sf: Add dual memories support - DUAL_STACKED

This patch added support for accessing dual memories in
stacked connection with single chipselect line from controller.

For more info - see doc/SPI/README.dual-flash

Signed-off-by: Jagannadha Sutradharudu Teki <jaganna@xilinx.com>
This commit is contained in:
Jagannadha Sutradharudu Teki 2014-01-12 21:40:11 +05:30
parent ab92224f45
commit f77f469117
6 changed files with 138 additions and 11 deletions

65
doc/SPI/README.dual-flash Normal file
View File

@ -0,0 +1,65 @@
SPI/QSPI Dual flash connection modes:
=====================================
This describes how SPI/QSPI flash memories are connected to a given
controller in a single chip select line.
Current spi_flash framework supports, single flash memory connected
to a given controller with single chip select line, but there are some
hw logics(ex: xilinx zynq qspi) that describes two/dual memories are
connected with a single chip select line from a controller.
"dual_flash" from include/spi.h describes these types of connection mode
Possible connections:
--------------------
SF_SINGLE_FLASH:
- single spi flash memory connected with single chip select line.
+------------+ CS +---------------+
| |----------------------->| |
| Controller | I0[3:0] | Flash memory |
| SPI/QSPI |<======================>| (SPI/QSPI) |
| | CLK | |
| |----------------------->| |
+------------+ +---------------+
SF_DUAL_STACKED_FLASH:
- dual spi/qspi flash memories are connected with a single chipselect
line and these two memories are operating stacked fasion with shared buses.
- xilinx zynq qspi controller has implemented this feature [1]
+------------+ CS +---------------+
| |---------------------->| |
| | I0[3:0] | Upper Flash |
| | +=========>| memory |
| | | CLK | (SPI/QSPI) |
| | | +---->| |
| Controller | CS | | +---------------+
| SPI/QSPI |------------|----|---->| |
| | I0[3:0] | | | Lower Flash |
| |<===========+====|====>| memory |
| | CLK | | (SPI/QSPI) |
| |-----------------+---->| |
+------------+ +---------------+
- two memory flash devices should has same hw part attributes (like size,
vendor..etc)
- Configurations:
on LQSPI_CFG register, Enable TWO_MEM[BIT:30] on LQSPI_CFG
Enable U_PAGE[BIT:28] if U_PAGE flag set - upper memory
Disable U_PAGE[BIT:28] if U_PAGE flag unset - lower memory
- Operation:
accessing memories serially like one after another.
by default, if U_PAGE is unset lower memory should accessible,
once user wants to access upper memory need to set U_PAGE.
Note: Technically there is only one CS line from the controller, but
zynq qspi controller has an internal hw logic to enable additional CS
when controller is configured for dual memories.
[1] http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
--
Jagannadha Sutradharudu Teki <jaganna@xilinx.com>
05-01-2014.

View File

@ -18,6 +18,9 @@ static int spi_flash_read_write(struct spi_slave *spi,
unsigned long flags = SPI_XFER_BEGIN;
int ret;
if (spi->flags & SPI_XFER_U_PAGE)
flags |= SPI_XFER_U_PAGE;
if (data_len == 0)
flags |= SPI_XFER_END;

