arch: bcm281xx: Initial commit of bcm281xx architecture code

Add bcm281xx architecture support code including a clock framework and
chip reset.  Define register block base addresses for the bcm281xx
architecture and create an empty gpio header file required when
CONFIG_CMD_GPIO is set.

Signed-off-by: Darwin Rambo <drambo@broadcom.com>
Reviewed-by: Steve Rae <srae@broadcom.com>
Reviewed-by: Tim Kryger <tkryger@linaro.org>
This commit is contained in:
Darwin Rambo 2014-02-11 11:06:34 -08:00 committed by Albert ARIBAUD
parent b3134fce89
commit 989ce04999
10 changed files with 1792 additions and 0 deletions

View File

@ -0,0 +1,11 @@
#
# Copyright 2013 Broadcom Corporation.
#
# SPDX-License-Identifier: GPL-2.0+
#
obj-y += reset.o
obj-y += clk-core.o
obj-y += clk-bcm281xx.o
obj-y += clk-sdio.o
obj-y += clk-bsc.o

View File

@ -0,0 +1,523 @@
/*
* Copyright 2013 Broadcom Corporation.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/*
*
* bcm281xx-specific clock tables
*
*/
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/arch/sysmap.h>
#include <asm/kona-common/clk.h>
#include "clk-core.h"
#define CLOCK_1K 1000
#define CLOCK_1M (CLOCK_1K * 1000)
/* declare a reference clock */
#define DECLARE_REF_CLK(clk_name, clk_parent, clk_rate, clk_div) \
static struct refclk clk_name = { \
.clk = { \
.name = #clk_name, \
.parent = clk_parent, \
.rate = clk_rate, \
.div = clk_div, \
.ops = &ref_clk_ops, \
}, \
}
/*
* Reference clocks
*/
/* Declare a list of reference clocks */
DECLARE_REF_CLK(ref_crystal, 0, 26 * CLOCK_1M, 1);
DECLARE_REF_CLK(var_96m, 0, 96 * CLOCK_1M, 1);
DECLARE_REF_CLK(ref_96m, 0, 96 * CLOCK_1M, 1);
DECLARE_REF_CLK(ref_312m, 0, 312 * CLOCK_1M, 0);
DECLARE_REF_CLK(ref_104m, &ref_312m.clk, 104 * CLOCK_1M, 3);
DECLARE_REF_CLK(ref_52m, &ref_104m.clk, 52 * CLOCK_1M, 2);
DECLARE_REF_CLK(ref_13m, &ref_52m.clk, 13 * CLOCK_1M, 4);
DECLARE_REF_CLK(var_312m, 0, 312 * CLOCK_1M, 0);
DECLARE_REF_CLK(var_104m, &var_312m.clk, 104 * CLOCK_1M, 3);
DECLARE_REF_CLK(var_52m, &var_104m.clk, 52 * CLOCK_1M, 2);
DECLARE_REF_CLK(var_13m, &var_52m.clk, 13 * CLOCK_1M, 4);
struct refclk_lkup {
struct refclk *procclk;
const char *name;
};
/* Lookup table for string to clk tranlation */
#define MKSTR(x) {&x, #x}
static struct refclk_lkup refclk_str_tbl[] = {
MKSTR(ref_crystal), MKSTR(var_96m), MKSTR(ref_96m),
MKSTR(ref_312m), MKSTR(ref_104m), MKSTR(ref_52m),
MKSTR(ref_13m), MKSTR(var_312m), MKSTR(var_104m),
MKSTR(var_52m), MKSTR(var_13m),
};
int refclk_entries = sizeof(refclk_str_tbl)/sizeof(refclk_str_tbl[0]);
/* convert ref clock string to clock structure pointer */
struct refclk *refclk_str_to_clk(const char *name)
{
int i;
struct refclk_lkup *tblp = refclk_str_tbl;
for (i = 0; i < refclk_entries; i++, tblp++) {
if (!(strcmp(name, tblp->name)))
return tblp->procclk;
}
return NULL;
}
/* frequency tables indexed by freq_id */
unsigned long master_axi_freq_tbl[8] = {
26 * CLOCK_1M,
52 * CLOCK_1M,
104 * CLOCK_1M,
156 * CLOCK_1M,
156 * CLOCK_1M,
208 * CLOCK_1M,
312 * CLOCK_1M,
