// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2003 * Kyle Harris, kharris@nexus-tech.net */ #include #include #include #include #include #include #include #include #include static int curr_device = -1; static void print_mmcinfo(struct mmc *mmc) { int i; printf("Device: %s\n", mmc->cfg->name); printf("Manufacturer ID: %x\n", mmc->cid[0] >> 24); if (IS_SD(mmc)) { printf("OEM: %x\n", (mmc->cid[0] >> 8) & 0xffff); printf("Name: %c%c%c%c%c \n", mmc->cid[0] & 0xff, (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff, (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff); } else { printf("OEM: %x\n", (mmc->cid[0] >> 8) & 0xff); printf("Name: %c%c%c%c%c%c \n", mmc->cid[0] & 0xff, (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff, (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff, (mmc->cid[2] >> 24)); } printf("Bus Speed: %d\n", mmc->clock); #if CONFIG_IS_ENABLED(MMC_VERBOSE) printf("Mode: %s\n", mmc_mode_name(mmc->selected_mode)); mmc_dump_capabilities("card capabilities", mmc->card_caps); mmc_dump_capabilities("host capabilities", mmc->host_caps); #endif printf("Rd Block Len: %d\n", mmc->read_bl_len); printf("%s version %d.%d", IS_SD(mmc) ? "SD" : "MMC", EXTRACT_SDMMC_MAJOR_VERSION(mmc->version), EXTRACT_SDMMC_MINOR_VERSION(mmc->version)); if (EXTRACT_SDMMC_CHANGE_VERSION(mmc->version) != 0) printf(".%d", EXTRACT_SDMMC_CHANGE_VERSION(mmc->version)); printf("\n"); printf("High Capacity: %s\n", mmc->high_capacity ? "Yes" : "No"); puts("Capacity: "); print_size(mmc->capacity, "\n"); printf("Bus Width: %d-bit%s\n", mmc->bus_width, mmc->ddr_mode ? " DDR" : ""); #if CONFIG_IS_ENABLED(MMC_WRITE) puts("Erase Group Size: "); print_size(((u64)mmc->erase_grp_size) << 9, "\n"); #endif if (!IS_SD(mmc) && mmc->version >= MMC_VERSION_4_41) { bool has_enh = (mmc->part_support & ENHNCD_SUPPORT) != 0; bool usr_enh = has_enh && (mmc->part_attr & EXT_CSD_ENH_USR); ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); u8 wp; int ret; #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING) puts("HC WP Group Size: "); print_size(((u64)mmc->hc_wp_grp_size) << 9, "\n"); #endif puts("User Capacity: "); print_size(mmc->capacity_user, usr_enh ? " ENH" : ""); if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_USR) puts(" WRREL\n"); else putc('\n'); if (usr_enh) { puts("User Enhanced Start: "); print_size(mmc->enh_user_start, "\n"); puts("User Enhanced Size: "); print_size(mmc->enh_user_size, "\n"); } puts("Boot Capacity: "); print_size(mmc->capacity_boot, has_enh ? " ENH\n" : "\n"); puts("RPMB Capacity: "); print_size(mmc->capacity_rpmb, has_enh ? " ENH\n" : "\n"); for (i = 0; i < ARRAY_SIZE(mmc->capacity_gp); i++) { bool is_enh = has_enh && (mmc->part_attr & EXT_CSD_ENH_GP(i)); if (mmc->capacity_gp[i]) { printf("GP%i Capacity: ", i+1); print_size(mmc->capacity_gp[i], is_enh ? " ENH" : ""); if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_GP(i)) puts(" WRREL\n"); else putc('\n'); } } ret = mmc_send_ext_csd(mmc, ext_csd); if (ret) return; wp = ext_csd[EXT_CSD_BOOT_WP_STATUS]; for (i = 0; i < 2; ++i) { printf("Boot area %d is ", i); switch (wp & 3) { case 0: printf("not write protected\n"); break; case 1: printf("power on protected\n"); break; case 2: printf("permanently protected\n"); break; default: printf("in reserved protection state\n"); break; } wp >>= 2; } } } static struct mmc *__init_mmc_device(int dev, bool force_init, enum bus_mode speed_mode) { struct mmc *mmc; mmc = find_mmc_device(dev); if (!mmc) { printf("no mmc device at slot %x\n", dev); return NULL; } if (!mmc_getcd(mmc)) force_init = true; if (force_init) mmc->has_init = 0; if (IS_ENABLED(CONFIG_MMC_SPEED_MODE_SET)) mmc->user_speed_mode = speed_mode; if (mmc_init(mmc)) return NULL; #ifdef CONFIG_BLOCK_CACHE struct blk_desc *bd = mmc_get_blk_desc(mmc); blkcache_invalidate(bd->if_type, bd->devnum); #endif return mmc; } static struct mmc *init_mmc_device(int dev, bool force_init) { return __init_mmc_device(dev, force_init, MMC_MODES_END); } static int do_mmcinfo(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { struct mmc *mmc; if (curr_device < 0) { if (get_mmc_num() > 0) curr_device = 0; else { puts("No MMC device available\n"); return 1; } } mmc = init_mmc_device(curr_device, false); if (!mmc) return CMD_RET_FAILURE; print_mmcinfo(mmc); return CMD_RET_SUCCESS; } #if CONFIG_IS_ENABLED(CMD_MMC_RPMB) static int confirm_key_prog(void) { puts("Warning: Programming authentication key can be done only once !\n" " Use this command only if you are sure of what you are doing,\n" "Really perform the key programming? "); if (confirm_yesno()) return 1; puts("Authentication key programming aborted\n"); return 0; } static int do_mmcrpmb_key(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { void *key_addr; struct mmc *mmc = find_mmc_device(curr_device); if (argc != 2) return CMD_RET_USAGE; key_addr = (void *)hextoul(argv[1], NULL); if (!confirm_key_prog()) return CMD_RET_FAILURE; if (mmc_rpmb_set_key(mmc, key_addr)) { printf("ERROR - Key already programmed ?\n"); return CMD_RET_FAILURE; } return CMD_RET_SUCCESS; } static int do_mmcrpmb_read(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { u16 blk, cnt; void *addr; int n; void *key_addr = NULL; struct mmc *mmc = find_mmc_device(curr_device); if (argc < 4) return CMD_RET_USAGE; addr = (void *)hextoul(argv[1], NULL); blk = hextoul(argv[2], NULL); cnt = hextoul(argv[3], NULL); if (argc == 5) key_addr = (void *)hextoul(argv[4], NULL); printf("\nMMC RPMB read: dev # %d, block # %d, count %d ... ", curr_device, blk, cnt); n = mmc_rpmb_read(mmc, addr, blk, cnt, key_addr); printf("%d RPMB blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR"); if (n != cnt) return CMD_RET_FAILURE; return CMD_RET_SUCCESS; } static int do_mmcrpmb_write(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { u16 blk, cnt; void *addr; int n; void *key_addr; struct mmc *mmc = find_mmc_device(curr_device); if (argc != 5) return CMD_RET_USAGE; addr = (void *)hextoul(argv[1], NULL); blk = hextoul(argv[2], NULL); cnt = hextoul(argv[3], NULL); key_addr = (void *)hextoul(argv[4], NULL); printf("\nMMC RPMB write: dev # %d, block # %d, count %d ... ", curr_device, blk, cnt); n = mmc_rpmb_write(mmc, addr, blk, cnt, key_addr); printf("%d RPMB blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR"); if (n != cnt) return CMD_RET_FAILURE; return CMD_RET_SUCCESS; } static int do_mmcrpmb_counter(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { unsigned long counter; struct mmc *mmc = find_mmc_device(curr_device); if (mmc_rpmb_get_counter(mmc, &counter)) return CMD_RET_FAILURE; printf("RPMB Write counter= %lx\n", counter); return CMD_RET_SUCCESS; } static struct cmd_tbl cmd_rpmb[] = { U_BOOT_CMD_MKENT(key, 2, 0, do_mmcrpmb_key, "", ""), U_BOOT_CMD_MKENT(read, 5, 1, do_mmcrpmb_read, "", ""), U_BOOT_CMD_MKENT(write, 5, 0, do_mmcrpmb_write, "", ""), U_BOOT_CMD_MKENT(counter, 1, 1, do_mmcrpmb_counter, "", ""), }; static int do_mmcrpmb(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { struct cmd_tbl *cp; struct mmc *mmc; char original_part; int ret; cp = find_cmd_tbl(argv[1], cmd_rpmb, ARRAY_SIZE(cmd_rpmb)); /* Drop the rpmb subcommand */ argc--; argv++; if (cp == NULL || argc > cp->maxargs) return CMD_RET_USAGE; if (flag == CMD_FLAG_REPEAT && !cmd_is_repeatable(cp)) return CMD_RET_SUCCESS; mmc = init_mmc_device(curr_device, false); if (!mmc) return CMD_RET_FAILURE; if (!