View File

@ -131,10 +131,28 @@ static int spi_flash_bank(struct spi_flash *flash, u32 offset)
}
#endif
static void spi_flash_dual_flash(struct spi_flash *flash, u32 *addr)
{
switch (flash->dual_flash) {
case SF_DUAL_STACKED_FLASH:
if (*addr >= (flash->size >> 1)) {
*addr -= flash->size >> 1;
flash->spi->flags |= SPI_XFER_U_PAGE;
} else {
flash->spi->flags &= ~SPI_XFER_U_PAGE;
}
break;
default:
debug("SF: Unsupported dual_flash=%d\n", flash->dual_flash);
break;
}
}
int spi_flash_cmd_wait_ready(struct spi_flash *flash, unsigned long timeout)
{
struct spi_slave *spi = flash->spi;
unsigned long timebase;
unsigned long flags = SPI_XFER_BEGIN;
int ret;
u8 status;
u8 check_status = 0x0;
@ -146,7 +164,10 @@ int spi_flash_cmd_wait_ready(struct spi_flash *flash, unsigned long timeout)
check_status = poll_bit;
}
ret = spi_xfer(spi, 8, &cmd, NULL, SPI_XFER_BEGIN);
if (spi->flags & SPI_XFER_U_PAGE)
flags |= SPI_XFER_U_PAGE;
ret = spi_xfer(spi, 8, &cmd, NULL, flags);
if (ret) {
debug("SF: fail to read %s status register\n",
cmd == CMD_READ_STATUS ? "read" : "flag");
@ -219,7 +240,7 @@ int spi_flash_write_common(struct spi_flash *flash, const u8 *cmd,
int spi_flash_cmd_erase_ops(struct spi_flash *flash, u32 offset, size_t len)
{
u32 erase_size;
u32 erase_size, erase_addr;
u8 cmd[SPI_FLASH_CMD_LEN];
int ret = -1;
@ -231,15 +252,20 @@ int spi_flash_cmd_erase_ops(struct spi_flash *flash, u32 offset, size_t len)
cmd[0] = flash->erase_cmd;
while (len) {
erase_addr = offset;
if (flash->dual_flash > SF_SINGLE_FLASH)
spi_flash_dual_flash(flash, &erase_addr);
#ifdef CONFIG_SPI_FLASH_BAR
ret = spi_flash_bank(flash, offset);
ret = spi_flash_bank(flash, erase_addr);
if (ret < 0)
return ret;
#endif
spi_flash_addr(offset, cmd);
spi_flash_addr(erase_addr, cmd);
debug("SF: erase %2x %2x %2x %2x (%x)\n", cmd[0], cmd[1],
cmd[2], cmd[3], offset);
cmd[2], cmd[3], erase_addr);
ret = spi_flash_write_common(flash, cmd, sizeof(cmd), NULL, 0);
if (ret < 0) {
@ -258,6 +284,7 @@ int spi_flash_cmd_write_ops(struct spi_flash *flash, u32 offset,
size_t len, const void *buf)
{
unsigned long byte_addr, page_size;
u32 write_addr;
size_t chunk_len, actual;
u8 cmd[SPI_FLASH_CMD_LEN];
int ret = -1;
@ -266,8 +293,13 @@ int spi_flash_cmd_write_ops(struct spi_flash *flash, u32 offset,
cmd[0] = flash->write_cmd;
for (actual = 0; actual < len; actual += chunk_len) {
write_addr = offset;
if (flash->dual_flash > SF_SINGLE_FLASH)
spi_flash_dual_flash(flash, &write_addr);
#ifdef CONFIG_SPI_FLASH_BAR
ret = spi_flash_bank(flash, offset);
ret = spi_flash_bank(flash, write_addr);
if (ret < 0)
return ret;
#endif
@ -277,7 +309,7 @@ int spi_flash_cmd_write_ops(struct spi_flash *flash, u32 offset,
if (flash->spi->max_write_size)
chunk_len = min(chunk_len, flash->spi->max_write_size);
spi_flash_addr(offset, cmd);
spi_flash_addr(write_addr, cmd);
debug("SF: 0x%p => cmd = { 0x%02x 0x%02x%02x%02x } chunk_len = %zu\n",
buf + actual, cmd[0], cmd[1], cmd[2], cmd[3], chunk_len);
@ -322,7 +354,7 @@ int spi_flash_cmd_read_ops(struct spi_flash *flash, u32 offset,
size_t len, void *data)
{
u8 *cmd, cmdsz;
u32 remain_len, read_len;
u32 remain_len, read_len, read_addr;
int bank_sel = 0;
int ret = -1;
@ -346,8 +378,13 @@ int spi_flash_cmd_read_ops(struct spi_flash *flash, u32 offset,
cmd[0] = flash->read_cmd;
while (len) {
read_addr = offset;
if (flash->dual_flash > SF_SINGLE_FLASH)
spi_flash_dual_flash(flash, &read_addr);
#ifdef CONFIG_SPI_FLASH_BAR
bank_sel = spi_flash_bank(flash, offset);
bank_sel = spi_flash_bank(flash, read_addr);
if (bank_sel < 0)
return ret;
#endif
@ -357,7 +394,7 @@ int spi_flash_cmd_read_ops(struct spi_flash *flash, u32 offset,
else
read_len = remain_len;
spi_flash_addr(offset, cmd);
spi_flash_addr(read_addr, cmd);
ret = spi_flash_read_common(flash, cmd, cmdsz, data, read_len);
if (ret < 0) {