312 * CLOCK_1M
};
unsigned long master_ahb_freq_tbl[8] = {
26 * CLOCK_1M,
52 * CLOCK_1M,
52 * CLOCK_1M,
52 * CLOCK_1M,
78 * CLOCK_1M,
104 * CLOCK_1M,
104 * CLOCK_1M,
156 * CLOCK_1M
};
unsigned long slave_axi_freq_tbl[8] = {
26 * CLOCK_1M,
52 * CLOCK_1M,
78 * CLOCK_1M,
104 * CLOCK_1M,
156 * CLOCK_1M,
156 * CLOCK_1M
};
unsigned long slave_apb_freq_tbl[8] = {
26 * CLOCK_1M,
26 * CLOCK_1M,
39 * CLOCK_1M,
52 * CLOCK_1M,
52 * CLOCK_1M,
78 * CLOCK_1M
};
static struct bus_clk_data bsc1_apb_data = {
.gate = HW_SW_GATE_AUTO(0x0458, 16, 0, 1),
};
static struct bus_clk_data bsc2_apb_data = {
.gate = HW_SW_GATE_AUTO(0x045c, 16, 0, 1),
};
static struct bus_clk_data bsc3_apb_data = {
.gate = HW_SW_GATE_AUTO(0x0484, 16, 0, 1),
};
/* * Master CCU clocks */
static struct peri_clk_data sdio1_data = {
.gate = HW_SW_GATE(0x0358, 18, 2, 3),
.clocks = CLOCKS("ref_crystal",
"var_52m",
"ref_52m",
"var_96m",
"ref_96m"),
.sel = SELECTOR(0x0a28, 0, 3),
.div = DIVIDER(0x0a28, 4, 14),
.trig = TRIGGER(0x0afc, 9),
};
static struct peri_clk_data sdio2_data = {
.gate = HW_SW_GATE(0x035c, 18, 2, 3),
.clocks = CLOCKS("ref_crystal",
"var_52m",
"ref_52m",
"var_96m",
"ref_96m"),
.sel = SELECTOR(0x0a2c, 0, 3),
.div = DIVIDER(0x0a2c, 4, 14),
.trig = TRIGGER(0x0afc, 10),
};
static struct peri_clk_data sdio3_data = {
.gate = HW_SW_GATE(0x0364, 18, 2, 3),
.clocks = CLOCKS("ref_crystal",
"var_52m",
"ref_52m",
"var_96m",
"ref_96m"),
.sel = SELECTOR(0x0a34, 0, 3),
.div = DIVIDER(0x0a34, 4, 14),
.trig = TRIGGER(0x0afc, 12),
};
static struct peri_clk_data sdio4_data = {
.gate = HW_SW_GATE(0x0360, 18, 2, 3),
.clocks = CLOCKS("ref_crystal",
"var_52m",
"ref_52m",
"var_96m",
"ref_96m"),
.sel = SELECTOR(0x0a30, 0, 3),
.div = DIVIDER(0x0a30, 4, 14),
.trig = TRIGGER(0x0afc, 11),
};
static struct peri_clk_data sdio1_sleep_data = {
.clocks = CLOCKS("ref_32k"),
.gate = SW_ONLY_GATE(0x0358, 20, 4),
};
static struct peri_clk_data sdio2_sleep_data = {
.clocks = CLOCKS("ref_32k"),
.gate = SW_ONLY_GATE(0x035c, 20, 4),
};
static struct peri_clk_data sdio3_sleep_data = {
.clocks = CLOCKS("ref_32k"),
.gate = SW_ONLY_GATE(0x0364, 20, 4),
};
static struct peri_clk_data sdio4_sleep_data = {
.clocks = CLOCKS("ref_32k"),
.gate = SW_ONLY_GATE(0x0360, 20, 4),
};
static struct bus_clk_data sdio1_ahb_data = {
.gate = HW_SW_GATE_AUTO(0x0358, 16, 0, 1),
};
static struct bus_clk_data sdio2_ahb_data = {
.gate = HW_SW_GATE_AUTO(0x035c, 16, 0, 1),
};
static struct bus_clk_data sdio3_ahb_data = {
.gate = HW_SW_GATE_AUTO(0x0364, 16, 0, 1),
};
static struct bus_clk_data sdio4_ahb_data = {
.gate = HW_SW_GATE_AUTO(0x0360, 16, 0, 1),
};
/* * Slave CCU clocks */
static struct peri_clk_data bsc1_data = {
.gate = HW_SW_GATE(0x0458, 18, 2, 3),
.clocks = CLOCKS("ref_crystal",
"var_104m",
"ref_104m",
"var_13m",
"ref_13m"),
.sel = SELECTOR(0x0a64, 0, 3),
.trig = TRIGGER(0x0afc, 23),
};
static struct peri_clk_data bsc2_data = {
.gate = HW_SW_GATE(0x045c, 18, 2, 3),
.clocks = CLOCKS("ref_crystal",
"var_104m",
"ref_104m",
"var_13m",
"ref_13m"),
