fs: btrfs: Crossport volumes.[ch] from btrfs-progs
This patch crossports volumes.[ch] from btrfs-progs, including: - btrfs_map_block() The core mechanism to map btrfs logical address to physical address. This version includes multi-device support, along with RAID56 support. - btrfs_scan_one_device() This is the function to register one btrfs device to the list. This is the main part of the multi-device btrfs assembling process. Although we're not going to support multiple devices until U-Boot allows us to scan one device without actually opening it. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Marek Behún <marek.behun@nic.cz> [trini: Use %zu in a debug print to avoid warning] Signed-off-by: Tom Rini <trini@konsulko.com>
This commit is contained in:
parent
be35942546
commit
b1f0067aba
@ -4,4 +4,4 @@
|
||||
|
||||
obj-y := btrfs.o chunk-map.o compression.o ctree.o dev.o dir-item.o \
|
||||
extent-io.o inode.o root.o subvolume.o crypto/hash.o disk-io.o \
|
||||
common/rbtree-utils.o extent-cache.o
|
||||
common/rbtree-utils.o extent-cache.o volumes.o
|
||||
|
@ -68,4 +68,9 @@ static inline void uuid_unparse(const u8 *uuid, char *out)
|
||||
return uuid_bin_to_str((unsigned char *)uuid, out, 0);
|
||||
}
|
||||
|
||||
static inline int is_power_of_2(unsigned long n)
|
||||
{
|
||||
return (n != 0 && ((n & (n - 1)) == 0));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -12,6 +12,7 @@
|
||||
#include <common.h>
|
||||
#include <compiler.h>
|
||||
#include <linux/rbtree.h>
|
||||
#include <linux/bug.h>
|
||||
#include <linux/unaligned/le_byteshift.h>
|
||||
#include <u-boot/crc.h>
|
||||
#include "kernel-shared/btrfs_tree.h"
|
||||
|
872
fs/btrfs/volumes.c
Normal file
872
fs/btrfs/volumes.c
Normal file
@ -0,0 +1,872 @@
|
||||
// SPDX-License-Identifier: GPL-2.0+
|
||||
#include <stdlib.h>
|
||||
#include <common.h>
|
||||
#include <fs_internal.h>
|
||||
#include "ctree.h"
|
||||
#include "disk-io.h"
|
||||
#include "volumes.h"
|
||||
|
||||
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
|
||||
[BTRFS_RAID_RAID10] = {
|
||||
.sub_stripes = 2,
|
||||
.dev_stripes = 1,
|
||||
.devs_max = 0, /* 0 == as many as possible */
|
||||
.devs_min = 4,
|
||||
.tolerated_failures = 1,
|
||||
.devs_increment = 2,
|
||||
.ncopies = 2,
|
||||
.nparity = 0,
|
||||
.raid_name = "raid10",
|
||||
.bg_flag = BTRFS_BLOCK_GROUP_RAID10,
|
||||
},
|
||||
[BTRFS_RAID_RAID1] = {
|
||||
.sub_stripes = 1,
|
||||
.dev_stripes = 1,
|
||||
.devs_max = 2,
|
||||
.devs_min = 2,
|
||||
.tolerated_failures = 1,
|
||||
.devs_increment = 2,
|
||||
.ncopies = 2,
|
||||
.nparity = 0,
|
||||
.raid_name = "raid1",
|
||||
.bg_flag = BTRFS_BLOCK_GROUP_RAID1,
|
||||
},
|
||||
[BTRFS_RAID_RAID1C3] = {
|
||||
.sub_stripes = 1,
|
||||
.dev_stripes = 1,
|
||||
.devs_max = 3,
|
||||
.devs_min = 3,
|
||||
.tolerated_failures = 2,
|
||||
.devs_increment = 3,
|
||||
.ncopies = 3,
|
||||
.raid_name = "raid1c3",
|
||||
.bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
|
||||
},
|
||||
[BTRFS_RAID_RAID1C4] = {
|
||||
.sub_stripes = 1,
|
||||
.dev_stripes = 1,
|
||||
.devs_max = 4,
|
||||
.devs_min = 4,
|
||||
.tolerated_failures = 3,
|
||||
.devs_increment = 4,
|
||||
.ncopies = 4,
|
||||
.raid_name = "raid1c4",
|
||||
.bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
|
||||
},
|
||||
[BTRFS_RAID_DUP] = {
|
||||
.sub_stripes = 1,
|
||||
.dev_stripes = 2,
|
||||
.devs_max = 1,
|
||||
.devs_min = 1,
|
||||
.tolerated_failures = 0,
|
||||
.devs_increment = 1,
|
||||
.ncopies = 2,
|
||||
.nparity = 0,
|
||||
.raid_name = "dup",
|
||||
.bg_flag = BTRFS_BLOCK_GROUP_DUP,
|
||||
},
|
||||
[BTRFS_RAID_RAID0] = {
|
||||
.sub_stripes = 1,
|
||||
.dev_stripes = 1,
|
||||
.devs_max = 0,
|
||||
.devs_min = 2,
|
||||
.tolerated_failures = 0,
|
||||
.devs_increment = 1,
|
||||
.ncopies = 1,
|
||||
.nparity = 0,
|
||||
.raid_name = "raid0",
|
||||
.bg_flag = BTRFS_BLOCK_GROUP_RAID0,
|
||||
},
|
||||
[BTRFS_RAID_SINGLE] = {
|
||||
.sub_stripes = 1,
|
||||
.dev_stripes = 1,
|
||||
.devs_max = 1,
|
||||
.devs_min = 1,
|
||||
.tolerated_failures = 0,
|
||||
.devs_increment = 1,
|
||||
.ncopies = 1,
|
||||
.nparity = 0,
|
||||
.raid_name = "single",
|
||||
.bg_flag = 0,
|
||||
},
|
||||
[BTRFS_RAID_RAID5] = {
|
||||
.sub_stripes = 1,
|
||||
.dev_stripes = 1,
|
||||
.devs_max = 0,
|
||||
.devs_min = 2,
|
||||
.tolerated_failures = 1,
|
||||
.devs_increment = 1,
|
||||
.ncopies = 1,
|
||||
.nparity = 1,
|
||||
.raid_name = "raid5",
|
||||
.bg_flag = BTRFS_BLOCK_GROUP_RAID5,
|
||||
},
|
||||
[BTRFS_RAID_RAID6] = {
