Tegra: Move common clock code to arch/arm/cpu/tegra-common/clock.c
This 'commonizes' much of the clock/pll code. SoC-dependent code and tables are left in arch/cpu/tegraXXX-common/clock.c Some T30 tables needed whitespace fixes due to checkpatch complaints. Signed-off-by: Tom Warren <twarren@nvidia.com>
This commit is contained in:
parent
d83152d8e4
commit
f29f086a09
@ -28,7 +28,7 @@ include $(TOPDIR)/config.mk
|
||||
LIB = $(obj)libcputegra-common.o
|
||||
|
||||
SOBJS += lowlevel_init.o
|
||||
COBJS-y += ap.o board.o sys_info.o timer.o
|
||||
COBJS-y += ap.o board.o sys_info.o timer.o clock.o
|
||||
|
||||
SRCS := $(SOBJS:.o=.S) $(COBJS-y:.o=.c)
|
||||
OBJS := $(addprefix $(obj),$(SOBJS) $(COBJS-y))
|
||||
|
560
arch/arm/cpu/tegra-common/clock.c
Normal file
560
arch/arm/cpu/tegra-common/clock.c
Normal file
@ -0,0 +1,560 @@
|
||||
/*
|
||||
* Copyright (c) 2010-2013, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms and conditions of the GNU General Public License,
|
||||
* version 2, as published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
* more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/* Tegra SoC common clock control functions */
|
||||
|
||||
#include <common.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/arch/clock.h>
|
||||
#include <asm/arch/tegra.h>
|
||||
#include <asm/arch-tegra/clk_rst.h>
|
||||
#include <asm/arch-tegra/timer.h>
|
||||
#include <div64.h>
|
||||
#include <fdtdec.h>
|
||||
|
||||
/*
|
||||
* This is our record of the current clock rate of each clock. We don't
|
||||
* fill all of these in since we are only really interested in clocks which
|
||||
* we use as parents.
|
||||
*/
|
||||
static unsigned pll_rate[CLOCK_ID_COUNT];
|
||||
|
||||
/*
|
||||
* The oscillator frequency is fixed to one of four set values. Based on this
|
||||
* the other clocks are set up appropriately.
|
||||
*/
|
||||
static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
|
||||
13000000,
|
||||
19200000,
|
||||
12000000,
|
||||
26000000,
|
||||
};
|
||||
|
||||
/* return 1 if a peripheral ID is in range */
|
||||
#define clock_type_id_isvalid(id) ((id) >= 0 && \
|
||||
(id) < CLOCK_TYPE_COUNT)
|
||||
|
||||
char pllp_valid = 1; /* PLLP is set up correctly */
|
||||
|
||||
/* return 1 if a periphc_internal_id is in range */
|
||||
#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
|
||||
(id) < PERIPHC_COUNT)
|
||||
|
||||
/* number of clock outputs of a PLL */
|
||||
static const u8 pll_num_clkouts[] = {
|
||||
1, /* PLLC */
|
||||
1, /* PLLM */
|
||||
4, /* PLLP */
|
||||
1, /* PLLA */
|
||||
0, /* PLLU */
|
||||
0, /* PLLD */
|
||||
};
|
||||
|
||||
int clock_get_osc_bypass(void)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
||||
u32 reg;
|
||||
|
||||
reg = readl(&clkrst->crc_osc_ctrl);
|
||||
return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
|
||||
}
|
||||
|
||||
/* Returns a pointer to the registers of the given pll */
|
||||
static struct clk_pll *get_pll(enum clock_id clkid)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
||||
|
||||
assert(clock_id_is_pll(clkid));
|
||||
return &clkrst->crc_pll[clkid];
|
||||
}
|
||||
|
||||
int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
|
||||
u32 *divp, u32 *cpcon, u32 *lfcon)
|
||||
{
|
||||
struct clk_pll *pll = get_pll(clkid);
|
||||
u32 data;
|
||||
|
||||
assert(clkid != CLOCK_ID_USB);
|
||||
|
||||
/* Safety check, adds to code size but is small */
|
||||
if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
|
||||
return -1;
|
||||
data = readl(&pll->pll_base);
|
||||
*divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
|
||||
*divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
|
||||
*divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
|
||||
data = readl(&pll->pll_misc);
|
||||
*cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
|
||||
*lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
|
||||
u32 divp, u32 cpcon, u32 lfcon)
|
||||
{
|
||||
struct clk_pll *pll = get_pll(clkid);
|
||||
u32 data;
|
||||
|
||||
/*
|
||||
* We cheat by treating all PLL (except PLLU) in the same fashion.
|
||||
* This works only because:
|
||||
* - same fields are always mapped at same offsets, except DCCON
|
||||
* - DCCON is always 0, doesn't conflict
|
||||
* - M,N, P of PLLP values are ignored for PLLP
|
||||
*/
|
||||
data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
|
||||
writel(data, &pll->pll_misc);
|
||||
|
||||
data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
|
||||
(0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
|
||||
|
||||
if (clkid == CLOCK_ID_USB)
|
||||
data |= divp << PLLU_VCO_FREQ_SHIFT;
|
||||
else
|
||||
data |= divp << PLL_DIVP_SHIFT;
|
||||
writel(data, &pll->pll_base);
|
||||
|
||||
/* calculate the stable time */
|
||||
return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
|
||||
}
|
||||
|
||||
void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
|
||||
unsigned divisor)
|
||||
{
|
||||
u32 *reg = get_periph_source_reg(periph_id);
|
||||
u32 value;
|
||||
|
||||
value = readl(reg);
|
||||
|
||||
value &= ~OUT_CLK_SOURCE_MASK;
|
||||
value |= source << OUT_CLK_SOURCE_SHIFT;
|
||||
|
||||
value &= ~OUT_CLK_DIVISOR_MASK;
|
||||
value |= divisor << OUT_CLK_DIVISOR_SHIFT;
|
||||
|
||||
writel(value, reg);
|
||||
}
|
||||
|
||||
void clock_ll_set_source(enum periph_id periph_id, unsigned source)
|
||||
{
|
||||
u32 *reg = get_periph_source_reg(periph_id);
|
||||
|
||||
clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
|
||||
source << OUT_CLK_SOURCE_SHIFT);
|
||||
}
|
||||
|
||||
/**
|
||||
* Given the parent's rate and the required rate for the children, this works
|
||||
* out the peripheral clock divider to use, in 7.1 binary format.
|
||||
*
|
||||
* @param divider_bits number of divider bits (8 or 16)
|
||||
* @param parent_rate clock rate of parent clock in Hz
|
||||
* @param rate required clock rate for this clock
|
||||
* @return divider which should be used
|
||||
*/
|
||||
static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
|
||||
unsigned long rate)
|
||||
{
|
||||
u64 divider = parent_rate * 2;
|
||||
unsigned max_divider = 1 << divider_bits;
|
||||
|
||||
divider += rate - 1;
|
||||
do_div(divider, rate);
|
||||
|
||||
if ((s64)divider - 2 < 0)
|
||||
return 0;
|
||||
|
||||
if ((s64)divider - 2 >= max_divider)
|
||||
return -1;
|
||||
|
||||
return divider - 2;
|
||||
}
|
||||
|
||||
int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
|
||||
{
|
||||
struct clk_pll *pll = get_pll(clkid);
|
||||
int data = 0, div = 0, offset = 0;
|
||||
|
||||
if (!clock_id_is_pll(clkid))
|
||||
return -1;
|
||||
|
||||
if (pllout + 1 > pll_num_clkouts[clkid])
|
||||
return -1;
|
||||
|
||||
div = clk_get_divider(8, pll_rate[clkid], rate);
|
||||
|
||||
if (div < 0)
|
||||
return -1;
|
||||
|
||||
/* out2 and out4 are in the high part of the register */
|
||||
if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
|
||||
offset = 16;
|
||||
|
||||
data = (div << PLL_OUT_RATIO_SHIFT) |
|
||||
PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
|
||||
clrsetbits_le32(&pll->pll_out[pllout >> 1],
|
||||
PLL_OUT_RATIO_MASK << offset, data << offset);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given the parent's rate and the divider in 7.1 format, this works out the
|
||||
* resulting peripheral clock rate.
|
||||
*
|
||||
* @param parent_rate clock rate of parent clock in Hz
|
||||
* @param divider which should be used in 7.1 format
|
||||
* @return effective clock rate of peripheral
|
||||
*/
|
||||
static unsigned long get_rate_from_divider(unsigned long parent_rate,
|
||||
int divider)
|
||||
{
|
||||
u64 rate;
|
||||
|
||||
rate = (u64)parent_rate * 2;
|
||||
do_div(rate, divider + 2);
|
||||
return rate;
|
||||
}
|
||||
|
||||
unsigned long clock_get_periph_rate(enum periph_id periph_id,
|
||||
enum clock_id parent)
|
||||
{
|
||||
u32 *reg = get_periph_source_reg(periph_id);
|
||||
|
||||
return get_rate_from_divider(pll_rate[parent],
|
||||
(readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the best available 7.1 format divisor given a parent clock rate and
|
||||
* required child clock rate. This function assumes that a second-stage
|
||||
* divisor is available which can divide by powers of 2 from 1 to 256.
|
||||
*
|
||||
* @param divider_bits number of divider bits (8 or 16)
|
||||
* @param parent_rate clock rate of parent clock in Hz
|
||||
* @param rate required clock rate for this clock
|
||||
* @param extra_div value for the second-stage divisor (not set if this
|
||||
* function returns -1.
|
||||
* @return divider which should be used, or -1 if nothing is valid
|
||||
*
|
||||
*/
|
||||
static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
|
||||
unsigned long rate, int *extra_div)
|
||||
{
|
||||
int shift;
|
||||
int best_divider = -1;
|
||||
int best_error = rate;
|
||||
|
||||
/* try dividers from 1 to 256 and find closest match */
|
||||
for (shift = 0; shift <= 8 && best_error > 0; shift++) {
|
||||
unsigned divided_parent = parent_rate >> shift;
|
||||
int divider = clk_get_divider(divider_bits, divided_parent,
|
||||
rate);
|
||||
unsigned effective_rate = get_rate_from_divider(divided_parent,
|
||||
divider);
|
||||
int error = rate - effective_rate;
|
||||
|
||||
/* Given a valid divider, look for the lowest error */
|
||||
if (divider != -1 && error < best_error) {
|
||||
best_error = error;
|
||||
*extra_div = 1 << shift;
|
||||
best_divider = divider;
|
||||
}
|
||||
}
|
||||
|
||||
/* return what we found - *extra_div will already be set */
|
||||
return best_divider;
|
||||
}
|
||||
|
||||
/**
|
||||
* Adjust peripheral PLL to use the given divider and source.
