm/arch/orion5x.h>
#elif (defined(CONFIG_ARCH_KIRKWOOD) || defined(CONFIG_ARCH_MVEBU))
#include <asm/arch/soc.h>
#elif defined(CONFIG_ARCH_SUNXI)
#include <asm/arch/i2c.h>
#else
#error Driver mvtwsi not supported by SoC or board
#endif
#endif /* CONFIG_DM_I2C */
/*
* On SUNXI, we get CFG_SYS_TCLK from this include, so we want to
* always have it.
*/
#if CONFIG_IS_ENABLED(DM_I2C) && defined(CONFIG_ARCH_SUNXI)
#include <asm/arch/i2c.h>
#endif
/*
* TWSI register structure
*/
#ifdef CONFIG_ARCH_SUNXI
struct mvtwsi_registers {
u32 slave_address;
u32 xtnd_slave_addr;
u32 data;
u32 control;
u32 status;
u32 baudrate;
u32 soft_reset;
u32 debug; /* Dummy field for build compatibility with mvebu */
};
#else
struct mvtwsi_registers {
u32 slave_address;
u32 data;
u32 control;
union {
u32 status; /* When reading */
u32 baudrate; /* When writing */
};
u32 xtnd_slave_addr;
u32 reserved0[2];
u32 soft_reset;
u32 reserved1[27];
u32 debug;
};
#endif
#if CONFIG_IS_ENABLED(DM_I2C)
struct mvtwsi_i2c_dev {
/* TWSI Register base for the device */
struct mvtwsi_registers *base;
/* Number of the device (determined from cell-index property) */
int index;
/* The I2C slave address for the device */
u8 slaveadd;
/* The configured I2C speed in Hz */
uint speed;
/* The current length of a clock period (depending on speed) */
uint tick;
};
#endif /* CONFIG_DM_I2C */
/*
* enum mvtwsi_ctrl_register_fields - Bit masks for flags in the control
* register
*/
enum mvtwsi_ctrl_register_fields {
/* Acknowledge bit */
MVTWSI_CONTROL_ACK = 0x00000004,
/* Interrupt flag */
MVTWSI_CONTROL_IFLG = 0x00000008,
/* Stop bit */
MVTWSI_CONTROL_STOP = 0x00000010,
/* Start bit */
MVTWSI_CONTROL_START = 0x00000020,
/* I2C enable */
MVTWSI_CONTROL_TWSIEN = 0x00000040,
/* Interrupt enable */
MVTWSI_CONTROL_INTEN = 0x00000080,
};
/*
* On sun6i and newer, IFLG is a write-clear bit, which is cleared by writing 1;
* on other platforms, it is a normal r/w bit, which is cleared by writing 0.
*/
#if defined(CONFIG_SUNXI_GEN_SUN6I) || defined(CONFIG_SUN50I_GEN_H6)
#define MVTWSI_CONTROL_CLEAR_IFLG 0x00000008
#else
#define MVTWSI_CONTROL_CLEAR_IFLG 0x00000000
#endif
/*
* enum mvstwsi_status_values - Possible values of I2C controller's status
* register
*
* Only those statuses expected in normal master operation on
* non-10-bit-address devices are specified.
*
* Every status that's unexpected during normal operation (bus errors,
* arbitration losses, missing ACKs...) is passed back to the caller as an error
* code.
*/
enum mvstwsi_status_values {
/* START condition transmitted */
MVTWSI_STATUS_START = 0x08,
/* Repeated START condition transmitted */
MVTWSI_STATUS_REPEATED_START = 0x10,
/* Address + write bit transmitted, ACK received */
MVTWSI_STATUS_ADDR_W_ACK = 0x18,
/* Data transmitted, ACK received */
MVTWSI_STATUS_DATA_W_ACK = 0x28,
/* Address + read bit transmitted, ACK received */
MVTWSI_STATUS_ADDR_R_ACK = 0x40,
/* Address + read bit transmitted, ACK not received */
MVTWSI_STATUS_ADDR_R_NAK = 0x48,
/* Data received, ACK transmitted */
MVTWSI_STATUS_DATA_R_ACK = 0x50,
/* Data received, ACK not transmitted */
MVTWSI_STATUS_DATA_R_NAK = 0x58,
/* No relevant status */
MVTWSI_STATUS_IDLE = 0xF8,
};
/*
* enum mvstwsi_ack_flags - Determine whether a read byte should be
* acknowledged or not.