(mmc->version & MMC_VERSION_MMC)) { printf("It is not an eMMC device\n"); return CMD_RET_FAILURE; } if (mmc->version < MMC_VERSION_4_41) { printf("RPMB not supported before version 4.41\n"); return CMD_RET_FAILURE; } /* Switch to the RPMB partition */ #ifndef CONFIG_BLK original_part = mmc->block_dev.hwpart; #else original_part = mmc_get_blk_desc(mmc)->hwpart; #endif if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, MMC_PART_RPMB) != 0) return CMD_RET_FAILURE; ret = cp->cmd(cmdtp, flag, argc, argv); /* Return to original partition */ if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, original_part) != 0) return CMD_RET_FAILURE; return ret; } #endif static int do_mmc_read(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { struct mmc *mmc; u32 blk, cnt, n; void *addr; if (argc != 4) return CMD_RET_USAGE; addr = (void *)hextoul(argv[1], NULL); blk = hextoul(argv[2], NULL); cnt = hextoul(argv[3], NULL); mmc = init_mmc_device(curr_device, false); if (!mmc) return CMD_RET_FAILURE; printf("\nMMC read: dev # %d, block # %d, count %d ... ", curr_device, blk, cnt); n = blk_dread(mmc_get_blk_desc(mmc), blk, cnt, addr); printf("%d blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR"); return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE; } #if CONFIG_IS_ENABLED(CMD_MMC_SWRITE) static lbaint_t mmc_sparse_write(struct sparse_storage *info, lbaint_t blk, lbaint_t blkcnt, const void *buffer) { struct blk_desc *dev_desc = info->priv; return blk_dwrite(dev_desc, blk, blkcnt, buffer); } static lbaint_t mmc_sparse_reserve(struct sparse_storage *info, lbaint_t blk, lbaint_t blkcnt) { return blkcnt; } static int do_mmc_sparse_write(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { struct sparse_storage sparse; struct blk_desc *dev_desc; struct mmc *mmc; char dest[11]; void *addr; u32 blk; if (argc != 3) return CMD_RET_USAGE; addr = (void *)hextoul(argv[1], NULL); blk = hextoul(argv[2], NULL); if (!is_sparse_image(addr)) { printf("Not a sparse image\n"); return CMD_RET_FAILURE; } mmc = init_mmc_device(curr_device, false); if (!mmc) return CMD_RET_FAILURE; printf("\nMMC Sparse write: dev # %d, block # %d ... ", curr_device, blk); if (mmc_getwp(mmc) == 1) { printf("Error: card is write protected!\n"); return CMD_RET_FAILURE; } dev_desc = mmc_get_blk_desc(mmc); sparse.priv = dev_desc; sparse.blksz = 512; sparse.start = blk; sparse.size = dev_desc->lba - blk; sparse.write = mmc_sparse_write; sparse.reserve = mmc_sparse_reserve; sparse.mssg = NULL; sprintf(dest, "0x" LBAF, sparse.start * sparse.blksz); if (write_sparse_image(&sparse, dest, addr, NULL)) return CMD_RET_FAILURE; else return CMD_RET_SUCCESS; } #endif #if CONFIG_IS_ENABLED(MMC_WRITE) static int do_mmc_write(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { struct mmc *mmc; u32 blk, cnt, n; void *addr; if (argc != 4) return CMD_RET_USAGE; addr = (void *)hextoul(argv[1], NULL); blk = hextoul(argv[2], NULL); cnt = hextoul(argv[3], NULL); mmc = init_mmc_device(curr_device, false); if (!mmc) return CMD_RET_FAILURE; printf("\nMMC write: dev # %d, block # %d, count %d ... ", curr_device, blk, cnt); if (mmc_getwp(mmc) == 1) { printf("Error: card is write protected!