|
||||
*
|
||||
* @param periph_id peripheral to adjust
|
||||
* @param source Source number (0-3 or 0-7)
|
||||
* @param mux_bits Number of mux bits (2 or 4)
|
||||
* @param divider Required divider in 7.1 or 15.1 format
|
||||
* @return 0 if ok, -1 on error (requesting a parent clock which is not valid
|
||||
* for this peripheral)
|
||||
*/
|
||||
static int adjust_periph_pll(enum periph_id periph_id, int source,
|
||||
int mux_bits, unsigned divider)
|
||||
{
|
||||
u32 *reg = get_periph_source_reg(periph_id);
|
||||
|
||||
clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
|
||||
divider << OUT_CLK_DIVISOR_SHIFT);
|
||||
udelay(1);
|
||||
|
||||
/* work out the source clock and set it */
|
||||
if (source < 0)
|
||||
return -1;
|
||||
if (mux_bits == 4) {
|
||||
clrsetbits_le32(reg, OUT_CLK_SOURCE4_MASK,
|
||||
source << OUT_CLK_SOURCE4_SHIFT);
|
||||
} else {
|
||||
clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
|
||||
source << OUT_CLK_SOURCE_SHIFT);
|
||||
}
|
||||
udelay(2);
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
|
||||
enum clock_id parent, unsigned rate, int *extra_div)
|
||||
{
|
||||
unsigned effective_rate;
|
||||
int mux_bits, divider_bits, source;
|
||||
int divider;
|
||||
|
||||
/* work out the source clock and set it */
|
||||
source = get_periph_clock_source(periph_id, parent, &mux_bits,
|
||||
÷r_bits);
|
||||
|
||||
if (extra_div)
|
||||
divider = find_best_divider(divider_bits, pll_rate[parent],
|
||||
rate, extra_div);
|
||||
else
|
||||
divider = clk_get_divider(divider_bits, pll_rate[parent],
|
||||
rate);
|
||||
assert(divider >= 0);
|
||||
if (adjust_periph_pll(periph_id, source, mux_bits, divider))
|
||||
return -1U;
|
||||
debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
|
||||
get_periph_source_reg(periph_id),
|
||||
readl(get_periph_source_reg(periph_id)));
|
||||
|
||||
/* Check what we ended up with. This shouldn't matter though */
|
||||
effective_rate = clock_get_periph_rate(periph_id, parent);
|
||||
if (extra_div)
|
||||
effective_rate /= *extra_div;
|
||||
if (rate != effective_rate)
|
||||
debug("Requested clock rate %u not honored (got %u)\n",
|
||||
rate, effective_rate);
|
||||
return effective_rate;
|
||||
}
|
||||
|
||||
unsigned clock_start_periph_pll(enum periph_id periph_id,
|
||||
enum clock_id parent, unsigned rate)
|
||||
{
|
||||
unsigned effective_rate;
|
||||
|
||||
reset_set_enable(periph_id, 1);
|
||||
clock_enable(periph_id);
|
||||
|
||||
effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
|
||||
NULL);
|
||||
|
||||
reset_set_enable(periph_id, 0);
|
||||
return effective_rate;
|
||||
}
|
||||
|
||||
void clock_enable(enum periph_id clkid)
|
||||
{
|
||||
clock_set_enable(clkid, 1);
|
||||
}
|
||||
|
||||
void clock_disable(enum periph_id clkid)
|
||||
{
|
||||
clock_set_enable(clkid, 0);
|
||||
}
|
||||
|
||||
void reset_periph(enum periph_id periph_id, int us_delay)
|
||||
{
|
||||
/* Put peripheral into reset */
|
||||
reset_set_enable(periph_id, 1);
|
||||
udelay(us_delay);
|
||||
|
||||
/* Remove reset */
|
||||
reset_set_enable(periph_id, 0);
|
||||
|
||||
udelay(us_delay);
|
||||
}
|
||||
|
||||
void reset_cmplx_set_enable(int cpu, int which, int reset)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
||||
u32 mask;
|
||||
|
||||
/* Form the mask, which depends on the cpu chosen (2 or 4) */
|
||||
assert(cpu >= 0 && cpu < MAX_NUM_CPU);
|
||||
mask = which << cpu;
|
||||
|
||||
/* either enable or disable those reset for that CPU */
|
||||
if (reset)
|
||||
writel(mask, &clkrst->crc_cpu_cmplx_set);
|
||||
else
|
||||
writel(mask, &clkrst->crc_cpu_cmplx_clr);
|
||||
}
|
||||
|
||||
unsigned clock_get_rate(enum clock_id clkid)
|
||||
{
|
||||
struct clk_pll *pll;
|
||||
u32 base;
|
||||
u32 divm;
|
||||
u64 parent_rate;
|
||||
u64 rate;
|
||||
|
||||
parent_rate = osc_freq[clock_get_osc_freq()];
|
||||
if (clkid == CLOCK_ID_OSC)
|
||||
return parent_rate;
|
||||
|
||||
pll = get_pll(clkid);
|
||||
base = readl(&pll->pll_base);
|
||||
|
||||
/* Oh for bf_unpack()... */
|
||||
rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
|
||||
divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
|
||||
if (clkid == CLOCK_ID_USB)
|
||||
divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
|
||||
else
|
||||
divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
|
||||
do_div(rate, divm);
|
||||
return rate;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the output frequency you want for each PLL clock.
|
||||
* PLL output frequencies are programmed by setting their N, M and P values.
|
||||
* The governing equations are:
|
||||
* VCO = (Fi / m) * n, Fo = VCO / (2^p)
|
||||
* where Fo is the output frequency from the PLL.
|
||||
* Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
|
||||
* 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
|
||||
* Please see Tegra TRM section 5.3 to get the detail for PLL Programming
|
||||
*
|
||||
* @param n PLL feedback divider(DIVN)
|
||||
* @param m PLL input divider(DIVN)
|
||||
* @param p post divider(DIVP)
|
||||
* @param cpcon base PLL charge pump(CPCON)
|
||||
* @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
|
||||
* be overriden), 1 if PLL is already correct
|
||||
*/
|
||||
int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
|
||||
{
|
||||
u32 base_reg;
|
||||
u32 misc_reg;
|
||||
struct clk_pll *pll;
|
||||
|
||||
pll = get_pll(clkid);
|
||||
|
||||
base_reg = readl(&pll->pll_base);
|
||||
|
||||
/* Set BYPASS, m, n and p to PLL_BASE */
|
||||
base_reg &= ~PLL_DIVM_MASK;
|
||||
base_reg |= m << PLL_DIVM_SHIFT;
|
||||
|
||||
base_reg &= ~PLL_DIVN_MASK;
|
||||
base_reg |= n << PLL_DIVN_SHIFT;
|
||||
|
||||
base_reg &= ~PLL_DIVP_MASK;
|
||||
base_reg |= p << PLL_DIVP_SHIFT;
|
||||
|
||||
if (clkid == CLOCK_ID_PERIPH) {
|
||||
/*
|
||||
* If the PLL is already set up, check that it is correct
|
||||
* and record this info for clock_verify() to check.
|
||||
*/
|
||||
if (base_reg & PLL_BASE_OVRRIDE_MASK) {
|
||||
base_reg |= PLL_ENABLE_MASK;
|
||||
if (base_reg != readl(&pll->pll_base))
|
||||
pllp_valid = 0;
|
||||
return pllp_valid ? 1 : -1;
|
||||
}
|
||||
base_reg |= PLL_BASE_OVRRIDE_MASK;
|
||||
}
|
||||
|
||||
base_reg |= PLL_BYPASS_MASK;
|
||||
writel(base_reg, &pll->pll_base);
|
||||
|
||||
/* Set cpcon to PLL_MISC */
|
||||
misc_reg = readl(&pll->pll_misc);
|
||||
misc_reg &= ~PLL_CPCON_MASK;
|
||||
misc_reg |= cpcon << PLL_CPCON_SHIFT;
|
||||
writel(misc_reg, &pll->pll_misc);
|
||||
|
||||
/* Enable PLL */
|
||||
base_reg |= PLL_ENABLE_MASK;
|
||||
writel(base_reg, &pll->pll_base);
|
||||
|
||||
/* Disable BYPASS */
|
||||
base_reg &= ~PLL_BYPASS_MASK;
|
||||
writel(base_reg, &pll->pll_base);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void clock_ll_start_uart(enum periph_id periph_id)
|
||||
{
|
||||
/* Assert UART reset and enable clock */
|
||||
reset_set_enable(periph_id, 1);
|
||||
clock_enable(periph_id);
|
||||
clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
|
||||
|
||||
/* wait for 2us */
|
||||
udelay(2);
|
||||
|
||||
/* De-assert reset to UART */
|
||||
reset_set_enable(periph_id, 0);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_OF_CONTROL
|
||||
int clock_decode_periph_id(const void *blob, int node)
|
||||
{
|
||||
enum periph_id id;
|
||||
u32 cell[2];
|
||||
int err;
|
||||
|
||||
err = fdtdec_get_int_array(blob, node, "clocks", cell,
|
||||
ARRAY_SIZE(cell));
|
||||
if (err)
|
||||
return -1;
|
||||
id = clk_id_to_periph_id(cell[1]);
|
||||
assert(clock_periph_id_isvalid(id));
|
||||
return id;
|
||||
}
|
||||
#endif /* CONFIG_OF_CONTROL */
|
||||
|
||||
int clock_verify(void)
|
||||
{
|
||||
struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
|
||||
u32 reg = readl(&pll->pll_base);
|
||||
|
||||
if (!pllp_valid) {
|
||||
printf("Warning: PLLP %x is not correct\n", reg);
|
||||
return -1;
|
||||
}
|
||||
debug("PLLP %x is correct\n", reg);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void clock_init(void)
|
||||
{
|
||||
pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
|
||||
pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
|
||||
pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
|
||||
pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
|
||||
pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
|
||||
pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
|
||||
debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
|
||||
debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
|
||||
debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
|
||||
debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
|
||||
debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
|
||||
}
|
@ -30,24 +30,6 @@
|
||||
#include <div64.h>
|
||||
#include <fdtdec.h>
|
||||
|
||||
/*
|
||||
* This is our record of the current clock rate of each clock. We don't
|
||||
* fill all of these in since we are only really interested in clocks which
|
||||
* we use as parents.