*/
enum mvtwsi_ack_flags {
/* Send NAK after received byte */
MVTWSI_READ_NAK = 0,
/* Send ACK after received byte */
MVTWSI_READ_ACK = 1,
};
/*
* calc_tick() - Calculate the duration of a clock cycle from the I2C speed
*
* @speed: The speed in Hz to calculate the clock cycle duration for.
* Return: The duration of a clock cycle in ns.
*/
inline uint calc_tick(uint speed)
{
/* One tick = the duration of a period at the specified speed in ns (we
* add 100 ns to be on the safe side) */
return (1000000000u / speed) + 100;
}
#if !CONFIG_IS_ENABLED(DM_I2C)
/*
* twsi_get_base() - Get controller register base for specified adapter
*
* @adap: Adapter to get the register base for.
* Return: Register base for the specified adapter.
*/
static struct mvtwsi_registers *twsi_get_base(struct i2c_adapter *adap)
{
switch (adap->hwadapnr) {
#ifdef CFG_I2C_MVTWSI_BASE0
case 0:
return (struct mvtwsi_registers *)CFG_I2C_MVTWSI_BASE0;
#endif
#ifdef CFG_I2C_MVTWSI_BASE1
case 1:
return (struct mvtwsi_registers *)CFG_I2C_MVTWSI_BASE1;
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE2
case 2:
return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE2;
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE3
case 3:
return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE3;
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE4
case 4:
return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE4;
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE5
case 5:
return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE5;
#endif
default:
printf("Missing mvtwsi controller %d base\n", adap->hwadapnr);
break;
}
return NULL;
}
#endif
/*
* enum mvtwsi_error_class - types of I2C errors
*/
enum mvtwsi_error_class {
/* The controller returned a different status than expected */
MVTWSI_ERROR_WRONG_STATUS = 0x01,
/* The controller timed out */
MVTWSI_ERROR_TIMEOUT = 0x02,
};
/*
* mvtwsi_error() - Build I2C return code from error information
*
* For debugging purposes, this function packs some information of an occurred
* error into a return code. These error codes are returned from I2C API
* functions (i2c_{read,write}, dm_i2c_{read,write}, etc.).
*
* @ec: The error class of the error (enum mvtwsi_error_class).
* @lc: The last value of the control register.
* @ls: The last value of the status register.
* @es: The expected value of the status register.
* Return: The generated error code.
*/
inline uint mvtwsi_error(uint ec, uint lc, uint ls, uint es)
{
return ((ec << 24) & 0xFF000000)
| ((lc << 16) & 0x00FF0000)
| ((ls << 8) & 0x0000FF00)
| (es & 0xFF);
}
/*
* twsi_wait() - Wait for I2C bus interrupt flag and check status, or time out.
*
* Return: Zero if status is as expected, or a non-zero code if either a time
* out occurred, or the status was not the expected one.
*/
static int twsi_wait(struct mvtwsi_registers *twsi, int expected_status,
uint tick)
{
int control, status;
int timeout = 1000;
do {
control = readl(&twsi->control);
if (control & MVTWSI_CONTROL_IFLG) {
/*
* On Armada 38x it seems that the controller works as
* if it first set the MVTWSI_CONTROL_IFLAG in the
* control register and only after that it changed the
* status register.
* This sometimes caused weird bugs which only appeared
* on selected I2C speeds and even then only sometimes.
* We therefore add here a simple ndealy(100), which
* seems to fix this weird bug.
*/
ndelay(100);
status = readl(&twsi->status);
if (status == expected_status)
return 0;
else
return mvtwsi_error(
MVTWSI_ERROR_WRONG_STATUS,
control, status, expected_status);
}
ndelay(tick); /* One clock cycle */
} while (timeout--);
status = readl(&twsi->status);
return mvtwsi_error(MVTWSI_ERROR_TIMEOUT, control, status,
expected_status);
}
/*
* twsi_start() - Assert a START condition on the bus.
*
* This function is used in both single I2C transactions and inside
* back-to-back transactions (repeated starts).
*
* @twsi: The MVTWSI register structure to use.
* @expected_status: The I2C bus status expected to be asserted after the
* operation completion.
* @tick: The duration of a clock cycle at the current I2C speed.
* Return: Zero if status is as expected, or a non-zero code if either a time
* out occurred or the status was not the expected one.