.sel = SELECTOR(0x0a68, 0, 3),
.trig = TRIGGER(0x0afc, 24),
};
static struct peri_clk_data bsc3_data = {
.gate = HW_SW_GATE(0x0484, 18, 2, 3),
.clocks = CLOCKS("ref_crystal",
"var_104m",
"ref_104m",
"var_13m",
"ref_13m"),
.sel = SELECTOR(0x0a84, 0, 3),
.trig = TRIGGER(0x0b00, 2),
};
/*
* CCU clocks
*/
static struct ccu_clock kpm_ccu_clk = {
.clk = {
.name = "kpm_ccu_clk",
.ops = &ccu_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.num_policy_masks = 1,
.policy_freq_offset = 0x00000008,
.freq_bit_shift = 8,
.policy_ctl_offset = 0x0000000c,
.policy0_mask_offset = 0x00000010,
.policy1_mask_offset = 0x00000014,
.policy2_mask_offset = 0x00000018,
.policy3_mask_offset = 0x0000001c,
.lvm_en_offset = 0x00000034,
.freq_id = 2,
.freq_tbl = master_axi_freq_tbl,
};
static struct ccu_clock kps_ccu_clk = {
.clk = {
.name = "kps_ccu_clk",
.ops = &ccu_clk_ops,
.ccu_clk_mgr_base = KONA_SLV_CLK_BASE_ADDR,
},
.num_policy_masks = 2,
.policy_freq_offset = 0x00000008,
.freq_bit_shift = 8,
.policy_ctl_offset = 0x0000000c,
.policy0_mask_offset = 0x00000010,
.policy1_mask_offset = 0x00000014,
.policy2_mask_offset = 0x00000018,
.policy3_mask_offset = 0x0000001c,
.policy0_mask2_offset = 0x00000048,
.policy1_mask2_offset = 0x0000004c,
.policy2_mask2_offset = 0x00000050,
.policy3_mask2_offset = 0x00000054,
.lvm_en_offset = 0x00000034,
.freq_id = 2,
.freq_tbl = slave_axi_freq_tbl,
};
/*
* Bus clocks
*/
/* KPM bus clocks */
static struct bus_clock sdio1_ahb_clk = {
.clk = {
.name = "sdio1_ahb_clk",
.parent = &kpm_ccu_clk.clk,
.ops = &bus_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.freq_tbl = master_ahb_freq_tbl,
.data = &sdio1_ahb_data,
};
static struct bus_clock sdio2_ahb_clk = {
.clk = {
.name = "sdio2_ahb_clk",
.parent = &kpm_ccu_clk.clk,
.ops = &bus_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.freq_tbl = master_ahb_freq_tbl,
.data = &sdio2_ahb_data,
};
static struct bus_clock sdio3_ahb_clk = {
.clk = {
.name = "sdio3_ahb_clk",
.parent = &kpm_ccu_clk.clk,
.ops = &bus_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.freq_tbl = master_ahb_freq_tbl,
.data = &sdio3_ahb_data,
};
static struct bus_clock sdio4_ahb_clk = {
.clk = {
.name = "sdio4_ahb_clk",
.parent = &kpm_ccu_clk.clk,
.ops = &bus_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.freq_tbl = master_ahb_freq_tbl,
.data = &sdio4_ahb_data,
};
static struct bus_clock bsc1_apb_clk = {
.clk = {
.name = "bsc1_apb_clk",
.parent = &kps_ccu_clk.clk,
.ops = &bus_clk_ops,
.ccu_clk_mgr_base = KONA_SLV_CLK_BASE_ADDR,
},
.freq_tbl = slave_apb_freq_tbl,
.data = &bsc1_apb_data,
};
static struct bus_clock bsc2_apb_clk = {
.clk = {
.name = "bsc2_apb_clk",
.parent = &kps_ccu_clk.clk,
.ops = &bus_clk_ops,
.ccu_clk_mgr_base = KONA_SLV_CLK_BASE_ADDR,
},
.freq_tbl = slave_apb_freq_tbl,
.data = &bsc2_apb_data,
};
static struct bus_clock bsc3_apb_clk = {
.clk = {
.name = "bsc3_apb_clk",
.parent = &kps_ccu_clk.clk,
.ops = &bus_clk_ops,
.ccu_clk_mgr_base = KONA_SLV_CLK_BASE_ADDR,
},
.freq_tbl = slave_apb_freq_tbl,
.data = &bsc3_apb_data,
};