|
||||
*/
|
||||
static unsigned pll_rate[CLOCK_ID_COUNT];
|
||||
|
||||
/*
|
||||
* The oscillator frequency is fixed to one of four set values. Based on this
|
||||
* the other clocks are set up appropriately.
|
||||
*/
|
||||
static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
|
||||
13000000,
|
||||
19200000,
|
||||
12000000,
|
||||
26000000,
|
||||
};
|
||||
|
||||
/*
|
||||
* Clock types that we can use as a source. The Tegra20 has muxes for the
|
||||
* peripheral clocks, and in most cases there are four options for the clock
|
||||
@ -76,12 +58,6 @@ enum clock_type_id {
|
||||
CLOCK_TYPE_NONE = -1, /* invalid clock type */
|
||||
};
|
||||
|
||||
/* return 1 if a peripheral ID is in range */
|
||||
#define clock_type_id_isvalid(id) ((id) >= 0 && \
|
||||
(id) < CLOCK_TYPE_COUNT)
|
||||
|
||||
char pllp_valid = 1; /* PLLP is set up correctly */
|
||||
|
||||
enum {
|
||||
CLOCK_MAX_MUX = 4 /* number of source options for each clock */
|
||||
};
|
||||
@ -192,10 +168,6 @@ enum periphc_internal_id {
|
||||
PERIPHC_NONE = -1,
|
||||
};
|
||||
|
||||
/* return 1 if a periphc_internal_id is in range */
|
||||
#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
|
||||
(id) < PERIPHC_COUNT)
|
||||
|
||||
/*
|
||||
* Clock type for each peripheral clock source. We put the name in each
|
||||
* record just so it is easy to match things up
|
||||
@ -396,19 +368,9 @@ static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
|
||||
NONE(CRAM2),
|
||||
};
|
||||
|
||||
/* number of clock outputs of a PLL */
|
||||
static const u8 pll_num_clkouts[] = {
|
||||
1, /* PLLC */
|
||||
1, /* PLLM */
|
||||
4, /* PLLP */
|
||||
1, /* PLLA */
|
||||
0, /* PLLU */
|
||||
0, /* PLLD */
|
||||
};
|
||||
|
||||
/*
|
||||
* Get the oscillator frequency, from the corresponding hardware configuration
|
||||
* field.
|
||||
* field. T20 has 4 frequencies that it supports.
|
||||
*/
|
||||
enum clock_osc_freq clock_get_osc_freq(void)
|
||||
{
|
||||
@ -420,110 +382,8 @@ enum clock_osc_freq clock_get_osc_freq(void)
|
||||
return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
|
||||
}
|
||||
|
||||
int clock_get_osc_bypass(void)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
||||
u32 reg;
|
||||
|
||||
reg = readl(&clkrst->crc_osc_ctrl);
|
||||
return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
|
||||
}
|
||||
|
||||
/* Returns a pointer to the registers of the given pll */
|
||||
static struct clk_pll *get_pll(enum clock_id clkid)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
||||
|
||||
assert(clock_id_is_pll(clkid));
|
||||
return &clkrst->crc_pll[clkid];
|
||||
}
|
||||
|
||||
int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
|
||||
u32 *divp, u32 *cpcon, u32 *lfcon)
|
||||
{
|
||||
struct clk_pll *pll = get_pll(clkid);
|
||||
u32 data;
|
||||
|
||||
assert(clkid != CLOCK_ID_USB);
|
||||
|
||||
/* Safety check, adds to code size but is small */
|
||||
if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
|
||||
return -1;
|
||||
data = readl(&pll->pll_base);
|
||||
*divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
|
||||
*divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
|
||||
*divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
|
||||
data = readl(&pll->pll_misc);
|
||||
*cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
|
||||
*lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
|
||||
u32 divp, u32 cpcon, u32 lfcon)
|
||||
{
|
||||
struct clk_pll *pll = get_pll(clkid);
|
||||
u32 data;
|
||||
|
||||
/*
|
||||
* We cheat by treating all PLL (except PLLU) in the same fashion.
|
||||
* This works only because:
|
||||
* - same fields are always mapped at same offsets, except DCCON
|
||||
* - DCCON is always 0, doesn't conflict
|
||||
* - M,N, P of PLLP values are ignored for PLLP
|
||||
*/
|
||||
data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
|
||||
writel(data, &pll->pll_misc);
|
||||
|
||||
data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
|
||||
(0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
|
||||
|
||||
if (clkid == CLOCK_ID_USB)
|
||||
data |= divp << PLLU_VCO_FREQ_SHIFT;
|
||||
else
|
||||
data |= divp << PLL_DIVP_SHIFT;
|
||||
writel(data, &pll->pll_base);
|
||||
|
||||
/* calculate the stable time */
|
||||
return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
|
||||
}
|
||||
|
||||
/* return 1 if a peripheral ID is in range and valid */
|
||||
static int clock_periph_id_isvalid(enum periph_id id)
|
||||
{
|
||||
if (id < PERIPH_ID_FIRST || id >= PERIPH_ID_COUNT)
|
||||
printf("Peripheral id %d out of range\n", id);
|
||||
else {
|
||||
switch (id) {
|
||||
case PERIPH_ID_RESERVED1:
|
||||
case PERIPH_ID_RESERVED2:
|
||||
case PERIPH_ID_RESERVED30:
|
||||
case PERIPH_ID_RESERVED35:
|
||||
case PERIPH_ID_RESERVED56:
|
||||
case PERIPH_ID_RESERVED74:
|
||||
case PERIPH_ID_RESERVED76:
|
||||
case PERIPH_ID_RESERVED77:
|
||||
case PERIPH_ID_RESERVED78:
|
||||
case PERIPH_ID_RESERVED79:
|
||||
case PERIPH_ID_RESERVED80:
|
||||
case PERIPH_ID_RESERVED81:
|
||||
case PERIPH_ID_RESERVED82:
|
||||
case PERIPH_ID_RESERVED83:
|
||||
case PERIPH_ID_RESERVED91:
|
||||
printf("Peripheral id %d is reserved\n", id);
|
||||
break;
|
||||
default:
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Returns a pointer to the clock source register for a peripheral */
|
||||
static u32 *get_periph_source_reg(enum periph_id periph_id)
|
||||
u32 *get_periph_source_reg(enum periph_id periph_id)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
||||
@ -535,154 +395,6 @@ static u32 *get_periph_source_reg(enum periph_id periph_id)
|
||||
return &clkrst->crc_clk_src[internal_id];
|
||||
}
|
||||
|
||||
void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
|
||||
unsigned divisor)
|
||||
{
|
||||
u32 *reg = get_periph_source_reg(periph_id);
|
||||
u32 value;
|
||||
|
||||
value = readl(reg);
|
||||
|
||||
value &= ~OUT_CLK_SOURCE_MASK;
|
||||
value |= source << OUT_CLK_SOURCE_SHIFT;
|
||||
|
||||
value &= ~OUT_CLK_DIVISOR_MASK;
|
||||
value |= divisor << OUT_CLK_DIVISOR_SHIFT;
|
||||
|
||||
writel(value, reg);
|
||||
}
|
||||
|
||||
void clock_ll_set_source(enum periph_id periph_id, unsigned source)
|
||||
{
|
||||
u32 *reg = get_periph_source_reg(periph_id);
|
||||
|
||||
clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
|
||||
source << OUT_CLK_SOURCE_SHIFT);
|
||||
}
|
||||
|
||||
/**
|
||||
* Given the parent's rate and the required rate for the children, this works
|
||||
* out the peripheral clock divider to use, in 7.1 binary format.
|
||||
*
|
||||
* @param divider_bits number of divider bits (8 or 16)
|
||||
* @param parent_rate clock rate of parent clock in Hz
|
||||
* @param rate required clock rate for this clock
|
||||
* @return divider which should be used
|
||||
*/
|
||||
static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
|
||||
unsigned long rate)
|
||||
{
|
||||
u64 divider = parent_rate * 2;
|
||||
unsigned max_divider = 1 << divider_bits;
|
||||
|
||||
divider += rate - 1;
|
||||
do_div(divider, rate);
|
||||
|
||||
if ((s64)divider - 2 < 0)
|
||||
return 0;
|
||||
|
||||
if ((s64)divider - 2 >= max_divider)
|
||||
return -1;
|
||||
|
||||
return divider - 2;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given the parent's rate and the divider in 7.1 format, this works out the
|
||||
* resulting peripheral clock rate.
|
||||
*
|
||||
* @param parent_rate clock rate of parent clock in Hz
|
||||
* @param divider which should be used in 7.1 format
|
||||
* @return effective clock rate of peripheral
|
||||
*/
|
||||
static unsigned long get_rate_from_divider(unsigned long parent_rate,
|
||||
int divider)
|
||||
{
|
||||
u64 rate;
|
||||
|
||||
rate = (u64)parent_rate * 2;
|
||||
do_div(rate, divider + 2);
|
||||
return rate;
|
||||
}
|
||||
|
||||
unsigned long clock_get_periph_rate(enum periph_id periph_id,
|
||||
enum clock_id parent)
|
||||
{
|
||||
u32 *reg = get_periph_source_reg(periph_id);
|
||||
|
||||
return get_rate_from_divider(pll_rate[parent],
|
||||
(readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
|
||||
}
|
||||
|
||||
int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
|
||||
{
|
||||
struct clk_pll *pll = get_pll(clkid);
|
||||
int data = 0, div = 0, offset = 0;
|
||||
|
||||
if (!clock_id_is_pll(clkid))
|
||||
return -1;
|
||||
|
||||
if (pllout + 1 > pll_num_clkouts[clkid])
|
||||
return -1;
|
||||
|
||||
div = clk_get_divider(8, pll_rate[clkid], rate);
|
||||
|
||||
if (div < 0)
|
||||
return -1;
|
||||
|
||||
/* out2 and out4 are in the high part of the register */
|
||||
if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
|
||||
offset = 16;
|
||||
|
||||
data = (div << PLL_OUT_RATIO_SHIFT) |
|
||||
PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
|
||||
clrsetbits_le32(&pll->pll_out[pllout >> 1],
|
||||
PLL_OUT_RATIO_MASK << offset, data << offset);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the best available 7.1 format divisor given a parent clock rate and
|
||||
* required child clock rate. This function assumes that a second-stage
|
||||
* divisor is available which can divide by powers of 2 from 1 to 256.