*/
static int twsi_start(struct mvtwsi_registers *twsi, int expected_status,
uint tick)
{
/* Assert START */
writel(MVTWSI_CONTROL_TWSIEN | MVTWSI_CONTROL_START |
MVTWSI_CONTROL_CLEAR_IFLG, &twsi->control);
/* Wait for controller to process START */
return twsi_wait(twsi, expected_status, tick);
}
/*
* twsi_send() - Send a byte on the I2C bus.
*
* The byte may be part of an address byte or data.
*
* @twsi: The MVTWSI register structure to use.
* @byte: The byte to send.
* @expected_status: The I2C bus status expected to be asserted after the
* operation completion.
* @tick: The duration of a clock cycle at the current I2C speed.
* Return: Zero if status is as expected, or a non-zero code if either a time
* out occurred or the status was not the expected one.
*/
static int twsi_send(struct mvtwsi_registers *twsi, u8 byte,
int expected_status, uint tick)
{
/* Write byte to data register for sending */
writel(byte, &twsi->data);
/* Clear any pending interrupt -- that will cause sending */
writel(MVTWSI_CONTROL_TWSIEN | MVTWSI_CONTROL_CLEAR_IFLG,
&twsi->control);
/* Wait for controller to receive byte, and check ACK */
return twsi_wait(twsi, expected_status, tick);
}
/*
* twsi_recv() - Receive a byte on the I2C bus.
*
* The static variable mvtwsi_control_flags controls whether we ack or nak.
*
* @twsi: The MVTWSI register structure to use.
* @byte: The byte to send.
* @ack_flag: Flag that determines whether the received byte should
* be acknowledged by the controller or not (sent ACK/NAK).
* @tick: The duration of a clock cycle at the current I2C speed.
* Return: Zero if status is as expected, or a non-zero code if either a time
* out occurred or the status was not the expected one.
*/
static int twsi_recv(struct mvtwsi_registers *twsi, u8 *byte, int ack_flag,
uint tick)
{
int expected_status, status, control;
/* Compute expected status based on passed ACK flag */
expected_status = ack_flag ? MVTWSI_STATUS_DATA_R_ACK :
MVTWSI_STATUS_DATA_R_NAK;
/* Acknowledge *previous state*, and launch receive */
control = MVTWSI_CONTROL_TWSIEN;
control |= ack_flag == MVTWSI_READ_ACK ? MVTWSI_CONTROL_ACK : 0;
writel(control | MVTWSI_CONTROL_CLEAR_IFLG, &twsi->control);
/* Wait for controller to receive byte, and assert ACK or NAK */
status = twsi_wait(twsi, expected_status, tick);
/* If we did receive the expected byte, store it */
if (status == 0)
*byte = readl(&twsi->data);
return status;
}
/*
* twsi_stop() - Assert a STOP condition on the bus.
*
* This function is also used to force the bus back to idle state (SDA =
* SCL = 1).
*
* @twsi: The MVTWSI register structure to use.
* @tick: The duration of a clock cycle at the current I2C speed.
* Return: Zero if the operation succeeded, or a non-zero code if a time out
* occurred.
*/
static int twsi_stop(struct mvtwsi_registers *twsi, uint tick)
{
int control, stop_status;
int status = 0;
int timeout = 1000;
/* Assert STOP */
control = MVTWSI_CONTROL_TWSIEN | MVTWSI_CONTROL_STOP;
writel(control | MVTWSI_CONTROL_CLEAR_IFLG, &twsi->control);
/* Wait for IDLE; IFLG won't rise, so we can't use twsi_wait() */
do {
stop_status = readl(&twsi->status);
if (stop_status == MVTWSI_STATUS_IDLE)
break;
ndelay(tick); /* One clock cycle */
} while (timeout--);
control = readl(&twsi->control);
if (stop_status != MVTWSI_STATUS_IDLE)
status = mvtwsi_error(MVTWSI_ERROR_TIMEOUT,
control, status, MVTWSI_STATUS_IDLE);
return status;
}
/*
* twsi_calc_freq() - Compute I2C frequency depending on m and n parameters.
*
* @n: Parameter 'n' for the frequency calculation algorithm.
* @m: Parameter 'm' for the frequency calculation algorithm.
* Return: The I2C frequency corresponding to the passed m and n parameters.
