remoteproc: ipu: Add driver to bring up ipu

The driver enables IPU support. Basically enables the clocks,
timers, watchdog timers and bare minimal MMU and supports
loading the firmware from mmc.

Signed-off-by: Keerthy <j-keerthy@ti.com>
[Amjad: fix compile warnings]
Signed-off-by: Amjad Ouled-Ameur <aouledameur@baylibre.com>
This commit is contained in:
Keerthy 2022-01-27 13:16:56 +01:00 committed by Tom Rini
parent a03df89844
commit fc6b41fefb
4 changed files with 771 additions and 0 deletions

View File

@ -539,6 +539,7 @@ F: drivers/phy/omap-usb2-phy.c
F: drivers/phy/phy-ti-am654.c
F: drivers/phy/ti-pipe3-phy.c
F: drivers/ram/k3*
F: drivers/remoteproc/ipu_rproc.c
F: drivers/remoteproc/k3_system_controller.c
F: drivers/remoteproc/pruc_rpoc.c
F: drivers/remoteproc/ti*

View File

@ -92,4 +92,14 @@ config REMOTEPROC_TI_PRU
help
Say 'y' here to add support for TI' K3 remoteproc driver.
config REMOTEPROC_TI_IPU
bool "Support for TI's K3 based IPU remoteproc driver"
select REMOTEPROC
depends on DM
depends on SPL_DRIVERS_MISC
depends on SPL_FS_LOADER
depends on OF_CONTROL
help
Say 'y' here to add support for TI' K3 remoteproc driver.
endmenu

View File

@ -15,3 +15,4 @@ obj-$(CONFIG_REMOTEPROC_TI_K3_DSP) += ti_k3_dsp_rproc.o
obj-$(CONFIG_REMOTEPROC_TI_K3_R5F) += ti_k3_r5f_rproc.o
obj-$(CONFIG_REMOTEPROC_TI_POWER) += ti_power_proc.o
obj-$(CONFIG_REMOTEPROC_TI_PRU) += pru_rproc.o
obj-$(CONFIG_REMOTEPROC_TI_IPU) += ipu_rproc.o

View File

@ -0,0 +1,759 @@
// SPDX-License-Identifier: GPL-2.0
/*
* IPU remoteproc driver for various SoCs
*
* Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
* Angela Stegmaier <angelabaker@ti.com>
* Venkateswara Rao Mandela <venkat.mandela@ti.com>
* Keerthy <j-keerthy@ti.com>
*/
#include <common.h>
#include <hang.h>
#include <cpu_func.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <elf.h>
#include <env.h>
#include <dm/of_access.h>
#include <fs_loader.h>
#include <remoteproc.h>
#include <errno.h>
#include <clk.h>
#include <reset.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <misc.h>
#include <power-domain.h>
#include <timer.h>
#include <fs.h>
#include <spl.h>
#include <timer.h>
#include <reset.h>
#include <linux/bitmap.h>
#define IPU1_LOAD_ADDR (0xa17ff000)
#define MAX_REMOTECORE_BIN_SIZE (8 * 0x100000)
enum ipu_num {
IPU1 = 0,
IPU2,
RPROC_END_ENUMS,
};
#define IPU2_LOAD_ADDR (IPU1_LOAD_ADDR + MAX_REMOTECORE_BIN_SIZE)
#define PAGE_SHIFT 12
#define PAGESIZE_1M 0x0
#define PAGESIZE_64K 0x1
#define PAGESIZE_4K 0x2
#define PAGESIZE_16M 0x3
#define LE 0
#define BE 1
#define ELEMSIZE_8 0x0
#define ELEMSIZE_16 0x1
#define ELEMSIZE_32 0x2
#define MIXED_TLB 0x0
#define MIXED_CPU 0x1
#define PGT_SMALLPAGE_SIZE 0x00001000
#define PGT_LARGEPAGE_SIZE 0x00010000
#define PGT_SECTION_SIZE 0x00100000
#define PGT_SUPERSECTION_SIZE 0x01000000
#define PGT_L1_DESC_PAGE 0x00001
#define PGT_L1_DESC_SECTION 0x00002
#define PGT_L1_DESC_SUPERSECTION 0x40002
#define PGT_L1_DESC_PAGE_MASK 0xfffffC00
#define PGT_L1_DESC_SECTION_MASK 0xfff00000
#define PGT_L1_DESC_SUPERSECTION_MASK 0xff000000
#define PGT_L1_DESC_SMALLPAGE_INDEX_SHIFT 12
#define PGT_L1_DESC_LARGEPAGE_INDEX_SHIFT 16
#define PGT_L1_DESC_SECTION_INDEX_SHIFT 20
#define PGT_L1_DESC_SUPERSECTION_INDEX_SHIFT 24
#define PGT_L2_DESC_SMALLPAGE 0x02
#define PGT_L2_DESC_LARGEPAGE 0x01
#define PGT_L2_DESC_SMALLPAGE_MASK 0xfffff000
#define PGT_L2_DESC_LARGEPAGE_MASK 0xffff0000
/*
* The memory for the page tables (256 KB per IPU) is placed just before
* the carveout memories for the remote processors. 16 KB of memory is
* needed for the L1 page table (4096 entries * 4 bytes per 1 MB section).