/* KPM peripheral */
static struct peri_clock sdio1_clk = {
.clk = {
.name = "sdio1_clk",
.parent = &ref_52m.clk,
.ops = &peri_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.data = &sdio1_data,
};
static struct peri_clock sdio2_clk = {
.clk = {
.name = "sdio2_clk",
.parent = &ref_52m.clk,
.ops = &peri_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.data = &sdio2_data,
};
static struct peri_clock sdio3_clk = {
.clk = {
.name = "sdio3_clk",
.parent = &ref_52m.clk,
.ops = &peri_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.data = &sdio3_data,
};
static struct peri_clock sdio4_clk = {
.clk = {
.name = "sdio4_clk",
.parent = &ref_52m.clk,
.ops = &peri_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.data = &sdio4_data,
};
static struct peri_clock sdio1_sleep_clk = {
.clk = {
.name = "sdio1_sleep_clk",
.parent = &kpm_ccu_clk.clk,
.ops = &bus_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.data = &sdio1_sleep_data,
};
static struct peri_clock sdio2_sleep_clk = {
.clk = {
.name = "sdio2_sleep_clk",
.parent = &kpm_ccu_clk.clk,
.ops = &bus_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.data = &sdio2_sleep_data,
};
static struct peri_clock sdio3_sleep_clk = {
.clk = {
.name = "sdio3_sleep_clk",
.parent = &kpm_ccu_clk.clk,
.ops = &bus_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.data = &sdio3_sleep_data,
};
static struct peri_clock sdio4_sleep_clk = {
.clk = {
.name = "sdio4_sleep_clk",
.parent = &kpm_ccu_clk.clk,
.ops = &bus_clk_ops,
.ccu_clk_mgr_base = KONA_MST_CLK_BASE_ADDR,
},
.data = &sdio4_sleep_data,
};
/* KPS peripheral clock */
static struct peri_clock bsc1_clk = {
.clk = {
.name = "bsc1_clk",
.parent = &ref_13m.clk,
.rate = 13 * CLOCK_1M,
.div = 1,
.ops = &peri_clk_ops,
.ccu_clk_mgr_base = KONA_SLV_CLK_BASE_ADDR,
},
.data = &bsc1_data,
};
static struct peri_clock bsc2_clk = {
.clk = {
.name = "bsc2_clk",
.parent = &ref_13m.clk,
.rate = 13 * CLOCK_1M,
.div = 1,
.ops = &peri_clk_ops,
.ccu_clk_mgr_base = KONA_SLV_CLK_BASE_ADDR,
},
.data = &bsc2_data,
};
static struct peri_clock bsc3_clk = {
.clk = {
.name = "bsc3_clk",
.parent = &ref_13m.clk,
.rate = 13 * CLOCK_1M,
.div = 1,
.ops = &peri_clk_ops,
.ccu_clk_mgr_base = KONA_SLV_CLK_BASE_ADDR,
},
.data = &bsc3_data,
};
/* public table for registering clocks */
struct clk_lookup arch_clk_tbl[] = {
/* Peripheral clocks */
CLK_LK(sdio1),
CLK_LK(sdio2),
CLK_LK(sdio3),
CLK_LK(sdio4),
CLK_LK(sdio1_sleep),
CLK_LK(sdio2_sleep),
CLK_LK(sdio3_sleep),
CLK_LK(sdio4_sleep),
CLK_LK(bsc1),
CLK_LK(bsc2),
CLK_LK(bsc3),
/* Bus clocks */
CLK_LK(sdio1_ahb),
CLK_LK(sdio2_ahb),
CLK_LK(sdio3_ahb),
CLK_LK(sdio4_ahb),
CLK_LK(bsc1_apb),
CLK_LK(bsc2_apb),
CLK_LK(bsc3_apb),
};
/* public array size */
unsigned int arch_clk_tbl_array_size = ARRAY_SIZE(arch_clk_tbl);

View File

@ -0,0 +1,52 @@
/*
* Copyright 2013 Broadcom Corporation.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/arch/sysmap.h>
#include <asm/kona-common/clk.h>
#include "clk-core.h"
/* Enable appropriate clocks for a BSC/I2C port */