*/
static uint twsi_calc_freq(const int n, const int m)
{
#ifdef CONFIG_ARCH_SUNXI
return CFG_SYS_TCLK / (10 * (m + 1) * (1 << n));
#else
return CFG_SYS_TCLK / (10 * (m + 1) * (2 << n));
#endif
}
/*
* twsi_reset() - Reset the I2C controller.
*
* Resetting the controller also resets the baud rate and slave address, hence
* they must be re-established after the reset.
*
* @twsi: The MVTWSI register structure to use.
*/
static void twsi_reset(struct mvtwsi_registers *twsi)
{
/* Reset controller */
writel(0, &twsi->soft_reset);
/* Wait 2 ms -- this is what the Marvell LSP does */
udelay(20000);
}
/*
* __twsi_i2c_set_bus_speed() - Set the speed of the I2C controller.
*
* This function sets baud rate to the highest possible value that does not
* exceed the requested rate.
*
* @twsi: The MVTWSI register structure to use.
* @requested_speed: The desired frequency the controller should run at
* in Hz.
* Return: The actual frequency the controller was configured to.
*/
static uint __twsi_i2c_set_bus_speed(struct mvtwsi_registers *twsi,
uint requested_speed)
{
uint tmp_speed, highest_speed, n, m;
uint baud = 0x44; /* Baud rate after controller reset */
highest_speed = 0;
/* Successively try m, n combinations, and use the combination
* resulting in the largest speed that's not above the requested
* speed */
for (n = 0; n < 8; n++) {
for (m = 0; m < 16; m++) {
tmp_speed = twsi_calc_freq(n, m);
if ((tmp_speed <= requested_speed) &&
(tmp_speed > highest_speed)) {
highest_speed = tmp_speed;
baud = (m << 3) | n;
}
}
}
writel(baud, &twsi->baudrate);
/* Wait for controller for one tick */
#if CONFIG_IS_ENABLED(DM_I2C)
ndelay(calc_tick(highest_speed));
#else
ndelay(10000);
#endif
return highest_speed;
}
/*
* __twsi_i2c_init() - Initialize the I2C controller.
*
* @twsi: The MVTWSI register structure to use.
* @speed: The initial frequency the controller should run at
* in Hz.
* @slaveadd: The I2C address to be set for the I2C master.
* @actual_speed: A output parameter that receives the actual frequency
* in Hz the controller was set to by the function.
* Return: Zero if the operation succeeded, or a non-zero code if a time out
* occurred.
*/
static void __twsi_i2c_init(struct mvtwsi_registers *twsi, int speed,
int slaveadd, uint *actual_speed)
{
uint tmp_speed;
/* Reset controller */
twsi_reset(twsi);
/* Set speed */
tmp_speed = __twsi_i2c_set_bus_speed(twsi, speed);
if (actual_speed)
*actual_speed = tmp_speed;
/* Set slave address; even though we don't use it */
writel(slaveadd, &twsi->slave_address);
writel(0, &twsi->xtnd_slave_addr);
/* Assert STOP, but don't care for the result */
#if CONFIG_IS_ENABLED(DM_I2C)
(void) twsi_stop(twsi, calc_tick(*actual_speed));
#else
(void) twsi_stop(twsi, 10000);
#endif
}
/*
* i2c_begin() - Start a I2C transaction.
*
* Begin a I2C transaction with a given expected start status and chip address.
* A START is asserted, and the address byte is sent to the I2C controller. The
* expected address status will be derived from the direction bit (bit 0) of
* the address byte.
*
* @twsi: The MVTWSI register structure to use.
* @expected_start_status: The I2C status the controller is expected to
* assert after the address byte was sent.
* @addr: The address byte to be sent.
* @tick: The duration of a clock cycle at the current
* I2C speed.
* Return: Zero if the operation succeeded, or a non-zero code if a time out or
* unexpected I2C status occurred.
*/
static int i2c_begin(struct mvtwsi_registers *twsi, int expected_start_status,
u8 addr, uint tick)
{
int status, expected_addr_status;
/* Compute the expected address status from the direction bit in
* the address byte */
if (addr & 1) /* Reading */
expected_addr_status = MVTWSI_STATUS_ADDR_R_ACK;
else /* Writing */
expected_addr_status = MVTWSI_STATUS_ADDR_W_ACK;
/* Assert START */
status = twsi_start(twsi, expected_start_status, tick);
/* Send out the address if the start went well */
if (status == 0)
status = twsi_send(twsi, addr, expected_addr_status, tick);
/* Return 0, or the status of the first failure */
return status;
}
/*
* __twsi_i2c_probe_chip() - Probe the given I2C chip address.