* Any smaller page (64 KB or 4 KB) entries are supported through L2 page
* tables (1 KB per table). The remaining 240 KB can provide support for
* 240 L2 page tables. Any remoteproc firmware image requiring more than
* 240 L2 page table entries would need more memory to be reserved.
*/
#define PAGE_TABLE_SIZE_L1 (0x00004000)
#define PAGE_TABLE_SIZE_L2 (0x400)
#define MAX_NUM_L2_PAGE_TABLES (240)
#define PAGE_TABLE_SIZE_L2_TOTAL (MAX_NUM_L2_PAGE_TABLES * PAGE_TABLE_SIZE_L2)
#define PAGE_TABLE_SIZE (PAGE_TABLE_SIZE_L1 + (PAGE_TABLE_SIZE_L2_TOTAL))
/**
* struct omap_rproc_mem - internal memory structure
* @cpu_addr: MPU virtual address of the memory region
* @bus_addr: bus address used to access the memory region
* @dev_addr: device address of the memory region from DSP view
* @size: size of the memory region
*/
struct omap_rproc_mem {
void __iomem *cpu_addr;
phys_addr_t bus_addr;
u32 dev_addr;
size_t size;
};
struct ipu_privdata {
struct omap_rproc_mem mem;
struct list_head mappings;
const char *fw_name;
u32 bootaddr;
int id;
struct udevice *rdev;
};
typedef int (*handle_resource_t) (void *, int offset, int avail);
unsigned int *page_table_l1 = (unsigned int *)0x0;
unsigned int *page_table_l2 = (unsigned int *)0x0;
/*
* Set maximum carveout size to 96 MB
*/
#define DRA7_RPROC_MAX_CO_SIZE (96 * 0x100000)
/*
* These global variables are used for deriving the MMU page tables. They
* are initialized for each core with the appropriate values. The length
* of the array mem_bitmap is set as per a 96 MB carveout which the
* maximum set aside in the current memory map.
*/
unsigned long mem_base;
unsigned long mem_size;
unsigned long
mem_bitmap[BITS_TO_LONGS(DRA7_RPROC_MAX_CO_SIZE >> PAGE_SHIFT)];
unsigned long mem_count;
unsigned int pgtable_l2_map[MAX_NUM_L2_PAGE_TABLES];
unsigned int pgtable_l2_cnt;
void *ipu_alloc_mem(struct udevice *dev, unsigned long len, unsigned long align)
{
unsigned long mask;
unsigned long pageno;
int count;
count = ((len + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1)) >> PAGE_SHIFT;
mask = (1 << align) - 1;
pageno =
bitmap_find_next_zero_area(mem_bitmap, mem_count, 0, count, mask);
debug("%s: count %d mask %#lx pageno %#lx\n", __func__, count, mask,
pageno);
if (pageno >= mem_count) {
debug("%s: %s Error allocating memory; "
"Please check carveout size\n", __FILE__, __func__);
return NULL;
}
bitmap_set(mem_bitmap, pageno, count);
return (void *)(mem_base + (pageno << PAGE_SHIFT));
}
int find_pagesz(unsigned int virt, unsigned int phys, unsigned int len)
{
int pg_sz_ind = -1;
unsigned int min_align = __ffs(virt);
if (min_align > __ffs(phys))
min_align = __ffs(phys);
if (min_align >= PGT_L1_DESC_SUPERSECTION_INDEX_SHIFT &&
len >= 0x1000000) {
pg_sz_ind = PAGESIZE_16M;
goto ret_block;
}
if (min_align >= PGT_L1_DESC_SECTION_INDEX_SHIFT &&
len >= 0x100000) {
pg_sz_ind = PAGESIZE_1M;