\n"); return CMD_RET_FAILURE; } n = blk_dwrite(mmc_get_blk_desc(mmc), blk, cnt, addr); printf("%d blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR"); return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE; } static int do_mmc_erase(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { struct mmc *mmc; u32 blk, cnt, n; if (argc != 3) return CMD_RET_USAGE; blk = hextoul(argv[1], NULL); cnt = hextoul(argv[2], NULL); mmc = init_mmc_device(curr_device, false); if (!mmc) return CMD_RET_FAILURE; printf("\nMMC erase: dev # %d, block # %d, count %d ... ", curr_device, blk, cnt); if (mmc_getwp(mmc) == 1) { printf("Error: card is write protected!\n"); return CMD_RET_FAILURE; } n = blk_derase(mmc_get_blk_desc(mmc), blk, cnt); printf("%d blocks erased: %s\n", n, (n == cnt) ? "OK" : "ERROR"); return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE; } #endif static int do_mmc_rescan(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { struct mmc *mmc; if (argc == 1) { mmc = init_mmc_device(curr_device, true); } else if (argc == 2) { enum bus_mode speed_mode; speed_mode = (int)dectoul(argv[1], NULL); mmc = __init_mmc_device(curr_device, true, speed_mode); } else { return CMD_RET_USAGE; } if (!mmc) return CMD_RET_FAILURE; return CMD_RET_SUCCESS; } static int do_mmc_part(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { struct blk_desc *mmc_dev; struct mmc *mmc; mmc = init_mmc_device(curr_device, false); if (!mmc) return CMD_RET_FAILURE; mmc_dev = blk_get_devnum_by_type(IF_TYPE_MMC, curr_device); if (mmc_dev != NULL && mmc_dev->type != DEV_TYPE_UNKNOWN) { part_print(mmc_dev); return CMD_RET_SUCCESS; } puts("get mmc type error!\n"); return CMD_RET_FAILURE; } static int do_mmc_dev(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { int dev, part = 0, ret; struct mmc *mmc; if (argc == 1) { dev = curr_device; mmc = init_mmc_device(dev, true); } else if (argc == 2) { dev = (int)dectoul(argv[1], NULL); mmc = init_mmc_device(dev, true); } else if (argc == 3) { dev = (int)dectoul(argv[1], NULL); part = (int)dectoul(argv[2], NULL); if (part > PART_ACCESS_MASK) { printf("#part_num shouldn't be larger than %d\n", PART_ACCESS_MASK); return CMD_RET_FAILURE; } mmc = init_mmc_device(dev, true); } else if (argc == 4) { enum bus_mode speed_mode; dev = (int)dectoul(argv[1], NULL); part = (int)dectoul(argv[2], NULL); if (part > PART_ACCESS_MASK) { printf("#part_num shouldn't be larger than %d\n", PART_ACCESS_MASK); return CMD_RET_FAILURE; } speed_mode = (int)dectoul(argv[3], NULL); mmc = __init_mmc_device(dev, true, speed_mode); } else { return CMD_RET_USAGE; } if (!mmc) return CMD_RET_FAILURE; ret = blk_select_hwpart_devnum(IF_TYPE_MMC, dev, part); printf("switch to partitions #%d, %s\n", part, (!ret) ? "OK" : "ERROR"); if (ret) return 1; curr_device = dev; if (mmc->part_config == MMCPART_NOAVAILABLE) printf("mmc%d is current device\n", curr_device); else printf("mmc%d(part %d) is current device\n", curr_device, mmc_get_blk_desc(mmc)->hwpart); return CMD_RET_SUCCESS; } static int do_mmc_list(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { print_mmc_devices('\n'); return CMD_RET_SUCCESS; } #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING) static void parse_hwpart_user_enh_size(struct mmc *mmc, struct mmc_hwpart_conf *pconf, char *argv) { int i, ret; pconf->user.enh_size = 0; if (!strcmp(argv, "-")) { /* The rest of eMMC */ ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); ret = mmc_send_ext_csd(mmc, ext_csd); if (ret) return; /* The enh_size value is in 512B block units */ pconf->user.enh_size = ((ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT + 2] << 16) + (ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT + 1] << 8) + ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT]) * 1024 * ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; pconf->user.enh_size -= pconf->user.enh_start; for (i = 0; i < ARRAY_SIZE(mmc->capacity_gp); i++) { /* * If the eMMC already has GP partitions set, * subtract their size from the maximum USER * partition size. * * Else, if the command was used to configure new * GP partitions, subtract their size from maximum * USER partition size. */ if (mmc->capacity_gp[i]) { /* The capacity_gp is in 1B units */ pconf->user.enh_size -= mmc->capacity_gp[i] >> 9; } else if (pconf->gp_part[i].size) { /* The gp_part[].size is in 512B units */ pconf->user.enh_size -= pconf->gp_part[i].size; } } } else { pconf->user.enh_size = dectoul(argv, NULL); } } static int parse_hwpart_user(struct mmc *mmc, struct mmc_hwpart_conf *pconf, int argc, char *const argv[]) { int i = 0; memset(&pconf->user, 0, sizeof(pconf->user)); while (i < argc) { if (!strcmp(argv[i], "enh")) { if (i + 2 >= argc) return -1; pconf->user.enh_start = dectoul(argv[i + 1], NULL); parse_hwpart_user_enh_size(mmc, pconf, argv[i + 2]); i += 3; } else if (!strcmp(argv[i], "wrrel")) { if (i + 1 >= argc) return -1; pconf->user.wr_rel_change = 1; if (!strcmp(argv[i+1], "on")) pconf->user.wr_rel_set = 1; else if (!strcmp(argv[i+1], "off")) pconf->user.wr_rel_set = 0; else return -1; i += 2; } else { break; } } return i; } static int parse_hwpart_gp(struct mmc_hwpart_conf *pconf, int pidx, int argc, char *const argv[]) { int i; memset(&pconf->gp_part[pidx], 0, sizeof(pconf->gp_part[pidx])); if (1 >= argc) return -1; pconf->gp_part[pidx].size = dectoul(argv[0], NULL); i = 1; while (i < argc) { if (!strcmp(argv[i], "enh")) { pconf->gp_part[pidx].enhanced = 1; i += 1; } else if (!strcmp(argv[i], "wrrel")) { if (i + 1 >= argc) return -1; pconf->gp_part[pidx].wr_rel_change = 1; if (!strcmp(argv[i+1], "on")) pconf->gp_part[pidx].wr_rel_set = 1; else if (!strcmp(argv[i+1], "off")) pconf->gp_part[pidx].wr_rel_set = 0; else return -1; i += 2; } else { break; } } return i; } static int do_mmc_hwpartition(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { struct mmc *mmc; struct mmc_hwpart_conf pconf = { }; enum mmc_hwpart_conf_mode mode = MMC_HWPART_CONF_CHECK; int i, r, pidx; mmc = init_mmc_device(curr_device, false); if (!mmc) return CMD_RET_FAILURE; if (IS_SD(mmc)) { puts("SD doesn't support partitioning\n"); return CMD_RET_FAILURE; } if (argc < 1) return CMD_RET_USAGE; i = 1; while (i < argc) { if (!strcmp(argv[i], "user")) { i++; r = parse_hwpart_user(mmc, &pconf, argc - i, &argv[i]); if (r < 0) return CMD_RET_USAGE; i += r; } else if (!strncmp(argv[i], "gp", 2) && strlen(argv[i]) == 3 && argv[i][2] >= '1' && argv[i][2] <= '4') { pidx = argv[i][2] - '1'; i++; r = parse_hwpart_gp(&pconf, pidx, argc-i, &argv[i]); if (r < 0) return CMD_RET_USAGE; i += r; } else if (!strcmp(argv[i], "check")) { mode = MMC_HWPART_CONF_CHECK; i++; } else if (!strcmp(argv[i], "set")) { mode = MMC_HWPART_CONF_SET; i++; } else if (!strcmp(argv[i], "complete")) { mode = MMC_HWPART_CONF_COMPLETE; i++; } else { return CMD_RET_USAGE; } } puts("Partition configuration:\n"); if (pconf.user.enh_size) { puts("\tUser Enhanced Start: "); print_size(((u64)pconf.user.enh_start) << 9, "\n"); puts("\tUser Enhanced Size: "); print_size(((u64)pconf.user.enh_size) << 9, "\n"); } else { puts("\tNo enhanced user data area\n"); } if (pconf.user.wr_rel_change) printf("\tUser partition write reliability: %s\n", pconf.user.wr_rel_set ? "on" : "off"); for (pidx = 0; pidx < 4; pidx++) { if (pconf.gp_part[pidx].size) { printf("\tGP%i Capacity: ", pidx+1); print_size(((u64)pconf.gp_part[pidx].size) << 9, pconf.gp_part[pidx].enhanced ? " ENH\n" : "\n"); } else { printf("\tNo GP%i partition\n", pidx+1); } if (pconf.gp_part[pidx].wr_rel_change) printf("\tGP%i write reliability: %s\n", pidx+1, pconf.gp_part[pidx].wr_rel_set ? "on" : "off"); } if (!mmc_hwpart_config(mmc, &pconf, mode)) { if (mode == MMC_HWPART_CONF_COMPLETE) puts("Partitioning successful, " "power-cycle to make effective\n"); return CMD_RET_SUCCESS; } else { puts("Failed!\n"); return CMD_RET_FAILURE; } } #endif #ifdef CONFIG_SUPPORT_EMMC_BOOT static int do_mmc_bootbus(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { int dev; struct mmc *mmc; u8 width, reset, mode; if (argc != 5) return CMD_RET_USAGE; dev = dectoul(argv[1], NULL); width = dectoul(argv[2], NULL); reset = dectoul(argv[3], NULL); mode = dectoul(argv[4], NULL); mmc = init_mmc_device(dev, false); if (!mmc) return CMD_RET_FAILURE; if (IS_SD(mmc)) { puts("BOOT_BUS_WIDTH only exists on eMMC\n"); return CMD_RET_FAILURE; } /* * BOOT_BUS_CONDITIONS[177] * BOOT_MODE[4:3] * 0x0 : Use SDR + Backward compatible timing in boot operation * 0x1 : Use SDR + High Speed Timing in boot operation mode * 0x2 : Use DDR in boot operation * RESET_BOOT_BUS_CONDITIONS * 0x0 : Reset bus width to x1, SDR, Backward compatible * 0x1 : Retain BOOT_BUS_WIDTH and BOOT_MODE * BOOT_BUS_WIDTH * 0x0 : x1(sdr) or x4 (ddr) buswidth * 0x1 : x4(sdr/ddr) buswith * 0x2 : x8(sdr/ddr) buswith * */ if (width >= 0x3) { printf("boot_bus_width %d is invalid\n", width); return CMD_RET_FAILURE; } if (reset >= 0x2) { printf("reset_boot_bus_width %d is invalid\n", reset); return CMD_RET_FAILURE; } if (mode >= 0x3) { printf("reset_boot_bus_width %d is invalid\n", mode); return CMD_RET_FAILURE; } /* acknowledge to be sent during boot operation */ if (mmc_set_boot_bus_width(mmc, width, reset, mode)) { puts("BOOT_BUS_WIDTH is failed to change.\n"); return CMD_RET_FAILURE; } printf("Set to BOOT_BUS_WIDTH = 0x%x, RESET = 0x%x, BOOT_MODE = 0x%x\n", width, reset, mode); return CMD_RET_SUCCESS; } static int do_mmc_boot_resize(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { int dev; struct mmc *mmc; u32 bootsize, rpmbsize; if (argc != 4) return CMD_RET_USAGE; dev = dectoul(argv[1], NULL); bootsize = dectoul(argv[2], NULL); rpmbsize = dectoul(argv[3], NULL); mmc = init_mmc_device(dev, false); if (!mmc) return CMD_RET_FAILURE; if (IS_SD(mmc)) { printf("It is not an eMMC device\n"); return CMD_RET_FAILURE; } if (mmc_boot_partition_size_change(mmc, bootsize, rpmbsize)) { printf("EMMC boot partition Size change Failed.\n"); return CMD_RET_FAILURE; } printf("EMMC boot partition Size %d MB\n", bootsize); printf("EMMC RPMB partition Size %d MB\n", rpmbsize); return CMD_RET_SUCCESS; } static int mmc_partconf_print(struct mmc *mmc, const char *varname) { u8 ack, access, part; if (mmc->part_config == MMCPART_NOAVAILABLE) { printf("No part_config info for ver. 0x%x\n", mmc->version); return CMD_RET_FAILURE; } access = EXT_CSD_EXTRACT_PARTITION_ACCESS(mmc->part_config); ack = EXT_CSD_EXTRACT_BOOT_ACK(mmc->part_config); part = EXT_CSD_EXTRACT_BOOT_PART(mmc->part_config); if(varname) env_set_hex(varname, part); printf("EXT_CSD[179], PARTITION_CONFIG:\n" "BOOT_ACK: 0x%x\n" "BOOT_PARTITION_ENABLE: 0x%x\n" "PARTITION_ACCESS: 0x%x\n", ack, part, access); return CMD_RET_SUCCESS; } static int do_mmc_partconf(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { int dev; struct mmc *mmc; u8 ack, part_num, access; if (argc != 2 && argc != 3 && argc != 5) return CMD_RET_USAGE; dev = dectoul(argv[1], NULL); mmc = init_mmc_device(dev, false); if (!mmc) return CMD_RET_FAILURE; if (IS_SD(mmc)) { puts("PARTITION_CONFIG only exists on eMMC\n"); return CMD_RET_FAILURE; } if (argc == 2 || argc == 3) return mmc_partconf_print(mmc, argc == 3 ? argv[2] : NULL); ack = dectoul(argv[2], NULL); part_num = dectoul(argv[3], NULL); access = dectoul(argv[4], NULL); /* acknowledge to be sent during boot operation */ return mmc_set_part_conf(mmc, ack, part_num, access); } static int do_mmc_rst_func(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { int dev; struct mmc *mmc; u8 enable; /* * Set the RST_n_ENABLE bit of RST_n_FUNCTION * The only valid values are 0x0, 0x1 and 0x2 and writing * a value of 0x1 or 0x2 sets the value permanently. */ if (argc != 3) return CMD_RET_USAGE; dev = dectoul(argv[1], NULL); enable = dectoul(argv[2], NULL); if (enable > 2) { puts("Invalid RST_n_ENABLE value\n"); return CMD_RET_USAGE; } mmc = init_mmc_device(dev, false); if (!mmc) return CMD_RET_FAILURE; if (IS_SD(mmc)) { puts("RST_n_FUNCTION only exists on eMMC\n"); return CMD_RET_FAILURE; } return mmc_set_rst_n_function(mmc, enable); } #endif static int do_mmc_setdsr(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { struct mmc *mmc; u32 val; int ret; if (argc != 2) return CMD_RET_USAGE; val = hextoul(argv[1], NULL); mmc = find_mmc_device(curr_device); if (!mmc) { printf("no mmc device at slot %x\n", curr_device); return CMD_RET_FAILURE; } ret = mmc_set_dsr(mmc, val); printf("set dsr %s\n", (!ret) ? "OK, force rescan" : "ERROR"); if (!ret) { mmc->has_init = 0; if (mmc_init(mmc)) return CMD_RET_FAILURE; else return CMD_RET_SUCCESS; } return ret; } #ifdef CONFIG_CMD_BKOPS_ENABLE static int do_mmc_bkops_enable(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { int dev; struct mmc *mmc; if (argc != 2) return CMD_RET_USAGE; dev = dectoul(argv[1], NULL); mmc = init_mmc_device(dev, false); if (!mmc) return CMD_RET_FAILURE; if (IS_SD(mmc)) { puts("BKOPS_EN only exists on eMMC\n"); return CMD_RET_FAILURE; } return mmc_set_bkops_enable(mmc); } #endif static int do_mmc_boot_wp(struct cmd_tbl *cmdtp, int flag, int argc, char * const argv[]) { int err; struct mmc *mmc; int part; mmc = init_mmc_device(curr_device, false); if (!mmc) return CMD_RET_FAILURE; if (IS_SD(mmc)) { printf("It is not an eMMC device\n"); return CMD_RET_FAILURE; } if (argc == 2) { part = dectoul(argv[1], NULL); err = mmc_boot_wp_single_partition(mmc, part); } else { err = mmc_boot_wp(mmc); } if (err) return CMD_RET_FAILURE; printf("boot areas protected\n"); return CMD_RET_SUCCESS; } static struct cmd_tbl cmd_mmc[] = { U_BOOT_CMD_MKENT(info, 1, 0, do_mmcinfo, "", ""), U_BOOT_CMD_MKENT(read, 4, 1, do_mmc_read, "", ""), U_BOOT_CMD_MKENT(wp, 2, 0, do_mmc_boot_wp, "", ""), #if CONFIG_IS_ENABLED(MMC_WRITE) U_BOOT_CMD_MKENT(write, 4, 0, do_mmc_write, "", ""), U_BOOT_CMD_MKENT(erase, 3, 0, do_mmc_erase, "", ""), #endif #if CONFIG_IS_ENABLED(CMD_MMC_SWRITE) U_BOOT_CMD_MKENT(swrite, 3, 0, do_mmc_sparse_write, "", ""), #endif U_BOOT_CMD_MKENT(rescan, 2, 1, do_mmc_rescan, "", ""), U_BOOT_CMD_MKENT(part, 1, 1, do_mmc_part, "", ""), U_BOOT_CMD_MKENT(dev, 4, 0, do_mmc_dev, "", ""), U_BOOT_CMD_MKENT(list, 1, 1, do_mmc_list, "", ""), #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING) U_BOOT_CMD_MKENT(hwpartition, 28, 0, do_mmc_hwpartition, "", ""), #endif #ifdef CONFIG_SUPPORT_EMMC_BOOT U_BOOT_CMD_MKENT(bootbus, 5, 0, do_mmc_bootbus, "", ""), U_BOOT_CMD_MKENT(bootpart-resize, 4, 0, do_mmc_boot_resize, "", ""), U_BOOT_CMD_MKENT(partconf, 