*
* This function begins a I2C read transaction, does a dummy read and NAKs; if
* the procedure succeeds, the chip is considered to be present.
*
* @twsi: The MVTWSI register structure to use.
* @chip: The chip address to probe.
* @tick: The duration of a clock cycle at the current I2C speed.
* Return: Zero if the operation succeeded, or a non-zero code if a time out or
* unexpected I2C status occurred.
*/
static int __twsi_i2c_probe_chip(struct mvtwsi_registers *twsi, uchar chip,
uint tick)
{
u8 dummy_byte;
int status;
/* Begin i2c read */
status = i2c_begin(twsi, MVTWSI_STATUS_START, (chip << 1) | 1, tick);
/* Dummy read was accepted: receive byte, but NAK it. */
if (status == 0)
status = twsi_recv(twsi, &dummy_byte, MVTWSI_READ_NAK, tick);
/* Stop transaction */
twsi_stop(twsi, tick);
/* Return 0, or the status of the first failure */
return status;
}
/*
* __twsi_i2c_read() - Read data from a I2C chip.
*
* This function begins a I2C write transaction, and transmits the address
* bytes; then begins a I2C read transaction, and receives the data bytes.
*
* NOTE: Some devices want a stop right before the second start, while some
* will choke if it is there. Since deciding this is not yet supported in
* higher level APIs, we need to make a decision here, and for the moment that
* will be a repeated start without a preceding stop.
*
* @twsi: The MVTWSI register structure to use.
* @chip: The chip address to read from.
* @addr: The address bytes to send.
* @alen: The length of the address bytes in bytes.
* @data: The buffer to receive the data read from the chip (has to have
* a size of at least 'length' bytes).
* @length: The amount of data to be read from the chip in bytes.
* @tick: The duration of a clock cycle at the current I2C speed.
* Return: Zero if the operation succeeded, or a non-zero code if a time out or
* unexpected I2C status occurred.
*/
static int __twsi_i2c_read(struct mvtwsi_registers *twsi, uchar chip,
u8 *addr, int alen, uchar *data, int length,
uint tick)
{
int status = 0;
int stop_status;
int expected_start = MVTWSI_STATUS_START;
if (alen > 0) {
/* Begin i2c write to send the address bytes */
status = i2c_begin(twsi, expected_start, (chip << 1), tick);
/* Send address bytes */
while ((status == 0) && alen--)
status = twsi_send(twsi, addr[alen],
MVTWSI_STATUS_DATA_W_ACK, tick);
/* Send repeated STARTs after the initial START */
expected_start = MVTWSI_STATUS_REPEATED_START;
}
/* Begin i2c read to receive data bytes */
if (status == 0)
status = i2c_begin(twsi, expected_start, (chip << 1) | 1, tick);
/* Receive actual data bytes; set NAK if we if we have nothing more to
* read */
while ((status == 0) && length--)
status = twsi_recv(twsi, data++,
length > 0 ?
MVTWSI_READ_ACK : MVTWSI_READ_NAK, tick);
/* Stop transaction */
stop_status = twsi_stop(twsi, tick);
/* Return 0, or the status of the first failure */
return status != 0 ? status : stop_status;
}
/*
* __twsi_i2c_write() - Send data to a I2C chip.
*
* This function begins a I2C write transaction, and transmits the address
* bytes; then begins a new I2C write transaction, and sends the data bytes.
*
* @twsi: The MVTWSI register structure to use.
* @chip: The chip address to read from.
* @addr: The address bytes to send.
* @alen: The length of the address bytes in bytes.
* @data: The buffer containing the data to be sent to the chip.
* @length: The length of data to be sent to the chip in bytes.
* @tick: The duration of a clock cycle at the current I2C speed.
* Return: Zero if the operation succeeded, or a non-zero code if a time out or
* unexpected I2C status occurred.