goto ret_block;
}
if (min_align >= PGT_L1_DESC_LARGEPAGE_INDEX_SHIFT &&
len >= 0x10000) {
pg_sz_ind = PAGESIZE_64K;
goto ret_block;
}
if (min_align >= PGT_L1_DESC_SMALLPAGE_INDEX_SHIFT &&
len >= 0x1000) {
pg_sz_ind = PAGESIZE_4K;
goto ret_block;
}
ret_block:
return pg_sz_ind;
}
int get_l2_pg_tbl_addr(unsigned int virt, unsigned int *pg_tbl_addr)
{
int ret = -1;
int i = 0;
int match_found = 0;
unsigned int tag = (virt & PGT_L1_DESC_SECTION_MASK);
*pg_tbl_addr = 0;
for (i = 0; (i < pgtable_l2_cnt) && (match_found == 0); i++) {
if (tag == pgtable_l2_map[i]) {
*pg_tbl_addr =
((unsigned int)page_table_l2) +
(i * PAGE_TABLE_SIZE_L2);
match_found = 1;
ret = 0;
}
}
if (match_found == 0 && i < MAX_NUM_L2_PAGE_TABLES) {
pgtable_l2_map[i] = tag;
pgtable_l2_cnt++;
*pg_tbl_addr =
((unsigned int)page_table_l2) + (i * PAGE_TABLE_SIZE_L2);
ret = 0;
}
return ret;
}
int
config_l2_pagetable(unsigned int virt, unsigned int phys,
unsigned int pg_sz, unsigned int pg_tbl_addr)
{
int ret = -1;
unsigned int desc = 0;
int i = 0;
unsigned int *pg_tbl = (unsigned int *)pg_tbl_addr;
/*
* Pick bit 19:12 of the virtual address as index
*/
unsigned int index = (virt & (~PGT_L1_DESC_SECTION_MASK)) >> PAGE_SHIFT;
switch (pg_sz) {
case PAGESIZE_64K:
desc =
(phys & PGT_L2_DESC_LARGEPAGE_MASK) | PGT_L2_DESC_LARGEPAGE;
for (i = 0; i < 16; i++)
pg_tbl[index + i] = desc;
ret = 0;
break;
case PAGESIZE_4K:
desc =
(phys & PGT_L2_DESC_SMALLPAGE_MASK) | PGT_L2_DESC_SMALLPAGE;
pg_tbl[index] = desc;
ret = 0;
break;
default:
break;
}
return ret;
}
unsigned int
ipu_config_pagetable(struct udevice *dev, unsigned int virt, unsigned int phys,
unsigned int len)
{
unsigned int index;
unsigned int l = len;
unsigned int desc;
int pg_sz = 0;
int i = 0, err = 0;
unsigned int pg_tbl_l2_addr = 0;
unsigned int tmp_pgsz;
if ((len & 0x0FFF) != 0)
return 0;
while (l > 0) {
pg_sz = find_pagesz(virt, phys, l);
index = virt >> PGT_L1_DESC_SECTION_INDEX_SHIFT;
switch (pg_sz) {
/*
* 16 MB super section
*/
case PAGESIZE_16M:
/*
* Program the next 16 descriptors
*/
desc =
(phys & PGT_L1_DESC_SUPERSECTION_MASK) |
PGT_L1_DESC_SUPERSECTION;
for (i = 0; i < 16; i++)
page_table_l1[index + i] = desc;
l -= PGT_SUPERSECTION_SIZE;
phys += PGT_SUPERSECTION_SIZE;
virt += PGT_SUPERSECTION_SIZE;
break;
/*
* 1 MB section
*/
case PAGESIZE_1M:
desc =
(phys & PGT_L1_DESC_SECTION_MASK) |
PGT_L1_DESC_SECTION;
page_table_l1[index] = desc;
l -= PGT_SECTION_SIZE;
phys += PGT_SECTION_SIZE;
virt += PGT_SECTION_SIZE;
break;
/*
* 64 KB large page
*/
case PAGESIZE_64K:
case PAGESIZE_4K:
if (pg_sz == PAGESIZE_64K)
tmp_pgsz = 0x10000;
else
tmp_pgsz = 0x1000;
err = get_l2_pg_tbl_addr(virt, &pg_tbl_l2_addr);
if (err != 0) {
debug
("Unable to get level 2 PT address\n");
hang();
}
err =
config_l2_pagetable(virt, phys, pg_sz,
pg_tbl_l2_addr);
desc =
(pg_tbl_l2_addr & PGT_L1_DESC_PAGE_MASK) |
PGT_L1_DESC_PAGE;