|
||||
.sub_stripes = 1,
|
||||
.dev_stripes = 1,
|
||||
.devs_max = 0,
|
||||
.devs_min = 3,
|
||||
.tolerated_failures = 2,
|
||||
.devs_increment = 1,
|
||||
.ncopies = 1,
|
||||
.nparity = 2,
|
||||
.raid_name = "raid6",
|
||||
.bg_flag = BTRFS_BLOCK_GROUP_RAID6,
|
||||
},
|
||||
};
|
||||
|
||||
struct stripe {
|
||||
struct btrfs_device *dev;
|
||||
u64 physical;
|
||||
};
|
||||
|
||||
static inline int nr_parity_stripes(struct map_lookup *map)
|
||||
{
|
||||
if (map->type & BTRFS_BLOCK_GROUP_RAID5)
|
||||
return 1;
|
||||
else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
|
||||
return 2;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int nr_data_stripes(struct map_lookup *map)
|
||||
{
|
||||
return map->num_stripes - nr_parity_stripes(map);
|
||||
}
|
||||
|
||||
#define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
|
||||
|
||||
static LIST_HEAD(fs_uuids);
|
||||
|
||||
/*
|
||||
* Find a device specified by @devid or @uuid in the list of @fs_devices, or
|
||||
* return NULL.
|
||||
*
|
||||
* If devid and uuid are both specified, the match must be exact, otherwise
|
||||
* only devid is used.
|
||||
*/
|
||||
static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
|
||||
u64 devid, u8 *uuid)
|
||||
{
|
||||
struct list_head *head = &fs_devices->devices;
|
||||
struct btrfs_device *dev;
|
||||
|
||||
list_for_each_entry(dev, head, dev_list) {
|
||||
if (dev->devid == devid &&
|
||||
(!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
|
||||
return dev;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static struct btrfs_fs_devices *find_fsid(u8 *fsid, u8 *metadata_uuid)
|
||||
{
|
||||
struct btrfs_fs_devices *fs_devices;
|
||||
|
||||
list_for_each_entry(fs_devices, &fs_uuids, list) {
|
||||
if (metadata_uuid && (memcmp(fsid, fs_devices->fsid,
|
||||
BTRFS_FSID_SIZE) == 0) &&
|
||||
(memcmp(metadata_uuid, fs_devices->metadata_uuid,
|
||||
BTRFS_FSID_SIZE) == 0)) {
|
||||
return fs_devices;
|
||||
} else if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0){
|
||||
return fs_devices;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static int device_list_add(struct btrfs_super_block *disk_super,
|
||||
u64 devid, struct blk_desc *desc,
|
||||
struct disk_partition *part,
|
||||
struct btrfs_fs_devices **fs_devices_ret)
|
||||
{
|
||||
struct btrfs_device *device;
|
||||
struct btrfs_fs_devices *fs_devices;
|
||||
u64 found_transid = btrfs_super_generation(disk_super);
|
||||
bool metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
|
||||
BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
|
||||
|
||||
if (metadata_uuid)
|
||||
fs_devices = find_fsid(disk_super->fsid,
|
||||
disk_super->metadata_uuid);
|
||||
else
|
||||
fs_devices = find_fsid(disk_super->fsid, NULL);
|
||||
|
||||
if (!fs_devices) {
|
||||
fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
|
||||
if (!fs_devices)
|
||||
return -ENOMEM;
|
||||
INIT_LIST_HEAD(&fs_devices->devices);
|
||||
list_add(&fs_devices->list, &fs_uuids);
|
||||
memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
|
||||
if (metadata_uuid)
|
||||
memcpy(fs_devices->metadata_uuid,
|
||||
disk_super->metadata_uuid, BTRFS_FSID_SIZE);
|
||||
else
|
||||
memcpy(fs_devices->metadata_uuid, fs_devices->fsid,
|
||||
BTRFS_FSID_SIZE);
|
||||
|
||||
fs_devices->latest_devid = devid;
|
||||
fs_devices->latest_trans = found_transid;
|
||||
fs_devices->lowest_devid = (u64)-1;
|
||||
device = NULL;
|
||||
} else {
|
||||
device = find_device(fs_devices, devid,
|
||||
disk_super->dev_item.uuid);
|
||||
}
|
||||
if (!device) {
|
||||
device = kzalloc(sizeof(*device), GFP_NOFS);
|
||||
if (!device) {
|
||||
/* we can safely leave the fs_devices entry around */
|
||||
return -ENOMEM;
|
||||
}
|
||||
device->devid = devid;
|
||||
device->desc = desc;
|
||||
device->part = part;
|
||||
device->generation = found_transid;
|
||||
memcpy(device->uuid, disk_super->dev_item.uuid,
|
||||
BTRFS_UUID_SIZE);
|
||||
device->total_devs = btrfs_super_num_devices(disk_super);
|
||||
device->super_bytes_used = btrfs_super_bytes_used(disk_super);
|
||||
device->total_bytes =
|
||||
btrfs_stack_device_total_bytes(&disk_super->dev_item);
|
||||
device->bytes_used =
|
||||
btrfs_stack_device_bytes_used(&disk_super->dev_item);
|
||||
list_add(&device->dev_list, &fs_devices->devices);
|
||||
device->fs_devices = fs_devices;
|
||||
} else if (!device->desc || !device->part) {
|
||||
/*
|
||||
* The existing device has newer generation, so this one could
|
||||
* be a stale one, don't add it.