int clk_bsc_enable(void *base)
{
int ret;
char *bscstr, *apbstr;
switch ((u32) base) {
case PMU_BSC_BASE_ADDR:
/* PMU clock is always enabled */
return 0;
case BSC1_BASE_ADDR:
bscstr = "bsc1_clk";
apbstr = "bsc1_apb_clk";
break;
case BSC2_BASE_ADDR:
bscstr = "bsc2_clk";
apbstr = "bsc2_apb_clk";
break;
case BSC3_BASE_ADDR:
bscstr = "bsc3_clk";
apbstr = "bsc3_apb_clk";
break;
default:
printf("%s: base 0x%p not found\n", __func__, base);
return -EINVAL;
}
/* Note that the bus clock must be enabled first */
ret = clk_get_and_enable(apbstr);
if (ret)
return ret;
ret = clk_get_and_enable(bscstr);
if (ret)
return ret;
return 0;
}

View File

@ -0,0 +1,513 @@
/*
* Copyright 2013 Broadcom Corporation.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/*
*
* bcm281xx architecture clock framework
*
*/
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <bitfield.h>
#include <asm/arch/sysmap.h>
#include <asm/kona-common/clk.h>
#include "clk-core.h"
#define CLK_WR_ACCESS_PASSWORD 0x00a5a501
#define WR_ACCESS_OFFSET 0 /* common to all clock blocks */
#define POLICY_CTL_GO 1 /* Load and refresh policy masks */
#define POLICY_CTL_GO_ATL 4 /* Active Load */
/* Helper function */
int clk_get_and_enable(char *clkstr)
{
int ret = 0;
struct clk *c;
debug("%s: %s\n", __func__, clkstr);
c = clk_get(clkstr);
if (c) {
ret = clk_enable(c);
if (ret)
return ret;
} else {
printf("%s: Couldn't find %s\n", __func__, clkstr);
return -EINVAL;
}
return ret;
}
/*
* Poll a register in a CCU's address space, returning when the
* specified bit in that register's value is set (or clear). Delay
* a microsecond after each read of the register. Returns true if
* successful, or false if we gave up trying.
*
* Caller must ensure the CCU lock is held.
*/
#define CLK_GATE_DELAY_USEC 2000
static inline int wait_bit(void *base, u32 offset, u32 bit, bool want)
{
unsigned int tries;
u32 bit_mask = 1 << bit;
for (tries = 0; tries < CLK_GATE_DELAY_USEC; tries++) {
u32 val;
bool bit_val;
val = readl(base + offset);
bit_val = (val & bit_mask) ? 1 : 0;
if (bit_val == want)
return 0; /* success */
udelay(1);
}
debug("%s: timeout on addr 0x%p, waiting for bit %d to go to %d\n",
__func__, base + offset, bit, want);
return -ETIMEDOUT;
}
/* Enable a peripheral clock */
static int peri_clk_enable(struct clk *c, int enable)
{
int ret = 0;
u32 reg;
struct peri_clock *peri_clk = to_peri_clk(c);
struct peri_clk_data *cd = peri_clk->data;
struct bcm_clk_gate *gate = &cd->gate;
void *base = (void *)c->ccu_clk_mgr_base;
debug("%s: %s\n", __func__, c->name);
clk_get_rate(c); /* Make sure rate and sel are filled in */
/* enable access */
writel(CLK_WR_ACCESS_PASSWORD, base + WR_ACCESS_OFFSET);
if (enable) {
debug("%s %s set rate %lu div %lu sel %d parent %lu\n",
__func__, c->name, c->rate, c->div, c->sel,
c->parent->rate);
/*
* clkgate - only software controllable gates are
* supported by u-boot which includes all clocks
* that matter. This avoids bringing in a lot of extra
* complexity as done in the kernel framework.