page_table_l1[index] = desc;
l -= tmp_pgsz;
phys += tmp_pgsz;
virt += tmp_pgsz;
break;
case -1:
default:
return 0;
}
}
return len;
}
int da_to_pa(struct udevice *dev, int da)
{
struct rproc_mem_entry *maps = NULL;
struct ipu_privdata *priv = dev_get_priv(dev);
list_for_each_entry(maps, &priv->mappings, node) {
if (da >= maps->da && da < (maps->da + maps->len))
return maps->dma + (da - maps->da);
}
return 0;
}
u32 ipu_config_mmu(u32 core_id, struct rproc *cfg)
{
u32 i = 0;
u32 reg = 0;
/*
* Clear the entire pagetable location before programming the
* address into the MMU
*/
memset((void *)cfg->page_table_addr, 0x00, PAGE_TABLE_SIZE);
for (i = 0; i < cfg->num_iommus; i++) {
u32 mmu_base = cfg->mmu_base_addr[i];
__raw_writel((int)cfg->page_table_addr, mmu_base + 0x4c);
reg = __raw_readl(mmu_base + 0x88);
/*
* enable bus-error back
*/
__raw_writel(reg | 0x1, mmu_base + 0x88);
/*
* Enable the MMU IRQs during MMU programming for the
* late attachcase. This is to allow the MMU fault to be
* detected by the kernel.
*
* MULTIHITFAULT|EMMUMISS|TRANSLATIONFAULT|TABLEWALKFAULT
*/
__raw_writel(0x1E, mmu_base + 0x1c);
/*
* emutlbupdate|TWLENABLE|MMUENABLE
*/
__raw_writel(0x6, mmu_base + 0x44);
}
return 0;
}
/**
* enum ipu_mem - PRU core memory range identifiers
*/
enum ipu_mem {
PRU_MEM_IRAM = 0,
PRU_MEM_CTRL,
PRU_MEM_DEBUG,
PRU_MEM_MAX,
};
static int ipu_start(struct udevice *dev)
{
struct ipu_privdata *priv;
struct reset_ctl reset;
struct rproc *cfg = NULL;
int ret;
priv = dev_get_priv(dev);
cfg = rproc_cfg_arr[priv->id];
if (cfg->config_peripherals)
cfg->config_peripherals(priv->id, cfg);
/*
* Start running the remote core
*/
ret = reset_get_by_index(dev, 0, &reset);
if (ret < 0) {
dev_err(dev, "%s: error getting reset index %d\n", __func__, 0);
return ret;
}
ret = reset_deassert(&reset);
if (ret < 0) {
dev_err(dev, "%s: error deasserting reset %d\n", __func__, 0);
return ret;
}
ret = reset_get_by_index(dev, 1, &reset);
if (ret < 0) {
dev_err(dev, "%s: error getting reset index %d\n", __func__, 1);
return ret;
}
ret = reset_deassert(&reset);
if (ret < 0) {
dev_err(dev, "%s: error deasserting reset %d\n", __func__, 1);
return ret;
}
return 0;
}
static int ipu_stop(struct udevice *dev)
{
return 0;
}
/**
* ipu_init() - Initialize the remote processor
* @dev: rproc device pointer
*
* Return: 0 if all went ok, else return appropriate error
*/
static int ipu_init(struct udevice *dev)
{
return 0;
}
static int ipu_add_res(struct udevice *dev, struct rproc_mem_entry *mapping)
{
struct ipu_privdata *priv = dev_get_priv(dev);
list_add_tail(&mapping->node, &priv->mappings);
return 0;
}
static int ipu_load(struct udevice *dev, ulong addr, ulong size)
{
Elf32_Ehdr *ehdr; /* Elf header structure pointer */
Elf32_Phdr *phdr; /* Program header structure pointer */
Elf32_Phdr proghdr;
int va;
int pa;
int i;
ehdr = (Elf32_Ehdr *)addr;