|
||||
*/
|
||||
if (found_transid < device->generation) {
|
||||
error(
|
||||
"adding devid %llu gen %llu but found an existing device gen %llu",
|
||||
device->devid, found_transid,
|
||||
device->generation);
|
||||
return -EEXIST;
|
||||
} else {
|
||||
device->desc = desc;
|
||||
device->part = part;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (found_transid > fs_devices->latest_trans) {
|
||||
fs_devices->latest_devid = devid;
|
||||
fs_devices->latest_trans = found_transid;
|
||||
}
|
||||
if (fs_devices->lowest_devid > devid) {
|
||||
fs_devices->lowest_devid = devid;
|
||||
}
|
||||
*fs_devices_ret = fs_devices;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
|
||||
{
|
||||
struct btrfs_fs_devices *seed_devices;
|
||||
struct btrfs_device *device;
|
||||
int ret = 0;
|
||||
|
||||
again:
|
||||
if (!fs_devices)
|
||||
return 0;
|
||||
while (!list_empty(&fs_devices->devices)) {
|
||||
device = list_entry(fs_devices->devices.next,
|
||||
struct btrfs_device, dev_list);
|
||||
list_del(&device->dev_list);
|
||||
/* free the memory */
|
||||
free(device);
|
||||
}
|
||||
|
||||
seed_devices = fs_devices->seed;
|
||||
fs_devices->seed = NULL;
|
||||
if (seed_devices) {
|
||||
struct btrfs_fs_devices *orig;
|
||||
|
||||
orig = fs_devices;
|
||||
fs_devices = seed_devices;
|
||||
list_del(&orig->list);
|
||||
free(orig);
|
||||
goto again;
|
||||
} else {
|
||||
list_del(&fs_devices->list);
|
||||
free(fs_devices);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void btrfs_close_all_devices(void)
|
||||
{
|
||||
struct btrfs_fs_devices *fs_devices;
|
||||
|
||||
while (!list_empty(&fs_uuids)) {
|
||||
fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices,
|
||||
list);
|
||||
btrfs_close_devices(fs_devices);
|
||||
}
|
||||
}
|
||||
|
||||
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices)
|
||||
{
|
||||
struct btrfs_device *device;
|
||||
|
||||
list_for_each_entry(device, &fs_devices->devices, dev_list) {
|
||||
if (!device->desc || !device->part) {
|
||||
printf("no device found for devid %llu, skip it \n",
|
||||
device->devid);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int btrfs_scan_one_device(struct blk_desc *desc, struct disk_partition *part,
|
||||
struct btrfs_fs_devices **fs_devices_ret,
|
||||
u64 *total_devs)
|
||||
{
|
||||
struct btrfs_super_block *disk_super;
|
||||
char buf[BTRFS_SUPER_INFO_SIZE];
|
||||
int ret;
|
||||
u64 devid;
|
||||
|
||||
disk_super = (struct btrfs_super_block *)buf;
|
||||
ret = btrfs_read_dev_super(desc, part, disk_super);
|
||||
if (ret < 0)
|
||||
return -EIO;
|
||||
devid = btrfs_stack_device_id(&disk_super->dev_item);
|
||||
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
|
||||
*total_devs = 1;
|
||||
else
|
||||
*total_devs = btrfs_super_num_devices(disk_super);
|
||||
|
||||
ret = device_list_add(disk_super, devid, desc, part, fs_devices_ret);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
|
||||
u8 *uuid, u8 *fsid)
|
||||
{
|
||||
struct btrfs_device *device;
|
||||
struct btrfs_fs_devices *cur_devices;
|
||||
|
||||
cur_devices = fs_info->fs_devices;
|
||||
while (cur_devices) {
|
||||
if (!fsid ||
|
||||
!memcmp(cur_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
|
||||
device = find_device(cur_devices, devid, uuid);
|
||||
if (device)
|
||||
return device;
|
||||
}
|
||||
cur_devices = cur_devices->seed;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* slot == -1: SYSTEM chunk
|
||||
* return -EIO on error, otherwise return 0
|
||||
*/
|
||||
int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
|
||||
struct extent_buffer *leaf,
|
||||
struct btrfs_chunk *chunk,
|
||||
int slot, u64 logical)
|
||||
{
|
||||
u64 length;
|
||||
u64 stripe_len;
|
||||
u16 num_stripes;
|
||||
u16 sub_stripes;
|
||||
u64 type;
|
||||
u32 chunk_ondisk_size;
|
||||
u32 sectorsize = fs_info->sectorsize;
|
||||
|
||||
/*
|
||||
* Basic chunk item size check. Note that btrfs_chunk already contains
|
||||
* one stripe, so no "==" check.