|
||||
*
|
||||
* @param divider_bits number of divider bits (8 or 16)
|
||||
* @param parent_rate clock rate of parent clock in Hz
|
||||
* @param rate required clock rate for this clock
|
||||
* @param extra_div value for the second-stage divisor (not set if this
|
||||
* function returns -1.
|
||||
* @return divider which should be used, or -1 if nothing is valid
|
||||
*
|
||||
*/
|
||||
static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
|
||||
unsigned long rate, int *extra_div)
|
||||
{
|
||||
int shift;
|
||||
int best_divider = -1;
|
||||
int best_error = rate;
|
||||
|
||||
/* try dividers from 1 to 256 and find closest match */
|
||||
for (shift = 0; shift <= 8 && best_error > 0; shift++) {
|
||||
unsigned divided_parent = parent_rate >> shift;
|
||||
int divider = clk_get_divider(divider_bits, divided_parent,
|
||||
rate);
|
||||
unsigned effective_rate = get_rate_from_divider(divided_parent,
|
||||
divider);
|
||||
int error = rate - effective_rate;
|
||||
|
||||
/* Given a valid divider, look for the lowest error */
|
||||
if (divider != -1 && error < best_error) {
|
||||
best_error = error;
|
||||
*extra_div = 1 << shift;
|
||||
best_divider = divider;
|
||||
}
|
||||
}
|
||||
|
||||
/* return what we found - *extra_div will already be set */
|
||||
return best_divider;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a peripheral ID and the required source clock, this returns which
|
||||
* value should be programmed into the source mux for that peripheral.
|
||||
@ -695,7 +407,7 @@ static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
|
||||
* @param divider_bits Set to number of divider bits (8 or 16)
|
||||
* @return mux value (0-4, or -1 if not found)
|
||||
*/
|
||||
static int get_periph_clock_source(enum periph_id periph_id,
|
||||
int get_periph_clock_source(enum periph_id periph_id,
|
||||
enum clock_id parent, int *mux_bits, int *divider_bits)
|
||||
{
|
||||
enum clock_type_id type;
|
||||
@ -743,88 +455,6 @@ static int get_periph_clock_source(enum periph_id periph_id,
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Adjust peripheral PLL to use the given divider and source.
|
||||
*
|
||||
* @param periph_id peripheral to adjust
|
||||
* @param source Source number (0-3 or 0-7)
|
||||
* @param mux_bits Number of mux bits (2 or 4)
|
||||
* @param divider Required divider in 7.1 or 15.1 format
|
||||
* @return 0 if ok, -1 on error (requesting a parent clock which is not valid
|
||||
* for this peripheral)
|
||||
*/
|
||||
static int adjust_periph_pll(enum periph_id periph_id, int source,
|
||||
int mux_bits, unsigned divider)
|
||||
{
|
||||
u32 *reg = get_periph_source_reg(periph_id);
|
||||
|
||||
clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
|
||||
divider << OUT_CLK_DIVISOR_SHIFT);
|
||||
udelay(1);
|
||||
|
||||
/* work out the source clock and set it */
|
||||
if (source < 0)
|
||||
return -1;
|
||||
if (mux_bits == 4) {
|
||||
clrsetbits_le32(reg, OUT_CLK_SOURCE4_MASK,
|
||||
source << OUT_CLK_SOURCE4_SHIFT);
|
||||
} else {
|
||||
clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
|
||||
source << OUT_CLK_SOURCE_SHIFT);
|
||||
}
|
||||
udelay(2);
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
|
||||
enum clock_id parent, unsigned rate, int *extra_div)
|
||||
{
|
||||
unsigned effective_rate;
|
||||
int mux_bits, divider_bits, source;
|
||||
int divider;
|
||||
|
||||
/* work out the source clock and set it */
|
||||
source = get_periph_clock_source(periph_id, parent, &mux_bits,
|
||||
÷r_bits);
|
||||
|
||||
if (extra_div)
|
||||
divider = find_best_divider(divider_bits, pll_rate[parent],
|
||||
rate, extra_div);
|
||||
else
|
||||
divider = clk_get_divider(divider_bits, pll_rate[parent],
|
||||
rate);
|
||||
assert(divider >= 0);
|
||||
if (adjust_periph_pll(periph_id, source, mux_bits, divider))
|
||||
return -1U;
|
||||
debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
|
||||
get_periph_source_reg(periph_id),
|
||||
readl(get_periph_source_reg(periph_id)));
|
||||
|
||||
/* Check what we ended up with. This shouldn't matter though */
|
||||
effective_rate = clock_get_periph_rate(periph_id, parent);
|
||||
if (extra_div)
|
||||
effective_rate /= *extra_div;
|
||||
if (rate != effective_rate)
|
||||
debug("Requested clock rate %u not honored (got %u)\n",
|
||||
rate, effective_rate);
|
||||
return effective_rate;
|
||||
}
|
||||
|
||||
unsigned clock_start_periph_pll(enum periph_id periph_id,
|
||||
enum clock_id parent, unsigned rate)
|
||||
{
|
||||
unsigned effective_rate;
|
||||
|
||||
reset_set_enable(periph_id, 1);
|
||||
clock_enable(periph_id);
|
||||
|
||||
effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
|
||||
NULL);
|
||||
|
||||
reset_set_enable(periph_id, 0);
|
||||
return effective_rate;
|
||||
}
|
||||
|
||||
void clock_set_enable(enum periph_id periph_id, int enable)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
@ -842,16 +472,6 @@ void clock_set_enable(enum periph_id periph_id, int enable)
|
||||
writel(reg, clk);
|
||||
}
|
||||
|
||||
void clock_enable(enum periph_id clkid)
|
||||
{
|
||||
clock_set_enable(clkid, 1);
|
||||
}
|
||||
|
||||
void clock_disable(enum periph_id clkid)
|
||||
{
|
||||
clock_set_enable(clkid, 0);
|
||||
}
|
||||
|
||||
void reset_set_enable(enum periph_id periph_id, int enable)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
@ -869,146 +489,6 @@ void reset_set_enable(enum periph_id periph_id, int enable)
|
||||
writel(reg, reset);
|
||||
}
|
||||
|
||||
void reset_periph(enum periph_id periph_id, int us_delay)
|
||||
{
|
||||
/* Put peripheral into reset */
|
||||
reset_set_enable(periph_id, 1);
|
||||
udelay(us_delay);
|
||||
|
||||
/* Remove reset */
|
||||
reset_set_enable(periph_id, 0);
|
||||
|
||||
udelay(us_delay);
|
||||
}
|
||||
|
||||
void reset_cmplx_set_enable(int cpu, int which, int reset)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
||||
u32 mask;
|
||||
|
||||
/* Form the mask, which depends on the cpu chosen. Tegra20 has 2 */
|
||||
assert(cpu >= 0 && cpu < 2);
|
||||
mask = which << cpu;
|
||||
|
||||
/* either enable or disable those reset for that CPU */
|
||||
if (reset)
|
||||
writel(mask, &clkrst->crc_cpu_cmplx_set);
|
||||
else
|
||||
writel(mask, &clkrst->crc_cpu_cmplx_clr);
|
||||
}
|
||||
|
||||
unsigned clock_get_rate(enum clock_id clkid)
|
||||
{
|
||||
struct clk_pll *pll;
|
||||
u32 base;
|
||||
u32 divm;
|
||||
u64 parent_rate;
|
||||
u64 rate;
|
||||
|
||||
parent_rate = osc_freq[clock_get_osc_freq()];
|
||||
if (clkid == CLOCK_ID_OSC)
|
||||
return parent_rate;
|
||||
|
||||
pll = get_pll(clkid);
|
||||
base = readl(&pll->pll_base);
|
||||
|
||||
/* Oh for bf_unpack()... */
|
||||
rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
|
||||
divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
|
||||
if (clkid == CLOCK_ID_USB)
|
||||
divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
|
||||
else
|
||||
divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
|
||||
do_div(rate, divm);
|
||||
return rate;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the output frequency you want for each PLL clock.
|
||||
* PLL output frequencies are programmed by setting their N, M and P values.
|
||||
* The governing equations are:
|
||||
* VCO = (Fi / m) * n, Fo = VCO / (2^p)
|
||||
* where Fo is the output frequency from the PLL.
|
||||
* Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
|
||||
* 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
|
||||
* Please see Tegra TRM section 5.3 to get the detail for PLL Programming
|
||||
*
|
||||
* @param n PLL feedback divider(DIVN)
|
||||
* @param m PLL input divider(DIVN)
|
||||
* @param p post divider(DIVP)
|
||||
* @param cpcon base PLL charge pump(CPCON)
|
||||
* @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
|
||||
* be overriden), 1 if PLL is already correct
|
||||
*/
|
||||
static int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
|
||||
{
|
||||
u32 base_reg;
|
||||
u32 misc_reg;
|
||||
struct clk_pll *pll;
|
||||
|
||||
pll = get_pll(clkid);
|
||||
|
||||
base_reg = readl(&pll->pll_base);
|
||||
|
||||
/* Set BYPASS, m, n and p to PLL_BASE */
|
||||
base_reg &= ~PLL_DIVM_MASK;
|
||||
base_reg |= m << PLL_DIVM_SHIFT;
|
||||
|
||||
base_reg &= ~PLL_DIVN_MASK;
|
||||
base_reg |= n << PLL_DIVN_SHIFT;
|
||||
|
||||
base_reg &= ~PLL_DIVP_MASK;
|
||||
base_reg |= p << PLL_DIVP_SHIFT;
|
||||
|
||||
if (clkid == CLOCK_ID_PERIPH) {
|
||||
/*
|
||||
* If the PLL is already set up, check that it is correct
|
||||
* and record this info for clock_verify() to check.