phdr = (Elf32_Phdr *)(addr + ehdr->e_phoff);
/*
* Load each program header
*/
for (i = 0; i < ehdr->e_phnum; ++i) {
memcpy(&proghdr, phdr, sizeof(Elf32_Phdr));
if (proghdr.p_type != PT_LOAD) {
++phdr;
continue;
}
va = proghdr.p_paddr;
pa = da_to_pa(dev, va);
if (pa)
proghdr.p_paddr = pa;
void *dst = (void *)(uintptr_t)proghdr.p_paddr;
void *src = (void *)addr + proghdr.p_offset;
debug("Loading phdr %i to 0x%p (%i bytes)\n", i, dst,
proghdr.p_filesz);
if (proghdr.p_filesz)
memcpy(dst, src, proghdr.p_filesz);
flush_cache((unsigned long)dst, proghdr.p_memsz);
++phdr;
}
return 0;
}
static const struct dm_rproc_ops ipu_ops = {
.init = ipu_init,
.start = ipu_start,
.stop = ipu_stop,
.load = ipu_load,
.add_res = ipu_add_res,
.config_pagetable = ipu_config_pagetable,
.alloc_mem = ipu_alloc_mem,
};
/*
* If the remotecore binary expects any peripherals to be setup before it has
* booted, configure them here.
*
* These functions are left empty by default as their operation is usecase
* specific.
*/
u32 ipu1_config_peripherals(u32 core_id, struct rproc *cfg)
{
return 0;
}
u32 ipu2_config_peripherals(u32 core_id, struct rproc *cfg)
{
return 0;
}
struct rproc_intmem_to_l3_mapping ipu1_intmem_to_l3_mapping = {
.num_entries = 1,
.mappings = {
/*
* L2 SRAM
*/
{
.priv_addr = 0x55020000,
.l3_addr = 0x58820000,
.len = (64 * 1024)},
}
};
struct rproc_intmem_to_l3_mapping ipu2_intmem_to_l3_mapping = {
.num_entries = 1,
.mappings = {
/*
* L2 SRAM
*/
{
.priv_addr = 0x55020000,
.l3_addr = 0x55020000,
.len = (64 * 1024)},
}
};
struct rproc ipu1_config = {
.num_iommus = 1,
.mmu_base_addr = {0x58882000, 0},
.load_addr = IPU1_LOAD_ADDR,
.core_name = "IPU1",
.firmware_name = "dra7-ipu1-fw.xem4",
.config_mmu = ipu_config_mmu,
.config_peripherals = ipu1_config_peripherals,
.intmem_to_l3_mapping = &ipu1_intmem_to_l3_mapping
};
struct rproc ipu2_config = {
.num_iommus = 1,
.mmu_base_addr = {0x55082000, 0},
.load_addr = IPU2_LOAD_ADDR,
.core_name = "IPU2",
.firmware_name = "dra7-ipu2-fw.xem4",
.config_mmu = ipu_config_mmu,
.config_peripherals = ipu2_config_peripherals,
.intmem_to_l3_mapping = &ipu2_intmem_to_l3_mapping
};
struct rproc *rproc_cfg_arr[2] = {
[IPU2] = &ipu2_config,
[IPU1] = &ipu1_config,
};
u32 spl_pre_boot_core(struct udevice *dev, u32 core_id)
{
struct rproc *cfg = NULL;
unsigned long load_elf_status = 0;
int tablesz;
cfg = rproc_cfg_arr[core_id];
/*
* Check for valid elf image
*/
if (!valid_elf_image(cfg->load_addr))
return 1;
if (rproc_find_resource_table(dev, cfg->load_addr, &tablesz))
cfg->has_rsc_table = 1;
else
cfg->has_rsc_table = 0;
/*
* Configure the MMU
*/
if (cfg->config_mmu && cfg->has_rsc_table)
cfg->config_mmu(core_id, cfg);
/*
* Load the remote core. Fill the page table of the first(possibly
* only) IOMMU during ELF loading. Copy the page table to the second
* IOMMU before running the remote core.