|
||||
*/
|
||||
if (slot >= 0 &&
|
||||
btrfs_item_size_nr(leaf, slot) < sizeof(struct btrfs_chunk)) {
|
||||
error("invalid chunk item size, have %u expect [%zu, %zu)",
|
||||
btrfs_item_size_nr(leaf, slot),
|
||||
sizeof(struct btrfs_chunk),
|
||||
BTRFS_LEAF_DATA_SIZE(fs_info));
|
||||
return -EUCLEAN;
|
||||
}
|
||||
length = btrfs_chunk_length(leaf, chunk);
|
||||
stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
|
||||
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
||||
sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
|
||||
type = btrfs_chunk_type(leaf, chunk);
|
||||
|
||||
if (num_stripes == 0) {
|
||||
error("invalid num_stripes, have %u expect non-zero",
|
||||
num_stripes);
|
||||
return -EUCLEAN;
|
||||
}
|
||||
if (slot >= 0 && btrfs_chunk_item_size(num_stripes) !=
|
||||
btrfs_item_size_nr(leaf, slot)) {
|
||||
error("invalid chunk item size, have %u expect %lu",
|
||||
btrfs_item_size_nr(leaf, slot),
|
||||
btrfs_chunk_item_size(num_stripes));
|
||||
return -EUCLEAN;
|
||||
}
|
||||
|
||||
/*
|
||||
* These valid checks may be insufficient to cover every corner cases.
|
||||
*/
|
||||
if (!IS_ALIGNED(logical, sectorsize)) {
|
||||
error("invalid chunk logical %llu", logical);
|
||||
return -EIO;
|
||||
}
|
||||
if (btrfs_chunk_sector_size(leaf, chunk) != sectorsize) {
|
||||
error("invalid chunk sectorsize %llu",
|
||||
(unsigned long long)btrfs_chunk_sector_size(leaf, chunk));
|
||||
return -EIO;
|
||||
}
|
||||
if (!length || !IS_ALIGNED(length, sectorsize)) {
|
||||
error("invalid chunk length %llu", length);
|
||||
return -EIO;
|
||||
}
|
||||
if (stripe_len != BTRFS_STRIPE_LEN) {
|
||||
error("invalid chunk stripe length: %llu", stripe_len);
|
||||
return -EIO;
|
||||
}
|
||||
/* Check on chunk item type */
|
||||
if (slot == -1 && (type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
|
||||
error("invalid chunk type %llu", type);
|
||||
return -EIO;
|
||||
}
|
||||
if (type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
|
||||
BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
|
||||
error("unrecognized chunk type: %llu",
|
||||
~(BTRFS_BLOCK_GROUP_TYPE_MASK |
|
||||
BTRFS_BLOCK_GROUP_PROFILE_MASK) & type);
|
||||
return -EIO;
|
||||
}
|
||||
if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
|
||||
error("missing chunk type flag: %llu", type);
|
||||
return -EIO;
|
||||
}
|
||||
if (!(is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) ||
|
||||
(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)) {
|
||||
error("conflicting chunk type detected: %llu", type);
|
||||
return -EIO;
|
||||
}
|
||||
if ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
|
||||
!is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
|
||||
error("conflicting chunk profile detected: %llu", type);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
chunk_ondisk_size = btrfs_chunk_item_size(num_stripes);
|
||||
/*
|
||||
* Btrfs_chunk contains at least one stripe, and for sys_chunk
|
||||
* it can't exceed the system chunk array size
|
||||
* For normal chunk, it should match its chunk item size.
|
||||
*/
|
||||
if (num_stripes < 1 ||
|
||||
(slot == -1 && chunk_ondisk_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) ||
|
||||
(slot >= 0 && chunk_ondisk_size > btrfs_item_size_nr(leaf, slot))) {
|
||||
error("invalid num_stripes: %u", num_stripes);
|
||||
return -EIO;
|
||||
}
|
||||
/*
|
||||
* Device number check against profile
|
||||
*/
|
||||
if ((type & BTRFS_BLOCK_GROUP_RAID10 && (sub_stripes != 2 ||
|
||||
!IS_ALIGNED(num_stripes, sub_stripes))) ||
|
||||
(type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
|
||||
(type & BTRFS_BLOCK_GROUP_RAID1C3 && num_stripes < 3) ||
|
||||
(type & BTRFS_BLOCK_GROUP_RAID1C4 && num_stripes < 4) ||
|
||||
(type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
|
||||
(type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
|
||||
(type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
|
||||
((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
|
||||
num_stripes != 1)) {
|
||||
error("Invalid num_stripes:sub_stripes %u:%u for profile %llu",
|
||||
num_stripes, sub_stripes,
|
||||
type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get stripe length from chunk item and its stripe items
|
||||
*
|
||||
* Caller should only call this function after validating the chunk item
|
||||
* by using btrfs_check_chunk_valid().