5, 0, do_mmc_partconf, "", ""), U_BOOT_CMD_MKENT(rst-function, 3, 0, do_mmc_rst_func, "", ""), #endif #if CONFIG_IS_ENABLED(CMD_MMC_RPMB) U_BOOT_CMD_MKENT(rpmb, CONFIG_SYS_MAXARGS, 1, do_mmcrpmb, "", ""), #endif U_BOOT_CMD_MKENT(setdsr, 2, 0, do_mmc_setdsr, "", ""), #ifdef CONFIG_CMD_BKOPS_ENABLE U_BOOT_CMD_MKENT(bkops-enable, 2, 0, do_mmc_bkops_enable, "", ""), #endif }; static int do_mmcops(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { struct cmd_tbl *cp; cp = find_cmd_tbl(argv[1], cmd_mmc, ARRAY_SIZE(cmd_mmc)); /* Drop the mmc command */ argc--; argv++; if (cp == NULL || argc > cp->maxargs) return CMD_RET_USAGE; if (flag == CMD_FLAG_REPEAT && !cmd_is_repeatable(cp)) return CMD_RET_SUCCESS; if (curr_device < 0) { if (get_mmc_num() > 0) { curr_device = 0; } else { puts("No MMC device available\n"); return CMD_RET_FAILURE; } } return cp->cmd(cmdtp, flag, argc, argv); } U_BOOT_CMD( mmc, 29, 1, do_mmcops, "MMC sub system", "info - display info of the current MMC device\n" "mmc read addr blk# cnt\n" "mmc write addr blk# cnt\n" #if CONFIG_IS_ENABLED(CMD_MMC_SWRITE) "mmc swrite addr blk#\n" #endif "mmc erase blk# cnt\n" "mmc rescan [mode]\n" "mmc part - lists available partition on current mmc device\n" "mmc dev [dev] [part] [mode] - show or set current mmc device [partition] and set mode\n" " - the required speed mode is passed as the index from the following list\n" " [MMC_LEGACY, MMC_HS, SD_HS, MMC_HS_52, MMC_DDR_52, UHS_SDR12, UHS_SDR25,\n" " UHS_SDR50, UHS_DDR50, UHS_SDR104, MMC_HS_200, MMC_HS_400, MMC_HS_400_ES]\n" "mmc list - lists available devices\n" "mmc wp [PART] - power on write protect boot partitions\n" " arguments:\n" " PART - [0|1]\n" " : 0 - first boot partition, 1 - second boot partition\n" " if not assigned, write protect all boot partitions\n" #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING) "mmc hwpartition - does hardware partitioning\n" " arguments (sizes in 512-byte blocks):\n" " USER - <{on|off}>\n" " : sets user data area attributes\n" " GP - <{gp1|gp2|gp3|gp4}> <{on|off}>\n" " : general purpose partition\n" " MODE - <{check|set|complete}>\n" " : mode, complete set partitioning completed\n" " WARNING: Partitioning is a write-once setting once it is set to complete.\n" " Power cycling is required to initialize partitions after set to complete.\n" #endif #ifdef CONFIG_SUPPORT_EMMC_BOOT "mmc bootbus \n" " - Set the BOOT_BUS_WIDTH field of the specified device\n" "mmc bootpart-resize \n" " - Change sizes of boot and RPMB partitions of specified device\n" "mmc partconf [[varname] | [ ]]\n" " - Show or change the bits of the PARTITION_CONFIG field of the specified device\n" " If showing the bits, optionally store the boot_partition field into varname\n" "mmc rst-function \n" " - Change the RST_n_FUNCTION field of the specified device\n" " WARNING: This is a write-once field and 0 / 1 / 2 are the only valid values.\n" #endif #if CONFIG_IS_ENABLED(CMD_MMC_RPMB) "mmc rpmb read addr blk# cnt [address of auth-key] - block size is 256 bytes\n" "mmc rpmb write addr blk# cnt
- block size is 256 bytes\n" "mmc rpmb key
- program the RPMB authentication key.\n" "mmc rpmb counter - read the value of the write counter\n" #endif "mmc setdsr - set DSR register value\n" #ifdef CONFIG_CMD_BKOPS_ENABLE "mmc bkops-enable - enable background operations handshake on device\n" " WARNING: This is a write-once setting.\n" #endif ); /* Old command kept for compatibility. Same as 'mmc info' */ U_BOOT_CMD( mmcinfo, 1, 0, do_mmcinfo, "display MMC info", "- display info of the current MMC device" );