*/
page_table_l1 = (unsigned int *)cfg->page_table_addr;
page_table_l2 =
(unsigned int *)(cfg->page_table_addr + PAGE_TABLE_SIZE_L1);
mem_base = cfg->cma_base;
mem_size = cfg->cma_size;
memset(mem_bitmap, 0x00, sizeof(mem_bitmap));
mem_count = (cfg->cma_size >> PAGE_SHIFT);
/*
* Clear variables used for level 2 page table allocation
*/
memset(pgtable_l2_map, 0x00, sizeof(pgtable_l2_map));
pgtable_l2_cnt = 0;
load_elf_status = rproc_parse_resource_table(dev, cfg);
if (load_elf_status == 0) {
debug("load_elf_image_phdr returned error for core %s\n",
cfg->core_name);
return 1;
}
flush_cache(cfg->page_table_addr, PAGE_TABLE_SIZE);
return 0;
}
static fdt_addr_t ipu_parse_mem_nodes(struct udevice *dev, char *name,
int privid, fdt_size_t *sizep)
{
int ret;
u32 sp;
ofnode mem_node;
ret = ofnode_read_u32(dev_ofnode(dev), name, &sp);
if (ret) {
dev_err(dev, "memory-region node fetch failed %d\n", ret);
return ret;
}
mem_node = ofnode_get_by_phandle(sp);
if (!ofnode_valid(mem_node))
return -EINVAL;
return ofnode_get_addr_size_index(mem_node, 0, sizep);
}
/**
* ipu_probe() - Basic probe
* @dev: corresponding k3 remote processor device
*
* Return: 0 if all goes good, else appropriate error message.
*/
static int ipu_probe(struct udevice *dev)
{
struct ipu_privdata *priv;
struct rproc *cfg = NULL;
struct reset_ctl reset;
static const char *const ipu_mem_names[] = { "l2ram" };
int ret;
fdt_size_t sizep;
priv = dev_get_priv(dev);
priv->mem.bus_addr =
devfdt_get_addr_size_name(dev,
ipu_mem_names[0],
(fdt_addr_t *)&priv->mem.size);
ret = reset_get_by_index(dev, 2, &reset);
if (ret < 0) {
dev_err(dev, "%s: error getting reset index %d\n", __func__, 2);
return ret;
}
ret = reset_deassert(&reset);
if (ret < 0) {
dev_err(dev, "%s: error deasserting reset %d\n", __func__, 2);
return ret;
}
if (priv->mem.bus_addr == FDT_ADDR_T_NONE) {
dev_err(dev, "%s bus address not found\n", ipu_mem_names[0]);
return -EINVAL;
}
priv->mem.cpu_addr = map_physmem(priv->mem.bus_addr,
priv->mem.size, MAP_NOCACHE);
if (devfdt_get_addr(dev) == 0x58820000)
priv->id = 0;
else
priv->id = 1;
cfg = rproc_cfg_arr[priv->id];
cfg->cma_base = ipu_parse_mem_nodes(dev, "memory-region", priv->id,
&sizep);
cfg->cma_size = sizep;
cfg->page_table_addr = ipu_parse_mem_nodes(dev, "pg-tbl", priv->id,
&sizep);
dev_info(dev,
"ID %d memory %8s: bus addr %pa size 0x%zx va %p da 0x%x\n",
priv->id, ipu_mem_names[0], &priv->mem.bus_addr,
priv->mem.size, priv->mem.cpu_addr, priv->mem.dev_addr);
INIT_LIST_HEAD(&priv->mappings);
if (spl_pre_boot_core(dev, priv->id))
return -EINVAL;
return 0;
}
static const struct udevice_id ipu_ids[] = {
{.compatible = "ti,dra7-ipu"},
{}
};
U_BOOT_DRIVER(ipu) = {
.name = "ipu",
.of_match = ipu_ids,
.id = UCLASS_REMOTEPROC,
.ops = &ipu_ops,
.probe = ipu_probe,
.priv_auto = sizeof(struct ipu_privdata),
};