|
||||
*/
|
||||
u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info,
|
||||
struct extent_buffer *leaf,
|
||||
struct btrfs_chunk *chunk)
|
||||
{
|
||||
u64 stripe_len;
|
||||
u64 chunk_len;
|
||||
u32 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
||||
u64 profile = btrfs_chunk_type(leaf, chunk) &
|
||||
BTRFS_BLOCK_GROUP_PROFILE_MASK;
|
||||
|
||||
chunk_len = btrfs_chunk_length(leaf, chunk);
|
||||
|
||||
switch (profile) {
|
||||
case 0: /* Single profile */
|
||||
case BTRFS_BLOCK_GROUP_RAID1:
|
||||
case BTRFS_BLOCK_GROUP_RAID1C3:
|
||||
case BTRFS_BLOCK_GROUP_RAID1C4:
|
||||
case BTRFS_BLOCK_GROUP_DUP:
|
||||
stripe_len = chunk_len;
|
||||
break;
|
||||
case BTRFS_BLOCK_GROUP_RAID0:
|
||||
stripe_len = chunk_len / num_stripes;
|
||||
break;
|
||||
case BTRFS_BLOCK_GROUP_RAID5:
|
||||
stripe_len = chunk_len / (num_stripes - 1);
|
||||
break;
|
||||
case BTRFS_BLOCK_GROUP_RAID6:
|
||||
stripe_len = chunk_len / (num_stripes - 2);
|
||||
break;
|
||||
case BTRFS_BLOCK_GROUP_RAID10:
|
||||
stripe_len = chunk_len / (num_stripes /
|
||||
btrfs_chunk_sub_stripes(leaf, chunk));
|
||||
break;
|
||||
default:
|
||||
/* Invalid chunk profile found */
|
||||
BUG_ON(1);
|
||||
}
|
||||
return stripe_len;
|
||||
}
|
||||
|
||||
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
|
||||
{
|
||||
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
|
||||
struct cache_extent *ce;
|
||||
struct map_lookup *map;
|
||||
int ret;
|
||||
|
||||
ce = search_cache_extent(&map_tree->cache_tree, logical);
|
||||
if (!ce) {
|
||||
fprintf(stderr, "No mapping for %llu-%llu\n",
|
||||
(unsigned long long)logical,
|
||||
(unsigned long long)logical+len);
|
||||
return 1;
|
||||
}
|
||||
if (ce->start > logical || ce->start + ce->size < logical) {
|
||||
fprintf(stderr, "Invalid mapping for %llu-%llu, got "
|
||||
"%llu-%llu\n", (unsigned long long)logical,
|
||||
(unsigned long long)logical+len,
|
||||
(unsigned long long)ce->start,
|
||||
(unsigned long long)ce->start + ce->size);
|
||||
return 1;
|
||||
}
|
||||
map = container_of(ce, struct map_lookup, ce);
|
||||
|
||||
if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
|
||||
BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))
|
||||
ret = map->num_stripes;
|
||||
else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
|
||||
ret = map->sub_stripes;
|
||||
else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
|
||||
ret = 2;
|
||||
else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
|
||||
ret = 3;
|
||||
else
|
||||
ret = 1;
|
||||
return ret;
|
||||
}
|
||||
|
||||
int btrfs_next_bg(struct btrfs_fs_info *fs_info, u64 *logical,
|
||||
u64 *size, u64 type)
|
||||
{
|
||||
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
|
||||
struct cache_extent *ce;
|
||||
struct map_lookup *map;
|
||||
u64 cur = *logical;
|
||||
|
||||
ce = search_cache_extent(&map_tree->cache_tree, cur);
|
||||
|
||||
while (ce) {
|
||||
/*
|
||||
* only jump to next bg if our cur is not 0
|
||||
* As the initial logical for btrfs_next_bg() is 0, and
|
||||
* if we jump to next bg, we skipped a valid bg.
|
||||
*/
|
||||
if (cur) {
|
||||
ce = next_cache_extent(ce);
|
||||
if (!ce)
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
cur = ce->start;
|
||||
map = container_of(ce, struct map_lookup, ce);
|
||||
if (map->type & type) {
|
||||
*logical = ce->start;
|
||||
*size = ce->size;
|
||||
return 0;
|
||||
}
|
||||
if (!cur)
|
||||
ce = next_cache_extent(ce);
|
||||
}
|
||||
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
static inline int parity_smaller(u64 a, u64 b)
|
||||
{
|
||||
return a > b;
|
||||
}
|
||||
|
||||
/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
|
||||
static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
|
||||
{
|
||||
struct btrfs_bio_stripe s;
|
||||
int i;
|
||||
u64 l;
|
||||
int again = 1;
|
||||
|
||||
while (again) {
|
||||
again = 0;
|
||||
for (i = 0; i < bbio->num_stripes - 1; i++) {
|
||||
if (parity_smaller(raid_map[i], raid_map[i+1])) {
|
||||
s = bbio->stripes[i];
|
||||
l = raid_map[i];
|
||||
bbio->stripes[i] = bbio->stripes[i+1];
|
||||
raid_map[i] = raid_map[i+1];
|
||||
bbio->stripes[i+1] = s;
|
||||
raid_map[i+1] = l;
|
||||
again = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
|
||||
u64 logical, u64 *length, u64 *type,
|
||||
struct btrfs_multi_bio **multi_ret, int mirror_num,
|
||||
u64 **raid_map_ret)
|
||||
{
|
||||
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
|
||||
struct cache_extent *ce;
|
||||
struct map_lookup *map;
|
||||
u64 offset;
|
||||
u64 stripe_offset;
|
||||
u64 *raid_map = NULL;
|
||||
int stripe_nr;
|
||||
int stripes_allocated = 8;
|
||||
int stripes_required = 1;
|
||||
int stripe_index;
|
||||
int i;
|
||||
struct btrfs_multi_bio *multi = NULL;
|
||||
|
||||
if (multi_ret && rw == READ) {
|
||||
stripes_allocated = 1;
|
||||
}
|
||||
again:
|
||||
ce = search_cache_extent(&map_tree->cache_tree, logical);
|
||||
if (!ce) {
|
||||
kfree(multi);
|
||||
*length = (u64)-1;
|
||||
return -ENOENT;