*/
static int __twsi_i2c_write(struct mvtwsi_registers *twsi, uchar chip,
u8 *addr, int alen, uchar *data, int length,
uint tick)
{
int status, stop_status;
/* Begin i2c write to send first the address bytes, then the
* data bytes */
status = i2c_begin(twsi, MVTWSI_STATUS_START, (chip << 1), tick);
/* Send address bytes */
while ((status == 0) && (alen-- > 0))
status = twsi_send(twsi, addr[alen], MVTWSI_STATUS_DATA_W_ACK,
tick);
/* Send data bytes */
while ((status == 0) && (length-- > 0))
status = twsi_send(twsi, *(data++), MVTWSI_STATUS_DATA_W_ACK,
tick);
/* Stop transaction */
stop_status = twsi_stop(twsi, tick);
/* Return 0, or the status of the first failure */
return status != 0 ? status : stop_status;
}
#if !CONFIG_IS_ENABLED(DM_I2C)
static void twsi_i2c_init(struct i2c_adapter *adap, int speed,
int slaveadd)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
__twsi_i2c_init(twsi, speed, slaveadd, NULL);
}
static uint twsi_i2c_set_bus_speed(struct i2c_adapter *adap,
uint requested_speed)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
__twsi_i2c_set_bus_speed(twsi, requested_speed);
return 0;
}
static int twsi_i2c_probe(struct i2c_adapter *adap, uchar chip)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
return __twsi_i2c_probe_chip(twsi, chip, 10000);
}
static int twsi_i2c_read(struct i2c_adapter *adap, uchar chip, uint addr,
int alen, uchar *data, int length)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
u8 addr_bytes[4];
addr_bytes[0] = (addr >> 0) & 0xFF;
addr_bytes[1] = (addr >> 8) & 0xFF;
addr_bytes[2] = (addr >> 16) & 0xFF;
addr_bytes[3] = (addr >> 24) & 0xFF;
return __twsi_i2c_read(twsi, chip, addr_bytes, alen, data, length,
10000);
}
static int twsi_i2c_write(struct i2c_adapter *adap, uchar chip, uint addr,
int alen, uchar *data, int length)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
u8 addr_bytes[4];
addr_bytes[0] = (addr >> 0) & 0xFF;
addr_bytes[1] = (addr >> 8) & 0xFF;
addr_bytes[2] = (addr >> 16) & 0xFF;
addr_bytes[3] = (addr >> 24) & 0xFF;
return __twsi_i2c_write(twsi, chip, addr_bytes, alen, data, length,
10000);
}
#ifdef CFG_I2C_MVTWSI_BASE0
U_BOOT_I2C_ADAP_COMPLETE(twsi0, twsi_i2c_init, twsi_i2c_probe,
twsi_i2c_read, twsi_i2c_write,
twsi_i2c_set_bus_speed,
CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 0)
#endif
#ifdef CFG_I2C_MVTWSI_BASE1
U_BOOT_I2C_ADAP_COMPLETE(twsi1, twsi_i2c_init, twsi_i2c_probe,
twsi_i2c_read, twsi_i2c_write,
twsi_i2c_set_bus_speed,
CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 1)
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE2
U_BOOT_I2C_ADAP_COMPLETE(twsi2, twsi_i2c_init, twsi_i2c_probe,
twsi_i2c_read, twsi_i2c_write,
twsi_i2c_set_bus_speed,
CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 2)
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE3
U_BOOT_I2C_ADAP_COMPLETE(twsi3, twsi_i2c_init, twsi_i2c_probe,
twsi_i2c_read, twsi_i2c_write,
twsi_i2c_set_bus_speed,
CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 3)
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE4
U_BOOT_I2C_ADAP_COMPLETE(twsi4, twsi_i2c_init, twsi_i2c_probe,
twsi_i2c_read, twsi_i2c_write,
twsi_i2c_set_bus_speed,
CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 4)
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE5
U_BOOT_I2C_ADAP_COMPLETE(twsi5, twsi_i2c_init, twsi_i2c_probe,
twsi_i2c_read, twsi_i2c_write,
twsi_i2c_set_bus_speed,
CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 5)