View File

@ -134,6 +134,7 @@ static struct spi_flash *spi_flash_validate_params(struct spi_slave *spi,
flash->spi = spi;
flash->name = params->name;
flash->memory_map = spi->memory_map;
flash->dual_flash = flash->spi->option;
/* Assign spi_flash ops */
flash->write = spi_flash_cmd_write_ops;
@ -148,6 +149,8 @@ static struct spi_flash *spi_flash_validate_params(struct spi_slave *spi,
flash->page_size = (ext_jedec == 0x4d00) ? 512 : 256;
flash->sector_size = params->sector_size;
flash->size = flash->sector_size * params->nr_sectors;
if (flash->dual_flash & SF_DUAL_STACKED_FLASH)
flash->size <<= 1;
/* Compute erase sector and command */
if (params->flags & SECT_4K) {
@ -324,7 +327,10 @@ static struct spi_flash *spi_flash_probe_slave(struct spi_slave *spi)
puts("\n");
#endif
#ifndef CONFIG_SPI_FLASH_BAR
if (flash->size > SPI_FLASH_16MB_BOUN) {
if (((flash->dual_flash == SF_SINGLE_FLASH) &&
(flash->size > SPI_FLASH_16MB_BOUN)) ||
((flash->dual_flash > SF_SINGLE_FLASH) &&
(flash->size > SPI_FLASH_16MB_BOUN << 1))) {
puts("SF: Warning - Only lower 16MiB accessible,");
puts(" Full access #define CONFIG_SPI_FLASH_BAR\n");
}

View File

@ -30,6 +30,7 @@
#define SPI_XFER_MMAP 0x08 /* Memory Mapped start */
#define SPI_XFER_MMAP_END 0x10 /* Memory Mapped End */
#define SPI_XFER_ONCE (SPI_XFER_BEGIN | SPI_XFER_END)
#define SPI_XFER_U_PAGE (1 << 5)
/* SPI TX operation modes */
#define SPI_OPM_TX_QPP 1 << 0
@ -44,6 +45,9 @@
SPI_OPM_RX_DIO | SPI_OPM_RX_QOF | \
SPI_OPM_RX_QIOF
/* SPI bus connection options */
#define SPI_CONN_DUAL_SHARED 1 << 0
/* Header byte that marks the start of the message */
#define SPI_PREAMBLE_END_BYTE 0xec
@ -62,6 +66,8 @@
* @max_write_size: If non-zero, the maximum number of bytes which can
* be written at once, excluding command bytes.
* @memory_map: Address of read-only SPI flash access.
* @option: Varies SPI bus options - separate bus.
* @flags: Indication of SPI flags.
*/
struct spi_slave {
unsigned int bus;
@ -71,6 +77,8 @@ struct spi_slave {
unsigned int wordlen;
unsigned int max_write_size;
void *memory_map;
u8 option;
u8 flags;
};
/**

View File

@ -36,6 +36,12 @@ enum spi_read_cmds {
#define RD_EXTN ARRAY_SLOW | DUAL_OUTPUT_FAST | DUAL_IO_FAST
#define RD_FULL RD_EXTN | QUAD_OUTPUT_FAST | QUAD_IO_FAST
/* Dual SPI flash memories */
enum spi_dual_flash {
SF_SINGLE_FLASH = 0,
SF_DUAL_STACKED_FLASH = 1 << 0,
};
/**
* struct spi_flash_params - SPI/QSPI flash device params structure
*
@ -64,6 +70,7 @@ extern const struct spi_flash_params spi_flash_params_table[];
*
* @spi: SPI slave
* @name: Name of SPI flash
* @dual_flash: Indicates dual flash memories - dual stacked
* @size: Total flash size
* @page_size: Write (page) size
* @sector_size: Sector size
@ -88,6 +95,7 @@ extern const struct spi_flash_params spi_flash_params_table[];
struct spi_flash {
struct spi_slave *spi;
const char *name;
u8 dual_flash;
u32 size;
u32 page_size;