|
||||
}
|
||||
if (ce->start > logical) {
|
||||
kfree(multi);
|
||||
*length = ce->start - logical;
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
if (multi_ret) {
|
||||
multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
|
||||
GFP_NOFS);
|
||||
if (!multi)
|
||||
return -ENOMEM;
|
||||
}
|
||||
map = container_of(ce, struct map_lookup, ce);
|
||||
offset = logical - ce->start;
|
||||
|
||||
if (rw == WRITE) {
|
||||
if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
|
||||
BTRFS_BLOCK_GROUP_RAID1C3 |
|
||||
BTRFS_BLOCK_GROUP_RAID1C4 |
|
||||
BTRFS_BLOCK_GROUP_DUP)) {
|
||||
stripes_required = map->num_stripes;
|
||||
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
||||
stripes_required = map->sub_stripes;
|
||||
}
|
||||
}
|
||||
if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
|
||||
&& multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
|
||||
/* RAID[56] write or recovery. Return all stripes */
|
||||
stripes_required = map->num_stripes;
|
||||
|
||||
/* Only allocate the map if we've already got a large enough multi_ret */
|
||||
if (stripes_allocated >= stripes_required) {
|
||||
raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
|
||||
if (!raid_map) {
|
||||
kfree(multi);
|
||||
return -ENOMEM;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* if our multi bio struct is too small, back off and try again */
|
||||
if (multi_ret && stripes_allocated < stripes_required) {
|
||||
stripes_allocated = stripes_required;
|
||||
kfree(multi);
|
||||
multi = NULL;
|
||||
goto again;
|
||||
}
|
||||
stripe_nr = offset;
|
||||
/*
|
||||
* stripe_nr counts the total number of stripes we have to stride
|
||||
* to get to this block
|
||||
*/
|
||||
stripe_nr = stripe_nr / map->stripe_len;
|
||||
|
||||
stripe_offset = stripe_nr * map->stripe_len;
|
||||
BUG_ON(offset < stripe_offset);
|
||||
|
||||
/* stripe_offset is the offset of this block in its stripe*/
|
||||
stripe_offset = offset - stripe_offset;
|
||||
|
||||
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
|
||||
BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4 |
|
||||
BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
|
||||
BTRFS_BLOCK_GROUP_RAID10 |
|
||||
BTRFS_BLOCK_GROUP_DUP)) {
|
||||
/* we limit the length of each bio to what fits in a stripe */
|
||||
*length = min_t(u64, ce->size - offset,
|
||||
map->stripe_len - stripe_offset);
|
||||
} else {
|
||||
*length = ce->size - offset;
|
||||
}
|
||||
|
||||
if (!multi_ret)
|
||||
goto out;
|
||||
|
||||
multi->num_stripes = 1;
|
||||
stripe_index = 0;
|
||||
if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
|
||||
BTRFS_BLOCK_GROUP_RAID1C3 |
|
||||
BTRFS_BLOCK_GROUP_RAID1C4)) {
|
||||
if (rw == WRITE)
|
||||
multi->num_stripes = map->num_stripes;
|
||||
else if (mirror_num)
|
||||
stripe_index = mirror_num - 1;
|
||||
else
|
||||
stripe_index = stripe_nr % map->num_stripes;
|
||||
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
||||
int factor = map->num_stripes / map->sub_stripes;
|
||||
|
||||
stripe_index = stripe_nr % factor;
|
||||
stripe_index *= map->sub_stripes;
|
||||
|
||||
if (rw == WRITE)
|
||||
multi->num_stripes = map->sub_stripes;
|
||||
else if (mirror_num)
|
||||
stripe_index += mirror_num - 1;
|
||||
|
||||
stripe_nr = stripe_nr / factor;
|
||||
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
|
||||
if (rw == WRITE)
|
||||
multi->num_stripes = map->num_stripes;
|
||||
else if (mirror_num)
|
||||
stripe_index = mirror_num - 1;
|
||||
} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
|
||||
BTRFS_BLOCK_GROUP_RAID6)) {
|
||||
|
||||
if (raid_map) {
|
||||
int rot;
|
||||
u64 tmp;
|
||||
u64 raid56_full_stripe_start;
|
||||
u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
|
||||
|
||||
/*
|
||||
* align the start of our data stripe in the logical
|
||||
* address space
|
||||
*/
|
||||
raid56_full_stripe_start = offset / full_stripe_len;
|
||||
raid56_full_stripe_start *= full_stripe_len;
|
||||
|
||||
/* get the data stripe number */
|
||||
stripe_nr = raid56_full_stripe_start / map->stripe_len;
|
||||
stripe_nr = stripe_nr / nr_data_stripes(map);
|
||||
|
||||
/* Work out the disk rotation on this stripe-set */
|
||||
rot = stripe_nr % map->num_stripes;
|
||||
|
||||
/* Fill in the logical address of each stripe */
|
||||
tmp = stripe_nr * nr_data_stripes(map);
|
||||
|
||||
for (i = 0; i < nr_data_stripes(map); i++)
|
||||
raid_map[(i+rot) % map->num_stripes] =
|
||||
ce->start + (tmp + i) * map->stripe_len;
|
||||
|
||||
raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
|
||||
if (map->type & BTRFS_BLOCK_GROUP_RAID6)
|
||||
raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
|
||||
|
||||
*length = map->stripe_len;
|
||||
stripe_index = 0;
|
||||
stripe_offset = 0;
|
||||
multi->num_stripes = map->num_stripes;
|
||||
} else {
|
||||
stripe_index = stripe_nr % nr_data_stripes(map);
|
||||
stripe_nr = stripe_nr / nr_data_stripes(map);
|
||||
|
||||
/*
|
||||
* Mirror #0 or #1 means the original data block.