#endif
#else /* CONFIG_DM_I2C */
static int mvtwsi_i2c_probe_chip(struct udevice *bus, u32 chip_addr,
u32 chip_flags)
{
struct mvtwsi_i2c_dev *dev = dev_get_priv(bus);
return __twsi_i2c_probe_chip(dev->base, chip_addr, dev->tick);
}
static int mvtwsi_i2c_set_bus_speed(struct udevice *bus, uint speed)
{
struct mvtwsi_i2c_dev *dev = dev_get_priv(bus);
dev->speed = __twsi_i2c_set_bus_speed(dev->base, speed);
dev->tick = calc_tick(dev->speed);
return 0;
}
static int mvtwsi_i2c_of_to_plat(struct udevice *bus)
{
struct mvtwsi_i2c_dev *dev = dev_get_priv(bus);
dev->base = dev_read_addr_ptr(bus);
if (!dev->base)
return -ENOMEM;
dev->index = fdtdec_get_int(gd->fdt_blob, dev_of_offset(bus),
"cell-index", -1);
dev->slaveadd = fdtdec_get_int(gd->fdt_blob, dev_of_offset(bus),
"u-boot,i2c-slave-addr", 0x0);
dev->speed = dev_read_u32_default(bus, "clock-frequency",
I2C_SPEED_STANDARD_RATE);
return 0;
}
static void twsi_disable_i2c_slave(struct mvtwsi_registers *twsi)
{
clrbits_le32(&twsi->debug, BIT(18));
}
static int mvtwsi_i2c_bind(struct udevice *bus)
{
struct mvtwsi_registers *twsi = dev_read_addr_ptr(bus);
/* Disable the hidden slave in i2c0 of these platforms */
if ((IS_ENABLED(CONFIG_ARMADA_38X) ||
IS_ENABLED(CONFIG_ARCH_KIRKWOOD) ||
IS_ENABLED(CONFIG_ARMADA_8K)) && !dev_seq(bus))
twsi_disable_i2c_slave(twsi);
return 0;
}
static int mvtwsi_i2c_probe(struct udevice *bus)
{
struct mvtwsi_i2c_dev *dev = dev_get_priv(bus);
struct reset_ctl reset;
struct clk clk;
uint actual_speed;
int ret;
ret = reset_get_by_index(bus, 0, &reset);
if (!ret)
reset_deassert(&reset);
ret = clk_get_by_index(bus, 0, &clk);
if (!ret)
clk_enable(&clk);
__twsi_i2c_init(dev->base, dev->speed, dev->slaveadd, &actual_speed);
dev->speed = actual_speed;
dev->tick = calc_tick(dev->speed);
return 0;
}
static int mvtwsi_i2c_xfer(struct udevice *bus, struct i2c_msg *msg, int nmsgs)
{
struct mvtwsi_i2c_dev *dev = dev_get_priv(bus);
struct i2c_msg *dmsg, *omsg, dummy;
u8 *addr_buf_ptr;
u8 addr_buf[4];
int i;
memset(&dummy, 0, sizeof(struct i2c_msg));
/* We expect either two messages (one with an offset and one with the
* actual data) or one message (just data or offset/data combined) */
if (nmsgs > 2 || nmsgs == 0) {
debug("%s: Only one or two messages are supported.", __func__);
return -1;
}
omsg = nmsgs == 1 ? &dummy : msg;
dmsg = nmsgs == 1 ? msg : msg + 1;
/* We need to swap the register address if its size is > 1 */
addr_buf_ptr = &addr_buf[0];
for (i = omsg->len; i > 0; i--)
*addr_buf_ptr++ = omsg->buf[i - 1];
if (dmsg->flags & I2C_M_RD)
return __twsi_i2c_read(dev->base, dmsg->addr, addr_buf,
omsg->len, dmsg->buf, dmsg->len,
dev->tick);
else
return __twsi_i2c_write(dev->base, dmsg->addr, addr_buf,
omsg->len, dmsg->buf, dmsg->len,
dev->tick);
}
static const struct dm_i2c_ops mvtwsi_i2c_ops = {
.xfer = mvtwsi_i2c_xfer,
.probe_chip = mvtwsi_i2c_probe_chip,
.set_bus_speed = mvtwsi_i2c_set_bus_speed,
};
static const struct udevice_id mvtwsi_i2c_ids[] = {
{ .compatible = "marvell,mv64xxx-i2c", },
{ .compatible = "marvell,mv78230-i2c", },
{ .compatible = "allwinner,sun4i-a10-i2c", },
{ .compatible = "allwinner,sun6i-a31-i2c", },
{ /* sentinel */ }
};
U_BOOT_DRIVER(i2c_mvtwsi) = {
.name = "i2c_mvtwsi",
.id = UCLASS_I2C,
.of_match = mvtwsi_i2c_ids,
.bind = mvtwsi_i2c_bind,
.probe = mvtwsi_i2c_probe,
.of_to_plat = mvtwsi_i2c_of_to_plat,
.priv_auto = sizeof(struct mvtwsi_i2c_dev),
.ops = &mvtwsi_i2c_ops,
};
#endif /* CONFIG_DM_I2C */