|
||||
*/
|
||||
if (base_reg & PLL_BASE_OVRRIDE_MASK) {
|
||||
base_reg |= PLL_ENABLE_MASK;
|
||||
if (base_reg != readl(&pll->pll_base))
|
||||
pllp_valid = 0;
|
||||
return pllp_valid ? 1 : -1;
|
||||
}
|
||||
base_reg |= PLL_BASE_OVRRIDE_MASK;
|
||||
}
|
||||
|
||||
base_reg |= PLL_BYPASS_MASK;
|
||||
writel(base_reg, &pll->pll_base);
|
||||
|
||||
/* Set cpcon to PLL_MISC */
|
||||
misc_reg = readl(&pll->pll_misc);
|
||||
misc_reg &= ~PLL_CPCON_MASK;
|
||||
misc_reg |= cpcon << PLL_CPCON_SHIFT;
|
||||
writel(misc_reg, &pll->pll_misc);
|
||||
|
||||
/* Enable PLL */
|
||||
base_reg |= PLL_ENABLE_MASK;
|
||||
writel(base_reg, &pll->pll_base);
|
||||
|
||||
/* Disable BYPASS */
|
||||
base_reg &= ~PLL_BYPASS_MASK;
|
||||
writel(base_reg, &pll->pll_base);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void clock_ll_start_uart(enum periph_id periph_id)
|
||||
{
|
||||
/* Assert UART reset and enable clock */
|
||||
reset_set_enable(periph_id, 1);
|
||||
clock_enable(periph_id);
|
||||
clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
|
||||
|
||||
/* wait for 2us */
|
||||
udelay(2);
|
||||
|
||||
/* De-assert reset to UART */
|
||||
reset_set_enable(periph_id, 0);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_OF_CONTROL
|
||||
/*
|
||||
* Convert a device tree clock ID to our peripheral ID. They are mostly
|
||||
@ -1018,67 +498,34 @@ void clock_ll_start_uart(enum periph_id periph_id)
|
||||
* @param clk_id Clock ID according to tegra20 device tree binding
|
||||
* @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
|
||||
*/
|
||||
static enum periph_id clk_id_to_periph_id(int clk_id)
|
||||
enum periph_id clk_id_to_periph_id(int clk_id)
|
||||
{
|
||||
if (clk_id > 95)
|
||||
if (clk_id > PERIPH_ID_COUNT)
|
||||
return PERIPH_ID_NONE;
|
||||
|
||||
switch (clk_id) {
|
||||
case 1:
|
||||
case 2:
|
||||
case 7:
|
||||
case 10:
|
||||
case 20:
|
||||
case 30:
|
||||
case 35:
|
||||
case 49:
|
||||
case 56:
|
||||
case 74:
|
||||
case 76:
|
||||
case 77:
|
||||
case 78:
|
||||
case 79:
|
||||
case 80:
|
||||
case 81:
|
||||
case 82:
|
||||
case 83:
|
||||
case 91:
|
||||
case 95:
|
||||
case PERIPH_ID_RESERVED1:
|
||||
case PERIPH_ID_RESERVED2:
|
||||
case PERIPH_ID_RESERVED30:
|
||||
case PERIPH_ID_RESERVED35:
|
||||
case PERIPH_ID_RESERVED56:
|
||||
case PERIPH_ID_RESERVED74:
|
||||
case PERIPH_ID_RESERVED76:
|
||||
case PERIPH_ID_RESERVED77:
|
||||
case PERIPH_ID_RESERVED78:
|
||||
case PERIPH_ID_RESERVED79:
|
||||
case PERIPH_ID_RESERVED80:
|
||||
case PERIPH_ID_RESERVED81:
|
||||
case PERIPH_ID_RESERVED82:
|
||||
case PERIPH_ID_RESERVED83:
|
||||
case PERIPH_ID_RESERVED91:
|
||||
return PERIPH_ID_NONE;
|
||||
default:
|
||||
return clk_id;
|
||||
}
|
||||
}
|
||||
|
||||
int clock_decode_periph_id(const void *blob, int node)
|
||||
{
|
||||
enum periph_id id;
|
||||
u32 cell[2];
|
||||
int err;
|
||||
|
||||
err = fdtdec_get_int_array(blob, node, "clocks", cell,
|
||||
ARRAY_SIZE(cell));
|
||||
if (err)
|
||||
return -1;
|
||||
id = clk_id_to_periph_id(cell[1]);
|
||||
assert(clock_periph_id_isvalid(id));
|
||||
return id;
|
||||
}
|
||||
#endif /* CONFIG_OF_CONTROL */
|
||||
|
||||
int clock_verify(void)
|
||||
{
|
||||
struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
|
||||
u32 reg = readl(&pll->pll_base);
|
||||
|
||||
if (!pllp_valid) {
|
||||
printf("Warning: PLLP %x is not correct\n", reg);
|
||||
return -1;
|
||||
}
|
||||
debug("PLLX %x is correct\n", reg);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void clock_early_init(void)
|
||||
{
|
||||
/*
|
||||
@ -1112,15 +559,3 @@ void clock_early_init(void)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void clock_init(void)
|
||||
{
|
||||
pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
|
||||
pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
|
||||
pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
|
||||
pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
|
||||
pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
|
||||
debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
|
||||
debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
|
||||
debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved.
|
||||
* Copyright (c) 2010-2013, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms and conditions of the GNU General Public License,
|
||||
@ -26,25 +26,7 @@
|
||||
#include <fdtdec.h>
|
||||
|
||||
/*
|
||||
* This is our record of the current clock rate of each clock. We don't
|
||||
* fill all of these in since we are only really interested in clocks which
|
||||
* we use as parents.
|
||||
*/
|
||||
static unsigned pll_rate[CLOCK_ID_COUNT];
|
||||
|
||||
/*
|
||||
* The oscillator frequency is fixed to one of four set values. Based on this
|
||||
* the other clocks are set up appropriately.
|
||||
*/
|
||||
static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
|
||||
13000000,
|
||||
19200000,
|
||||
12000000,
|
||||
26000000,
|
||||
};
|
||||
|
||||
/*
|
||||
* Clock types that we can use as a source. The Tegra3 has muxes for the
|
||||
* Clock types that we can use as a source. The Tegra30 has muxes for the
|
||||
* peripheral clocks, and in most cases there are four options for the clock
|
||||
* source. This gives us a clock 'type' and exploits what commonality exists
|
||||
* in the device.
|
||||
@ -71,21 +53,15 @@ enum clock_type_id {
|
||||
CLOCK_TYPE_PCST,
|
||||
|
||||
CLOCK_TYPE_COUNT,
|
||||
CLOCK_TYPE_NONE = -1, /* invalid clock type */
|
||||
};
|
||||
|
||||
/* return 1 if a peripheral ID is in range */
|
||||
#define clock_type_id_isvalid(id) ((id) >= 0 && \
|
||||
(id) < CLOCK_TYPE_COUNT)
|
||||
|
||||
char pllp_valid = 1; /* PLLP is set up correctly */
|
||||
|
||||
enum {
|
||||
CLOCK_MAX_MUX = 8 /* number of source options for each clock */
|
||||
CLOCK_TYPE_NONE = -1, /* invalid clock type */
|
||||
};
|
||||
|
||||
enum {
|
||||
MASK_BITS_31_30 = 2, /* num of bits used to specify clock source */
|
||||
CLOCK_MAX_MUX = 8 /* number of source options for each clock */
|
||||
};
|
||||
|
||||
enum {
|
||||
MASK_BITS_31_30 = 2, /* num of bits used to specify clock source */
|
||||
MASK_BITS_31_29,
|
||||
MASK_BITS_29_28,
|
||||
};
|
||||
@ -100,45 +76,41 @@ enum {
|
||||
*/
|
||||
#define CLK(x) CLOCK_ID_ ## x
|
||||
static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
|
||||
{ CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
{ CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
MASK_BITS_31_30},
|
||||
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
MASK_BITS_31_30},
|
||||
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
MASK_BITS_31_30},
|
||||
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
MASK_BITS_31_30},
|
||||
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
MASK_BITS_31_30},
|
||||
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
MASK_BITS_31_30},
|
||||
{ CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
{ CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
MASK_BITS_31_30},
|
||||
{ CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
{ CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
MASK_BITS_31_30},
|
||||
{ CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
|
||||
CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
{ CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
|
||||
CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
MASK_BITS_31_29},
|
||||
{ CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO),
|
||||
CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
|
||||
{ CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO),
|
||||
CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
|
||||
MASK_BITS_31_29},
|
||||
{ CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
{ CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
|
||||
CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
|
||||
MASK_BITS_29_28}
|
||||
};
|
||||
|
||||
/* return 1 if a periphc_internal_id is in range */
|
||||
#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
|
||||
(id) < PERIPHC_COUNT)
|
||||
|
||||
/*
|
||||
* Clock type for each peripheral clock source. We put the name in each
|
||||
* record just so it is easy to match things up
|
||||
@ -147,30 +119,30 @@ static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
|
||||
static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
|
||||
/* 0x00 */
|
||||
TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
|
||||
TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
|
||||
TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
|
||||
TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
|
||||
TYPE(PERIPHC_PWM, CLOCK_TYPE_PCST), /* only PWM uses b29:28 */
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_SBC2, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_SBC3, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
|
||||
TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
|
||||
TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
|
||||
TYPE(PERIPHC_PWM, CLOCK_TYPE_PCST), /* only PWM uses b29:28 */
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_SBC2, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_SBC3, CLOCK_TYPE_PCMT),
|
||||
|
||||
/* 0x08 */
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16),
|
||||
TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_SBC1, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T),
|
||||
TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16),
|
||||
TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_SBC1, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T),
|
||||
TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T),
|
||||
|
||||
/* 0x10 */
|
||||
TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
|
||||
TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
|
||||
@ -178,81 +150,81 @@ static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
|
||||
/* 0x18 */
|
||||
TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
|
||||
TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
|
||||
TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT), /* MIPI base-band HSI */
|
||||
TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
|
||||
TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
|
||||
TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT), /* MIPI base-band HSI */
|
||||
TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
|
||||
|
||||
/* 0x20 */
|
||||
TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
|
||||
TYPE(PERIPHC_HDMI, CLOCK_TYPE_PMDACD2T),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
|
||||
TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16),
|
||||
TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
|
||||
TYPE(PERIPHC_HDMI, CLOCK_TYPE_PMDACD2T),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
|
||||
TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16),
|
||||
TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
|
||||
|
||||
/* 0x28 */
|
||||
TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_SBC4, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16),
|
||||
TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_SBC4, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16),
|
||||
TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
|
||||
|
||||
/* 0x30 */
|
||||
TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_I2S0, CLOCK_TYPE_AXPT),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_I2S0, CLOCK_TYPE_AXPT),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
|
||||
/* 0x38h */ /* Jumps to reg offset 0x3B0h - new for T30 */
|
||||
TYPE(PERIPHC_G3D2, CLOCK_TYPE_MCPA),
|
||||
TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PCST), /* s/b PCTS */
|
||||
TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
|
||||
TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
|
||||
TYPE(PERIPHC_I2C4, CLOCK_TYPE_PCMT16),
|
||||
TYPE(PERIPHC_SBC5, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_SBC6, CLOCK_TYPE_PCMT),
|
||||
/* 0x38h */ /* Jumps to reg offset 0x3B0h - new for T30 */
|
||||
TYPE(PERIPHC_G3D2, CLOCK_TYPE_MCPA),
|
||||
TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PCST), /* s/b PCTS */
|
||||
TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
|
||||
TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
|
||||
TYPE(PERIPHC_I2C4, CLOCK_TYPE_PCMT16),
|
||||
TYPE(PERIPHC_SBC5, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_SBC6, CLOCK_TYPE_PCMT),
|
||||
|
||||
/* 0x40 */
|
||||
TYPE(PERIPHC_AUDIO, CLOCK_TYPE_ACPT),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_DAM0, CLOCK_TYPE_ACPT),
|
||||
TYPE(PERIPHC_DAM1, CLOCK_TYPE_ACPT),
|
||||
TYPE(PERIPHC_DAM2, CLOCK_TYPE_ACPT),
|
||||
TYPE(PERIPHC_AUDIO, CLOCK_TYPE_ACPT),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_DAM0, CLOCK_TYPE_ACPT),
|
||||
TYPE(PERIPHC_DAM1, CLOCK_TYPE_ACPT),
|
||||
TYPE(PERIPHC_DAM2, CLOCK_TYPE_ACPT),
|
||||
TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PCST), /* MASK 31:30 */
|
||||
TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PCST), /* MASK 31:30 */
|
||||
TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
|
||||
|
||||
/* 0x48 */
|
||||
TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
|
||||
TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
|
||||
TYPE(PERIPHC_NANDSPEED, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PCST), /* MASK 31:30 */
|
||||
TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_SPEEDO, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NANDSPEED, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PCST), /* MASK 31:30 */
|
||||
TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_SPEEDO, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
|
||||
/* 0x50 */
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT), /* offset 0x420h */
|
||||
TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_HDA, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
||||
TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT), /* offset 0x420h */
|
||||
TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
|
||||
TYPE(PERIPHC_HDA, CLOCK_TYPE_PCMT),
|
||||
};
|
||||
|
||||
/*
|
||||
@ -274,12 +246,12 @@ static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
|
||||
NONE(RESERVED4),
|
||||
NONE(TMR),
|
||||
PERIPHC_UART1,
|
||||
PERIPHC_UART2, /* and vfir 0x68 */
|
||||
PERIPHC_UART2, /* and vfir 0x68 */
|
||||
|
||||
/* 8 */
|
||||
NONE(GPIO),
|
||||
PERIPHC_SDMMC2,
|
||||
NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
|
||||
NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
|
||||
PERIPHC_I2S1,
|
||||
PERIPHC_I2C1,
|
||||
PERIPHC_NDFLASH,
|
||||
@ -318,7 +290,7 @@ static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
|
||||
|
||||
/* 40 */
|
||||
NONE(KFUSE),
|
||||
NONE(SBC1), /* SBC1, 0x34, is this SPI1? */
|
||||
NONE(SBC1), /* SBC1, 0x34, is this SPI1? */
|
||||
PERIPHC_NOR,
|
||||
NONE(RESERVED43),
|
||||
PERIPHC_SBC2,
|
||||
@ -328,7 +300,7 @@ static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
|
||||
|
||||
/* 48 */
|
||||
NONE(DSI),
|
||||
PERIPHC_TVO, /* also CVE 0x40 */
|
||||
PERIPHC_TVO, /* also CVE 0x40 */
|
||||
PERIPHC_MIPI,
|
||||
PERIPHC_HDMI,
|
||||
NONE(CSI),
|
||||
@ -449,7 +421,8 @@ static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
|
||||
|
||||
/*
|
||||
* Get the oscillator frequency, from the corresponding hardware configuration
|
||||
* field.
|
||||
* field. Note that T30 supports 3 new higher freqs, but we map back
|
||||
* to the old T20 freqs. Support for the higher oscillators is TBD.
|
||||
*/
|
||||
enum clock_osc_freq clock_get_osc_freq(void)
|
||||
{
|
||||
@ -458,84 +431,19 @@ enum clock_osc_freq clock_get_osc_freq(void)
|
||||
u32 reg;
|
||||
|
||||
reg = readl(&clkrst->crc_osc_ctrl);
|
||||
return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
|
||||
}
|
||||
reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
|
||||
|
||||
int clock_get_osc_bypass(void)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
||||
u32 reg;
|
||||
if (reg & 1) /* one of the newer freqs */
|
||||
printf("Warning: OSC_FREQ is unsupported! (%d)\n", reg);
|
||||
|
||||
reg = readl(&clkrst->crc_osc_ctrl);
|
||||
return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
|
||||
}
|
||||
|
||||
/* Returns a pointer to the registers of the given pll */
|
||||
static struct clk_pll *get_pll(enum clock_id clkid)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
||||
|
||||
assert(clock_id_is_pll(clkid));
|
||||
return &clkrst->crc_pll[clkid];
|
||||
}
|
||||
|
||||
int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
|
||||
u32 *divp, u32 *cpcon, u32 *lfcon)
|
||||
{
|
||||
struct clk_pll *pll = get_pll(clkid);
|
||||
u32 data;
|
||||
|
||||
assert(clkid != CLOCK_ID_USB);
|
||||
|
||||
/* Safety check, adds to code size but is small */
|
||||
if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
|
||||
return -1;
|
||||
data = readl(&pll->pll_base);
|
||||
*divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
|
||||
*divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
|
||||
*divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
|
||||
data = readl(&pll->pll_misc);
|
||||
*cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
|
||||
*lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
|
||||
u32 divp, u32 cpcon, u32 lfcon)
|
||||
{
|
||||
struct clk_pll *pll = get_pll(clkid);
|
||||
u32 data;
|
||||
|
||||
/*
|
||||
* We cheat by treating all PLL (except PLLU) in the same fashion.
|
||||
* This works only because:
|
||||
* - same fields are always mapped at same offsets, except DCCON
|
||||
* - DCCON is always 0, doesn't conflict
|
||||
* - M,N, P of PLLP values are ignored for PLLP
|
||||
*/
|
||||
data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
|
||||
writel(data, &pll->pll_misc);
|
||||
|
||||
data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
|
||||
(0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
|
||||
|
||||
if (clkid == CLOCK_ID_USB)
|
||||
data |= divp << PLLU_VCO_FREQ_SHIFT;
|
||||
else
|
||||
data |= divp << PLL_DIVP_SHIFT;
|
||||
writel(data, &pll->pll_base);
|
||||
|
||||
/* calculate the stable time */
|
||||
return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
|
||||
return reg >> 2; /* Map to most common (T20) freqs */
|
||||
}
|
||||
|
||||
/* Returns a pointer to the clock source register for a peripheral */
|
||||
static u32 *get_periph_source_reg(enum periph_id periph_id)
|
||||
u32 *get_periph_source_reg(enum periph_id periph_id)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
||||
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
||||
enum periphc_internal_id internal_id;
|
||||
|
||||
/* Coresight is a special case */
|
||||
@ -552,126 +460,6 @@ static u32 *get_periph_source_reg(enum periph_id periph_id)
|
||||
return &clkrst->crc_clk_src[internal_id];
|
||||
}
|
||||
|
||||
void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
|
||||
unsigned divisor)
|
||||
{
|
||||
u32 *reg = get_periph_source_reg(periph_id);
|
||||
u32 value;
|
||||
|
||||
value = readl(reg);
|
||||
|
||||
value &= ~OUT_CLK_SOURCE_MASK;
|
||||
value |= source << OUT_CLK_SOURCE_SHIFT;
|
||||
|
||||
value &= ~OUT_CLK_DIVISOR_MASK;
|
||||
value |= divisor << OUT_CLK_DIVISOR_SHIFT;
|
||||
|
||||
writel(value, reg);
|
||||
}
|
||||
|
||||
void clock_ll_set_source(enum periph_id periph_id, unsigned source)
|
||||
{
|
||||
u32 *reg = get_periph_source_reg(periph_id);
|
||||
|
||||
clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
|
||||
source << OUT_CLK_SOURCE_SHIFT);
|
||||
}
|
||||
|
||||
/**
|
||||
* Given the parent's rate and the required rate for the children, this works
|
||||
* out the peripheral clock divider to use, in 7.1 binary format.
|
||||
*
|
||||
* @param divider_bits number of divider bits (8 or 16)
|
||||
* @param parent_rate clock rate of parent clock in Hz
|
||||
* @param rate required clock rate for this clock
|
||||
* @return divider which should be used
|
||||
*/
|
||||
static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
|
||||
unsigned long rate)
|
||||
{
|
||||
u64 divider = parent_rate * 2;
|
||||
unsigned max_divider = 1 << divider_bits;
|
||||
|
||||
divider += rate - 1;
|
||||
do_div(divider, rate);
|
||||
|
||||
if ((s64)divider - 2 < 0)
|
||||
return 0;
|
||||
|
||||
if ((s64)divider - 2 >= max_divider)
|
||||
return -1;
|
||||
|
||||
return divider - 2;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given the parent's rate and the divider in 7.1 format, this works out the
|
||||
* resulting peripheral clock rate.