|
||||
* Mirror #2 is RAID5 parity block.
|
||||
* Mirror #3 is RAID6 Q block.
|
||||
*/
|
||||
if (mirror_num > 1)
|
||||
stripe_index = nr_data_stripes(map) + mirror_num - 2;
|
||||
|
||||
/* We distribute the parity blocks across stripes */
|
||||
stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
|
||||
}
|
||||
} else {
|
||||
/*
|
||||
* after this do_div call, stripe_nr is the number of stripes
|
||||
* on this device we have to walk to find the data, and
|
||||
* stripe_index is the number of our device in the stripe array
|
||||
*/
|
||||
stripe_index = stripe_nr % map->num_stripes;
|
||||
stripe_nr = stripe_nr / map->num_stripes;
|
||||
}
|
||||
BUG_ON(stripe_index >= map->num_stripes);
|
||||
|
||||
for (i = 0; i < multi->num_stripes; i++) {
|
||||
multi->stripes[i].physical =
|
||||
map->stripes[stripe_index].physical + stripe_offset +
|
||||
stripe_nr * map->stripe_len;
|
||||
multi->stripes[i].dev = map->stripes[stripe_index].dev;
|
||||
stripe_index++;
|
||||
}
|
||||
*multi_ret = multi;
|
||||
|
||||
if (type)
|
||||
*type = map->type;
|
||||
|
||||
if (raid_map) {
|
||||
sort_parity_stripes(multi, raid_map);
|
||||
*raid_map_ret = raid_map;
|
||||
}
|
||||
out:
|
||||
return 0;
|
||||
}
|
||||
|
||||
int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
|
||||
u64 logical, u64 *length,
|
||||
struct btrfs_multi_bio **multi_ret, int mirror_num,
|
||||
u64 **raid_map_ret)
|
||||
{
|
||||
return __btrfs_map_block(fs_info, rw, logical, length, NULL,
|
||||
multi_ret, mirror_num, raid_map_ret);
|
||||
}
|
202
fs/btrfs/volumes.h
Normal file
202
fs/btrfs/volumes.h
Normal file
@ -0,0 +1,202 @@
|
||||
// SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
#ifndef __BTRFS_VOLUMES_H__
|
||||
#define __BTRFS_VOLUMES_H__
|
||||
|
||||
#include <fs_internal.h>
|
||||
#include "ctree.h"
|
||||
|
||||
#define BTRFS_STRIPE_LEN SZ_64K
|
||||
|
||||
struct btrfs_device {
|
||||
struct list_head dev_list;
|
||||
struct btrfs_root *dev_root;
|
||||
struct btrfs_fs_devices *fs_devices;
|
||||
|
||||
struct blk_desc *desc;
|
||||
struct disk_partition *part;
|
||||
|
||||
u64 total_devs;
|
||||
u64 super_bytes_used;
|
||||
|
||||
u64 generation;
|
||||
|
||||
/* the internal btrfs device id */
|
||||
u64 devid;
|
||||
|
||||
/* size of the device */
|
||||
u64 total_bytes;
|
||||
|
||||
/* bytes used */
|
||||
u64 bytes_used;
|
||||
|
||||
/* optimal io alignment for this device */
|
||||
u32 io_align;
|
||||
|
||||
/* optimal io width for this device */
|
||||
u32 io_width;
|
||||
|
||||
/* minimal io size for this device */
|
||||
u32 sector_size;
|
||||
|
||||
/* type and info about this device */
|
||||
u64 type;
|
||||
|
||||
/* physical drive uuid (or lvm uuid) */
|
||||
u8 uuid[BTRFS_UUID_SIZE];
|
||||
};
|
||||
|
||||
struct btrfs_fs_devices {
|
||||
u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
|
||||
u8 metadata_uuid[BTRFS_FSID_SIZE]; /* FS specific uuid */
|
||||
|
||||
u64 latest_devid;
|
||||
u64 lowest_devid;
|
||||
u64 latest_trans;
|
||||
|
||||
u64 total_rw_bytes;
|
||||
|
||||
struct list_head devices;
|
||||
struct list_head list;
|
||||
|
||||
int seeding;
|
||||
struct btrfs_fs_devices *seed;
|
||||
};
|
||||
|
||||
struct btrfs_bio_stripe {
|
||||
struct btrfs_device *dev;
|
||||
u64 physical;
|
||||
};
|
||||
|
||||
struct btrfs_multi_bio {
|
||||
int error;
|
||||
int num_stripes;
|
||||
struct btrfs_bio_stripe stripes[];
|
||||
};
|
||||
|
||||
struct map_lookup {
|
||||
struct cache_extent ce;
|
||||
u64 type;
|
||||
int io_align;
|
||||
int io_width;
|
||||
int stripe_len;
|
||||
int sector_size;
|
||||
int num_stripes;
|
||||
int sub_stripes;
|
||||
struct btrfs_bio_stripe stripes[];
|
||||
};
|
||||
|
||||
struct btrfs_raid_attr {
|
||||
int sub_stripes; /* sub_stripes info for map */
|
||||
int dev_stripes; /* stripes per dev */
|
||||
int devs_max; /* max devs to use */
|
||||
int devs_min; /* min devs needed */
|
||||
int tolerated_failures; /* max tolerated fail devs */
|
||||
int devs_increment; /* ndevs has to be a multiple of this */
|
||||
int ncopies; /* how many copies to data has */