*/
if (gate_exists(gate)) {
reg = readl(base + cd->gate.offset);
reg |= (1 << cd->gate.en_bit);
writel(reg, base + cd->gate.offset);
}
/* div and pll select */
if (divider_exists(&cd->div)) {
reg = readl(base + cd->div.offset);
bitfield_replace(reg, cd->div.shift, cd->div.width,
c->div - 1);
writel(reg, base + cd->div.offset);
}
/* frequency selector */
if (selector_exists(&cd->sel)) {
reg = readl(base + cd->sel.offset);
bitfield_replace(reg, cd->sel.shift, cd->sel.width,
c->sel);
writel(reg, base + cd->sel.offset);
}
/* trigger */
if (trigger_exists(&cd->trig)) {
writel((1 << cd->trig.bit), base + cd->trig.offset);
/* wait for trigger status bit to go to 0 */
ret = wait_bit(base, cd->trig.offset, cd->trig.bit, 0);
if (ret)
return ret;
}
/* wait for running (status_bit = 1) */
ret = wait_bit(base, cd->gate.offset, cd->gate.status_bit, 1);
if (ret)
return ret;
} else {
debug("%s disable clock %s\n", __func__, c->name);
/* clkgate */
reg = readl(base + cd->gate.offset);
reg &= ~(1 << cd->gate.en_bit);
writel(reg, base + cd->gate.offset);
/* wait for stop (status_bit = 0) */
ret = wait_bit(base, cd->gate.offset, cd->gate.status_bit, 0);
}
/* disable access */
writel(0, base + WR_ACCESS_OFFSET);
return ret;
}
/* Set the rate of a peripheral clock */
static int peri_clk_set_rate(struct clk *c, unsigned long rate)
{
int ret = 0;
int i;
unsigned long diff;
unsigned long new_rate = 0, div = 1;
struct peri_clock *peri_clk = to_peri_clk(c);
struct peri_clk_data *cd = peri_clk->data;
const char **clock;
debug("%s: %s\n", __func__, c->name);
diff = rate;
i = 0;
for (clock = cd->clocks; *clock; clock++, i++) {
struct refclk *ref = refclk_str_to_clk(*clock);
if (!ref) {
printf("%s: Lookup of %s failed\n", __func__, *clock);
return -EINVAL;
}
/* round to the new rate */
div = ref->clk.rate / rate;
if (div == 0)
div = 1;
new_rate = ref->clk.rate / div;
/* get the min diff */
if (abs(new_rate - rate) < diff) {
diff = abs(new_rate - rate);
c->sel = i;
c->parent = &ref->clk;
c->rate = new_rate;
c->div = div;
}
}
debug("%s %s set rate %lu div %lu sel %d parent %lu\n", __func__,
c->name, c->rate, c->div, c->sel, c->parent->rate);
return ret;
}
/* Get the rate of a peripheral clock */
static unsigned long peri_clk_get_rate(struct clk *c)
{
struct peri_clock *peri_clk = to_peri_clk(c);
struct peri_clk_data *cd = peri_clk->data;
void *base = (void *)c->ccu_clk_mgr_base;
int div = 1;
const char **clock;
struct refclk *ref;
u32 reg;
debug("%s: %s\n", __func__, c->name);
if (selector_exists(&cd->sel)) {
reg = readl(base + cd->sel.offset);
c->sel = bitfield_extract(reg, cd->sel.shift, cd->sel.width);
} else {
/*
* For peri clocks that don't have a selector, the single
* reference clock will always exist at index 0.
*/
c->sel = 0;
}
if (divider_exists(&cd->div)) {
reg = readl(base + cd->div.offset);
div = bitfield_extract(reg, cd->div.shift, cd->div.width);
div += 1;
}
clock = cd->clocks;
ref = refclk_str_to_clk(clock[c->sel]);
if (!ref) {
printf("%s: Can't lookup %s\n", __func__, clock[c->sel]);
return 0;
}
c->parent = &ref->clk;
c->div = div;
c->rate = c->parent->rate / c->div;
debug("%s parent rate %lu div %d sel %d rate %lu\n", __func__,
c->parent->rate, div, c->sel, c->rate);
return c->rate;
}
/* Peripheral clock operations */
struct clk_ops peri_clk_ops = {
.enable = peri_clk_enable,
.set_rate = peri_clk_set_rate,
.get_rate = peri_clk_get_rate,
};
/* Enable a CCU clock */
static int ccu_clk_enable(struct clk *c, int enable)
{
struct ccu_clock *ccu_clk = to_ccu_clk(c);
void *base = (void *)c->ccu_clk_mgr_base;
int ret = 0;
u32 reg;
debug("%s: %s\n", __func__, c->name);
if (!enable)