|
||||
*
|
||||
* @param parent_rate clock rate of parent clock in Hz
|
||||
* @param divider which should be used in 7.1 format
|
||||
* @return effective clock rate of peripheral
|
||||
*/
|
||||
static unsigned long get_rate_from_divider(unsigned long parent_rate,
|
||||
int divider)
|
||||
{
|
||||
u64 rate;
|
||||
|
||||
rate = (u64)parent_rate * 2;
|
||||
do_div(rate, divider + 2);
|
||||
return rate;
|
||||
}
|
||||
|
||||
unsigned long clock_get_periph_rate(enum periph_id periph_id,
|
||||
enum clock_id parent)
|
||||
{
|
||||
u32 *reg = get_periph_source_reg(periph_id);
|
||||
|
||||
return get_rate_from_divider(pll_rate[parent],
|
||||
(readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the best available 7.1 format divisor given a parent clock rate and
|
||||
* required child clock rate. This function assumes that a second-stage
|
||||
* divisor is available which can divide by powers of 2 from 1 to 256.
|
||||
*
|
||||
* @param divider_bits number of divider bits (8 or 16)
|
||||
* @param parent_rate clock rate of parent clock in Hz
|
||||
* @param rate required clock rate for this clock
|
||||
* @param extra_div value for the second-stage divisor (not set if this
|
||||
* function returns -1.
|
||||
* @return divider which should be used, or -1 if nothing is valid
|
||||
*
|
||||
*/
|
||||
static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
|
||||
unsigned long rate, int *extra_div)
|
||||
{
|
||||
int shift;
|
||||
int best_divider = -1;
|
||||
int best_error = rate;
|
||||
|
||||
/* try dividers from 1 to 256 and find closest match */
|
||||
for (shift = 0; shift <= 8 && best_error > 0; shift++) {
|
||||
unsigned divided_parent = parent_rate >> shift;
|
||||
int divider = clk_get_divider(divider_bits, divided_parent,
|
||||
rate);
|
||||
unsigned effective_rate = get_rate_from_divider(divided_parent,
|
||||
divider);
|
||||
int error = rate - effective_rate;
|
||||
|
||||
/* Given a valid divider, look for the lowest error */
|
||||
if (divider != -1 && error < best_error) {
|
||||
best_error = error;
|
||||
*extra_div = 1 << shift;
|
||||
best_divider = divider;
|
||||
}
|
||||
}
|
||||
|
||||
/* return what we found - *extra_div will already be set */
|
||||
return best_divider;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a peripheral ID and the required source clock, this returns which
|
||||
* value should be programmed into the source mux for that peripheral.
|
||||
@ -681,11 +469,11 @@ static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
|
||||
* @param periph_id peripheral to start
|
||||
* @param source PLL id of required parent clock
|
||||
* @param mux_bits Set to number of bits in mux register: 2 or 4
|
||||
* @param divider_bits Set to number of divider bits (8 or 16)
|
||||
* @param divider_bits Set to number of divider bits (8 or 16)
|
||||
* @return mux value (0-4, or -1 if not found)
|
||||
*/
|
||||
static int get_periph_clock_source(enum periph_id periph_id,
|
||||
enum clock_id parent, int *mux_bits, int *divider_bits)
|
||||
int get_periph_clock_source(enum periph_id periph_id,
|
||||
enum clock_id parent, int *mux_bits, int *divider_bits)
|
||||
{
|
||||
enum clock_type_id type;
|
||||
enum periphc_internal_id internal_id;
|
||||
@ -716,88 +504,6 @@ static int get_periph_clock_source(enum periph_id periph_id,
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Adjust peripheral PLL to use the given divider and source.
|
||||
*
|
||||
* @param periph_id peripheral to adjust
|
||||
* @param source Source number (0-3 or 0-7)
|
||||
* @param mux_bits Number of mux bits (2 or 4)
|
||||
* @param divider Required divider in 7.1 or 15.1 format
|
||||
* @return 0 if ok, -1 on error (requesting a parent clock which is not valid
|
||||
* for this peripheral)
|
||||
*/
|
||||
static int adjust_periph_pll(enum periph_id periph_id, int source,
|
||||
int mux_bits, unsigned divider)
|
||||
{
|
||||
u32 *reg = get_periph_source_reg(periph_id);
|
||||
|
||||
clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
|
||||
divider << OUT_CLK_DIVISOR_SHIFT);
|
||||
udelay(1);
|
||||
|
||||
/* work out the source clock and set it */
|
||||
if (source < 0)
|
||||
return -1;
|
||||
if (mux_bits == 4) {
|
||||
clrsetbits_le32(reg, OUT_CLK_SOURCE4_MASK,
|
||||
source << OUT_CLK_SOURCE4_SHIFT);
|
||||
} else {
|
||||
clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
|
||||
source << OUT_CLK_SOURCE_SHIFT);
|
||||
}
|
||||
udelay(2);
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
|
||||
enum clock_id parent, unsigned rate, int *extra_div)
|
||||
{
|
||||
unsigned effective_rate;
|
||||
int mux_bits, source;
|
||||
int divider, divider_bits = 0;
|
||||
|
||||
/* work out the source clock and set it */
|
||||
source = get_periph_clock_source(periph_id, parent, &mux_bits,
|
||||
÷r_bits);
|
||||
|
||||
if (extra_div)
|
||||
divider = find_best_divider(divider_bits, pll_rate[parent],
|
||||
rate, extra_div);
|
||||
else
|
||||
divider = clk_get_divider(divider_bits, pll_rate[parent],
|
||||
rate);
|
||||
assert(divider >= 0);
|
||||
if (adjust_periph_pll(periph_id, source, mux_bits, divider))
|
||||
return -1U;
|
||||
debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
|
||||
get_periph_source_reg(periph_id),
|
||||
readl(get_periph_source_reg(periph_id)));
|
||||
|
||||
/* Check what we ended up with. This shouldn't matter though */
|
||||
effective_rate = clock_get_periph_rate(periph_id, parent);
|
||||
if (extra_div)
|
||||
effective_rate /= *extra_div;
|
||||
if (rate != effective_rate)
|
||||
debug("Requested clock rate %u not honored (got %u)\n",
|
||||
rate, effective_rate);
|
||||
return effective_rate;
|
||||
}
|
||||
|
||||
unsigned clock_start_periph_pll(enum periph_id periph_id,
|
||||
enum clock_id parent, unsigned rate)
|
||||
{
|
||||
unsigned effective_rate;
|
||||
|
||||
reset_set_enable(periph_id, 1);
|
||||
clock_enable(periph_id);
|
||||
|
||||
effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
|
||||
NULL);
|
||||
|
||||
reset_set_enable(periph_id, 0);
|
||||
return effective_rate;
|
||||
}
|
||||
|
||||
void clock_set_enable(enum periph_id periph_id, int enable)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
@ -819,16 +525,6 @@ void clock_set_enable(enum periph_id periph_id, int enable)
|
||||
writel(reg, clk);
|
||||
}
|
||||
|
||||
void clock_enable(enum periph_id clkid)
|
||||
{
|
||||
clock_set_enable(clkid, 1);
|
||||
}
|
||||
|
||||
void clock_disable(enum periph_id clkid)
|
||||
{
|
||||
clock_set_enable(clkid, 0);
|
||||
}
|
||||
|
||||
void reset_set_enable(enum periph_id periph_id, int enable)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
@ -850,146 +546,6 @@ void reset_set_enable(enum periph_id periph_id, int enable)
|
||||
writel(reg, reset);
|
||||
}
|
||||
|
||||
void reset_periph(enum periph_id periph_id, int us_delay)
|
||||
{
|
||||
/* Put peripheral into reset */
|
||||
reset_set_enable(periph_id, 1);
|
||||
udelay(us_delay);
|
||||
|
||||
/* Remove reset */
|
||||
reset_set_enable(periph_id, 0);
|
||||
|
||||
udelay(us_delay);
|
||||
}
|
||||
|
||||
void reset_cmplx_set_enable(int cpu, int which, int reset)
|
||||
{
|
||||
struct clk_rst_ctlr *clkrst =
|
||||
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
||||
u32 mask;
|
||||
|
||||
/* Form the mask, which depends on the cpu chosen. Tegra3 has 4 */
|
||||
assert(cpu >= 0 && cpu < 4);
|
||||
mask = which << cpu;
|
||||
|
||||
/* either enable or disable those reset for that CPU */
|
||||
if (reset)
|
||||
writel(mask, &clkrst->crc_cpu_cmplx_set);
|
||||
else
|
||||
writel(mask, &clkrst->crc_cpu_cmplx_clr);
|
||||
}
|
||||
|
||||
unsigned clock_get_rate(enum clock_id clkid)
|
||||
{
|
||||
struct clk_pll *pll;
|
||||
u32 base;
|
||||
u32 divm;
|
||||
u64 parent_rate;
|
||||
u64 rate;
|
||||
|
||||
parent_rate = osc_freq[clock_get_osc_freq()];
|
||||
if (clkid == CLOCK_ID_OSC)
|
||||
return parent_rate;
|
||||
|
||||
pll = get_pll(clkid);
|
||||
base = readl(&pll->pll_base);
|
||||
|
||||
/* Oh for bf_unpack()... */
|
||||
rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
|
||||
divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
|
||||
if (clkid == CLOCK_ID_USB)
|
||||
divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
|
||||
else
|
||||
divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
|
||||
do_div(rate, divm);
|
||||
return rate;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the output frequency you want for each PLL clock.
|
||||
* PLL output frequencies are programmed by setting their N, M and P values.
|
||||
* The governing equations are:
|
||||
* VCO = (Fi / m) * n, Fo = VCO / (2^p)
|
||||
* where Fo is the output frequency from the PLL.
|
||||
* Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
|
||||
* 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
|
||||
* Please see Tegra TRM section 5.3 to get the detail for PLL Programming
|
||||
*
|
||||
* @param n PLL feedback divider(DIVN)
|
||||
* @param m PLL input divider(DIVN)
|
||||
* @param p post divider(DIVP)
|
||||
* @param cpcon base PLL charge pump(CPCON)
|
||||
* @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
|
||||
* be overriden), 1 if PLL is already correct
|
||||
*/
|
||||
static int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
|
||||
{
|
||||
u32 base_reg;
|
||||
u32 misc_reg;
|
||||
struct clk_pll *pll;
|
||||
|
||||
pll = get_pll(clkid);
|
||||
|
||||
base_reg = readl(&pll->pll_base);
|
||||
|
||||
/* Set BYPASS, m, n and p to PLL_BASE */
|
||||
base_reg &= ~PLL_DIVM_MASK;
|
||||
base_reg |= m << PLL_DIVM_SHIFT;
|
||||
|
||||
base_reg &= ~PLL_DIVN_MASK;
|
||||
base_reg |= n << PLL_DIVN_SHIFT;
|
||||
|
||||
base_reg &= ~PLL_DIVP_MASK;
|
||||
base_reg |= p << PLL_DIVP_SHIFT;
|
||||
|
||||
if (clkid == CLOCK_ID_PERIPH) {
|
||||
/*
|
||||
* If the PLL is already set up, check that it is correct
|
||||
* and record this info for clock_verify() to check.