|
||||
int nparity; /* number of stripes worth of bytes to store
|
||||
* parity information */
|
||||
const char raid_name[8]; /* name of the raid */
|
||||
u64 bg_flag; /* block group flag of the raid */
|
||||
};
|
||||
|
||||
extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
|
||||
|
||||
static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
|
||||
{
|
||||
if (flags & BTRFS_BLOCK_GROUP_RAID10)
|
||||
return BTRFS_RAID_RAID10;
|
||||
else if (flags & BTRFS_BLOCK_GROUP_RAID1)
|
||||
return BTRFS_RAID_RAID1;
|
||||
else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
|
||||
return BTRFS_RAID_RAID1C3;
|
||||
else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
|
||||
return BTRFS_RAID_RAID1C4;
|
||||
else if (flags & BTRFS_BLOCK_GROUP_DUP)
|
||||
return BTRFS_RAID_DUP;
|
||||
else if (flags & BTRFS_BLOCK_GROUP_RAID0)
|
||||
return BTRFS_RAID_RAID0;
|
||||
else if (flags & BTRFS_BLOCK_GROUP_RAID5)
|
||||
return BTRFS_RAID_RAID5;
|
||||
else if (flags & BTRFS_BLOCK_GROUP_RAID6)
|
||||
return BTRFS_RAID_RAID6;
|
||||
|
||||
return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
|
||||
}
|
||||
|
||||
#define btrfs_multi_bio_size(n) (sizeof(struct btrfs_multi_bio) + \
|
||||
(sizeof(struct btrfs_bio_stripe) * (n)))
|
||||
#define btrfs_map_lookup_size(n) (sizeof(struct map_lookup) + \
|
||||
(sizeof(struct btrfs_bio_stripe) * (n)))
|
||||
|
||||
#define BTRFS_RAID5_P_STRIPE ((u64)-2)
|
||||
#define BTRFS_RAID6_Q_STRIPE ((u64)-1)
|
||||
|
||||
static inline u64 calc_stripe_length(u64 type, u64 length, int num_stripes)
|
||||
{
|
||||
u64 stripe_size;
|
||||
|
||||
if (type & BTRFS_BLOCK_GROUP_RAID0) {
|
||||
stripe_size = length;
|
||||
stripe_size /= num_stripes;
|
||||
} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
|
||||
stripe_size = length * 2;
|
||||
stripe_size /= num_stripes;
|
||||
} else if (type & BTRFS_BLOCK_GROUP_RAID5) {
|
||||
stripe_size = length;
|
||||
stripe_size /= (num_stripes - 1);
|
||||
} else if (type & BTRFS_BLOCK_GROUP_RAID6) {
|
||||
stripe_size = length;
|
||||
stripe_size /= (num_stripes - 2);
|
||||
} else {
|
||||
stripe_size = length;
|
||||
}
|
||||
return stripe_size;
|
||||
}
|
||||
|
||||
#ifndef READ
|
||||
#define READ 0
|
||||
#define WRITE 1
|
||||
#define READA 2
|
||||
#endif
|
||||
|
||||
int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
|
||||
u64 logical, u64 *length, u64 *type,
|
||||
struct btrfs_multi_bio **multi_ret, int mirror_num,
|
||||
u64 **raid_map);
|
||||
int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
|
||||
u64 logical, u64 *length,
|
||||
struct btrfs_multi_bio **multi_ret, int mirror_num,
|
||||
u64 **raid_map_ret);
|
||||
int btrfs_next_bg(struct btrfs_fs_info *map_tree, u64 *logical,
|
||||
u64 *size, u64 type);
|
||||
static inline int btrfs_next_bg_metadata(struct btrfs_fs_info *fs_info,
|
||||
u64 *logical, u64 *size)
|
||||
{
|
||||
return btrfs_next_bg(fs_info, logical, size,
|
||||
BTRFS_BLOCK_GROUP_METADATA);
|
||||
}
|
||||
static inline int btrfs_next_bg_system(struct btrfs_fs_info *fs_info,
|
||||
u64 *logical, u64 *size)
|
||||
{
|
||||
return btrfs_next_bg(fs_info, logical, size,
|
||||
BTRFS_BLOCK_GROUP_SYSTEM);
|
||||
}
|
||||
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices);
|
||||
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
|
||||
void btrfs_close_all_devices(void);
|
||||
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
|
||||
int btrfs_scan_one_device(struct blk_desc *desc, struct disk_partition *part,
|
||||
struct btrfs_fs_devices **fs_devices_ret,
|
||||
u64 *total_devs);
|
||||
struct list_head *btrfs_scanned_uuids(void);
|
||||
struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
|
||||
u8 *uuid, u8 *fsid);
|
||||
int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
|
||||
struct extent_buffer *leaf,
|
||||
struct btrfs_chunk *chunk,
|
||||
int slot, u64 logical);
|
||||
u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info,
|
||||
struct extent_buffer *leaf,
|
||||
struct btrfs_chunk *chunk);
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user