return -EINVAL; /* CCU clock cannot shutdown */
/* enable access */
writel(CLK_WR_ACCESS_PASSWORD, base + WR_ACCESS_OFFSET);
/* config enable for policy engine */
writel(1, base + ccu_clk->lvm_en_offset);
/* wait for bit to go to 0 */
ret = wait_bit(base, ccu_clk->lvm_en_offset, 0, 0);
if (ret)
return ret;
/* freq ID */
if (!ccu_clk->freq_bit_shift)
ccu_clk->freq_bit_shift = 8;
/* Set frequency id for each of the 4 policies */
reg = ccu_clk->freq_id |
(ccu_clk->freq_id << (ccu_clk->freq_bit_shift)) |
(ccu_clk->freq_id << (ccu_clk->freq_bit_shift * 2)) |
(ccu_clk->freq_id << (ccu_clk->freq_bit_shift * 3));
writel(reg, base + ccu_clk->policy_freq_offset);
/* enable all clock mask */
writel(0x7fffffff, base + ccu_clk->policy0_mask_offset);
writel(0x7fffffff, base + ccu_clk->policy1_mask_offset);
writel(0x7fffffff, base + ccu_clk->policy2_mask_offset);
writel(0x7fffffff, base + ccu_clk->policy3_mask_offset);
if (ccu_clk->num_policy_masks == 2) {
writel(0x7fffffff, base + ccu_clk->policy0_mask2_offset);
writel(0x7fffffff, base + ccu_clk->policy1_mask2_offset);
writel(0x7fffffff, base + ccu_clk->policy2_mask2_offset);
writel(0x7fffffff, base + ccu_clk->policy3_mask2_offset);
}
/* start policy engine */
reg = readl(base + ccu_clk->policy_ctl_offset);
reg |= (POLICY_CTL_GO + POLICY_CTL_GO_ATL);
writel(reg, base + ccu_clk->policy_ctl_offset);
/* wait till started */
ret = wait_bit(base, ccu_clk->policy_ctl_offset, 0, 0);
if (ret)
return ret;
/* disable access */
writel(0, base + WR_ACCESS_OFFSET);
return ret;
}
/* Get the CCU clock rate */
static unsigned long ccu_clk_get_rate(struct clk *c)
{
struct ccu_clock *ccu_clk = to_ccu_clk(c);
debug("%s: %s\n", __func__, c->name);
c->rate = ccu_clk->freq_tbl[ccu_clk->freq_id];
return c->rate;
}
/* CCU clock operations */
struct clk_ops ccu_clk_ops = {
.enable = ccu_clk_enable,
.get_rate = ccu_clk_get_rate,
};
/* Enable a bus clock */
static int bus_clk_enable(struct clk *c, int enable)
{
struct bus_clock *bus_clk = to_bus_clk(c);
struct bus_clk_data *cd = bus_clk->data;
void *base = (void *)c->ccu_clk_mgr_base;
int ret = 0;
u32 reg;
debug("%s: %s\n", __func__, c->name);
/* enable access */
writel(CLK_WR_ACCESS_PASSWORD, base + WR_ACCESS_OFFSET);
/* enable gating */
reg = readl(base + cd->gate.offset);
if (!!(reg & (1 << cd->gate.status_bit)) == !!enable)
debug("%s already %s\n", c->name,
enable ? "enabled" : "disabled");
else {
int want = (enable) ? 1 : 0;
reg |= (1 << cd->gate.hw_sw_sel_bit);
if (enable)
reg |= (1 << cd->gate.en_bit);
else
reg &= ~(1 << cd->gate.en_bit);
writel(reg, base + cd->gate.offset);
ret = wait_bit(base, cd->gate.offset, cd->gate.status_bit,
want);
if (ret)
return ret;
}
/* disable access */
writel(0, base + WR_ACCESS_OFFSET);
return ret;
}
/* Get the rate of a bus clock */
static unsigned long bus_clk_get_rate(struct clk *c)
{
struct bus_clock *bus_clk = to_bus_clk(c);
struct ccu_clock *ccu_clk;
debug("%s: %s\n", __func__, c->name);
ccu_clk = to_ccu_clk(c->parent);
c->rate = bus_clk->freq_tbl[ccu_clk->freq_id];
c->div = ccu_clk->freq_tbl[ccu_clk->freq_id] / c->rate;
return c->rate;
}
/* Bus clock operations */
struct clk_ops bus_clk_ops = {
.enable = bus_clk_enable,
.get_rate = bus_clk_get_rate,
};
/* Enable a reference clock */
static int ref_clk_enable(struct clk *c, int enable)
{
debug("%s: %s\n", __func__, c->name);
return 0;
}
/* Reference clock operations */
struct clk_ops ref_clk_ops = {
.enable = ref_clk_enable,
};
/*
* clk.h implementation follows
*/
/* Initialize the clock framework */
int clk_init(void)
{
debug("%s:\n", __func__);
return 0;
}
/* Get a clock handle, give a name string */
struct clk *clk_get(const char *con_id)