|
||||
*/
|
||||
if (base_reg & PLL_BASE_OVRRIDE_MASK) {
|
||||
base_reg |= PLL_ENABLE_MASK;
|
||||
if (base_reg != readl(&pll->pll_base))
|
||||
pllp_valid = 0;
|
||||
return pllp_valid ? 1 : -1;
|
||||
}
|
||||
base_reg |= PLL_BASE_OVRRIDE_MASK;
|
||||
}
|
||||
|
||||
base_reg |= PLL_BYPASS_MASK;
|
||||
writel(base_reg, &pll->pll_base);
|
||||
|
||||
/* Set cpcon to PLL_MISC */
|
||||
misc_reg = readl(&pll->pll_misc);
|
||||
misc_reg &= ~PLL_CPCON_MASK;
|
||||
misc_reg |= cpcon << PLL_CPCON_SHIFT;
|
||||
writel(misc_reg, &pll->pll_misc);
|
||||
|
||||
/* Enable PLL */
|
||||
base_reg |= PLL_ENABLE_MASK;
|
||||
writel(base_reg, &pll->pll_base);
|
||||
|
||||
/* Disable BYPASS */
|
||||
base_reg &= ~PLL_BYPASS_MASK;
|
||||
writel(base_reg, &pll->pll_base);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void clock_ll_start_uart(enum periph_id periph_id)
|
||||
{
|
||||
/* Assert UART reset and enable clock */
|
||||
reset_set_enable(periph_id, 1);
|
||||
clock_enable(periph_id);
|
||||
clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
|
||||
|
||||
/* wait for 2us */
|
||||
udelay(2);
|
||||
|
||||
/* De-assert reset to UART */
|
||||
reset_set_enable(periph_id, 0);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_OF_CONTROL
|
||||
/*
|
||||
* Convert a device tree clock ID to our peripheral ID. They are mostly
|
||||
@ -999,7 +555,7 @@ void clock_ll_start_uart(enum periph_id periph_id)
|
||||
* @param clk_id Clock ID according to tegra30 device tree binding
|
||||
* @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
|
||||
*/
|
||||
static enum periph_id clk_id_to_periph_id(int clk_id)
|
||||
enum periph_id clk_id_to_periph_id(int clk_id)
|
||||
{
|
||||
if (clk_id > PERIPH_ID_COUNT)
|
||||
return PERIPH_ID_NONE;
|
||||
@ -1027,36 +583,8 @@ static enum periph_id clk_id_to_periph_id(int clk_id)
|
||||
return clk_id;
|
||||
}
|
||||
}
|
||||
|
||||
int clock_decode_periph_id(const void *blob, int node)
|
||||
{
|
||||
enum periph_id id;
|
||||
u32 cell[2];
|
||||
int err;
|
||||
|
||||
err = fdtdec_get_int_array(blob, node, "clocks", cell,
|
||||
ARRAY_SIZE(cell));
|
||||
if (err)
|
||||
return -1;
|
||||
id = clk_id_to_periph_id(cell[1]);
|
||||
assert(clock_periph_id_isvalid(id));
|
||||
return id;
|
||||
}
|
||||
#endif /* CONFIG_OF_CONTROL */
|
||||
|
||||
int clock_verify(void)
|
||||
{
|
||||
struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
|
||||
u32 reg = readl(&pll->pll_base);
|
||||
|
||||
if (!pllp_valid) {
|
||||
printf("Warning: PLLP %x is not correct\n", reg);
|
||||
return -1;
|
||||
}
|
||||
debug("PLLP %x is correct\n", reg);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void clock_early_init(void)
|
||||
{
|
||||
/*
|
||||
@ -1088,15 +616,3 @@ void clock_early_init(void)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void clock_init(void)
|
||||
{
|
||||
pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
|
||||
pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
|
||||
pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
|
||||
pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
|
||||
pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
|
||||
debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
|
||||
debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
|
||||
debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
|
||||
}
|
||||
|
@ -199,8 +199,6 @@ enum {
|
||||
};
|
||||
|
||||
/* CLK_RST_CONTROLLER_OSC_CTRL_0 */
|
||||
#define OSC_FREQ_SHIFT 30
|
||||
#define OSC_FREQ_MASK (3U << OSC_FREQ_SHIFT)
|
||||
#define OSC_XOBP_SHIFT 1
|
||||
#define OSC_XOBP_MASK (1U << OSC_XOBP_SHIFT)
|
||||
|
||||
|
@ -82,7 +82,7 @@ int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout,
|
||||
* @returns 0 if ok, -1 on error (invalid clock id)
|
||||
*/
|
||||
int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
|
||||
u32 *divp, u32 *cpcon, u32 *lfcon);
|
||||
u32 *divp, u32 *cpcon, u32 *lfcon);
|
||||
|
||||
/*
|
||||
* Enable a clock
|
||||
@ -262,4 +262,59 @@ void clock_init(void);
|
||||
/* Initialize the PLLs */
|
||||
void clock_early_init(void);
|
||||
|
||||
#endif /* _TEGRA_CLOCK_H_ */
|
||||
/* Returns a pointer to the clock source register for a peripheral */
|
||||
u32 *get_periph_source_reg(enum periph_id periph_id);
|
||||
|
||||
/**
|
||||
* Given a peripheral ID and the required source clock, this returns which
|
||||
* value should be programmed into the source mux for that peripheral.
|
||||
*
|
||||
* There is special code here to handle the one source type with 5 sources.
|
||||
*
|
||||
* @param periph_id peripheral to start
|
||||
* @param source PLL id of required parent clock
|
||||
* @param mux_bits Set to number of bits in mux register: 2 or 4
|
||||
* @param divider_bits Set to number of divider bits (8 or 16)
|
||||
* @return mux value (0-4, or -1 if not found)
|
||||
*/
|
||||
int get_periph_clock_source(enum periph_id periph_id,
|
||||
enum clock_id parent, int *mux_bits, int *divider_bits);
|
||||
|
||||
/*
|
||||
* Convert a device tree clock ID to our peripheral ID. They are mostly
|
||||
* the same but we are very cautious so we check that a valid clock ID is
|
||||
* provided.
|
||||
*
|
||||
* @param clk_id Clock ID according to tegra30 device tree binding
|
||||
* @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
|
||||
*/
|
||||
enum periph_id clk_id_to_periph_id(int clk_id);
|
||||
|
||||
/**
|
||||
* Set the output frequency you want for each PLL clock.
|
||||
* PLL output frequencies are programmed by setting their N, M and P values.
|
||||
* The governing equations are:
|
||||
* VCO = (Fi / m) * n, Fo = VCO / (2^p)
|
||||
* where Fo is the output frequency from the PLL.
|
||||
* Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
|
||||
* 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
|
||||
* Please see Tegra TRM section 5.3 to get the detail for PLL Programming
|
||||
*
|
||||
* @param n PLL feedback divider(DIVN)
|
||||
* @param m PLL input divider(DIVN)
|
||||
* @param p post divider(DIVP)
|
||||
* @param cpcon base PLL charge pump(CPCON)
|
||||
* @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
|
||||
* be overriden), 1 if PLL is already correct
|
||||
*/
|
||||
int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon);
|
||||
|
||||
/* return 1 if a peripheral ID is in range */
|
||||
#define clock_type_id_isvalid(id) ((id) >= 0 && \
|
||||
(id) < CLOCK_TYPE_COUNT)
|
||||
|
||||
/* return 1 if a periphc_internal_id is in range */
|
||||
#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
|
||||
(id) < PERIPHC_COUNT)
|
||||
|
||||
#endif /* _TEGRA_CLOCK_H_ */
|
||||
|
@ -193,4 +193,8 @@ enum pll_out_id {
|
||||
#define clock_id_is_pll(id) ((id) >= CLOCK_ID_FIRST && \
|
||||
(id) < CLOCK_ID_FIRST_SIMPLE)
|
||||
|
||||
/* return 1 if a peripheral ID is in range */
|
||||
#define clock_periph_id_isvalid(id) ((id) >= PERIPH_ID_FIRST && \
|
||||
(id) < PERIPH_ID_COUNT)
|
||||
|
||||
#endif /* _CLOCK_TABLES_H_ */
|
||||
|
@ -26,4 +26,8 @@
|
||||
|
||||
#include <asm/arch-tegra/clock.h>
|
||||
|
||||
/* CLK_RST_CONTROLLER_OSC_CTRL_0 */
|
||||
#define OSC_FREQ_SHIFT 30
|
||||
#define OSC_FREQ_MASK (3U << OSC_FREQ_SHIFT)
|
||||
|
||||
#endif /* _TEGRA20_CLOCK_H */
|
||||
|
@ -33,4 +33,6 @@
|
||||
|
||||
#define BCT_ODMDATA_OFFSET 4068 /* 12 bytes from end of BCT */
|
||||
|
||||
#define MAX_NUM_CPU 2
|
||||
|
||||
#endif /* TEGRA20_H */
|
||||
|
@ -21,4 +21,8 @@
|
||||
|
||||
#include <asm/arch-tegra/clock.h>
|
||||
|
||||
/* CLK_RST_CONTROLLER_OSC_CTRL_0 */
|
||||
#define OSC_FREQ_SHIFT 28
|
||||
#define OSC_FREQ_MASK (0xF << OSC_FREQ_SHIFT)
|
||||
|
||||
#endif /* _TEGRA30_CLOCK_H_ */
|
||||
|
@ -23,4 +23,6 @@
|
||||
|
||||
#define BCT_ODMDATA_OFFSET 6116 /* 12 bytes from end of BCT */
|
||||
|
||||
#define MAX_NUM_CPU 4
|
||||
|
||||
#endif /* TEGRA30_H */
|
||||
|
Loading…
Reference in New Issue
Block a user