{
int i;
struct clk_lookup *clk_tblp;
debug("%s: %s\n", __func__, con_id);
clk_tblp = arch_clk_tbl;
for (i = 0; i < arch_clk_tbl_array_size; i++, clk_tblp++) {
if (clk_tblp->con_id) {
if (!con_id || strcmp(clk_tblp->con_id, con_id))
continue;
return clk_tblp->clk;
}
}
return NULL;
}
/* Enable a clock */
int clk_enable(struct clk *c)
{
int ret = 0;
debug("%s: %s\n", __func__, c->name);
if (!c->ops || !c->ops->enable)
return -1;
/* enable parent clock first */
if (c->parent)
ret = clk_enable(c->parent);
if (ret)
return ret;
if (!c->use_cnt) {
c->use_cnt++;
ret = c->ops->enable(c, 1);
}
return ret;
}
/* Disable a clock */
void clk_disable(struct clk *c)
{
debug("%s: %s\n", __func__, c->name);
if (!c->ops || !c->ops->enable)
return;
if (c->use_cnt) {
c->use_cnt--;
c->ops->enable(c, 0);
}
/* disable parent */
if (c->parent)
clk_disable(c->parent);
}
/* Get the clock rate */
unsigned long clk_get_rate(struct clk *c)
{
unsigned long rate;
debug("%s: %s\n", __func__, c->name);
if (!c || !c->ops || !c->ops->get_rate)
return 0;
rate = c->ops->get_rate(c);
debug("%s: rate = %ld\n", __func__, rate);
return rate;
}
/* Set the clock rate */
int clk_set_rate(struct clk *c, unsigned long rate)
{
int ret;
debug("%s: %s rate=%ld\n", __func__, c->name, rate);
if (!c || !c->ops || !c->ops->set_rate)
return -EINVAL;
if (c->use_cnt)
return -EINVAL;
ret = c->ops->set_rate(c, rate);
return ret;
}
/* Not required for this arch */
/*
long clk_round_rate(struct clk *clk, unsigned long rate);
int clk_set_parent(struct clk *clk, struct clk *parent);
struct clk *clk_get_parent(struct clk *clk);
*/

View File

@ -0,0 +1,495 @@
/*
* Copyright 2013 Broadcom Corporation.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <linux/stddef.h>
#ifdef CONFIG_CLK_DEBUG
#undef writel
#undef readl
static inline void writel(u32 val, void *addr)
{
printf("Write [0x%p] = 0x%08x\n", addr, val);
*(u32 *)addr = val;
}
static inline u32 readl(void *addr)
{
u32 val = *(u32 *)addr;
printf("Read [0x%p] = 0x%08x\n", addr, val);
return val;
}
#endif
struct clk;
struct clk_lookup {
const char *dev_id;
const char *con_id;
struct clk *clk;
};
extern struct clk_lookup arch_clk_tbl[];
extern unsigned int arch_clk_tbl_array_size;
/**
* struct clk_ops - standard clock operations
* @enable: enable/disable clock, see clk_enable() and clk_disable()
* @set_rate: set the clock rate, see clk_set_rate().
* @get_rate: get the clock rate, see clk_get_rate().
* @round_rate: round a given clock rate, see clk_round_rate().
* @set_parent: set the clock's parent, see clk_set_parent().
*
* Group the common clock implementations together so that we
* don't have to keep setting the same fiels again. We leave
* enable in struct clk.
*
*/
struct clk_ops {
int (*enable) (struct clk *c, int enable);
int (*set_rate) (struct clk *c, unsigned long rate);
unsigned long (*get_rate) (struct clk *c);
unsigned long (*round_rate) (struct clk *c, unsigned long rate);
int (*set_parent) (struct clk *c, struct clk *parent);
};
struct clk {
struct clk *parent;
const char *name;
int use_cnt;
unsigned long rate; /* in HZ */
/* programmable divider. 0 means fixed ratio to parent clock */
unsigned long div;
struct clk_src *src;
struct clk_ops *ops;
unsigned long ccu_clk_mgr_base;
int sel;
};
struct refclk *refclk_str_to_clk(const char *name);
#define U8_MAX ((u8)~0U)
#define U32_MAX ((u32)~0U)
#define U64_MAX ((u64)~0U)
/* The common clock framework uses u8 to represent a parent index */
#define PARENT_COUNT_MAX ((u32)U8_MAX)
#define BAD_CLK_INDEX U8_MAX /* Can't ever be valid */
#define BAD_CLK_NAME ((const char *)-1)
#define BAD_SCALED_DIV_VALUE U64_MAX
/*
* Utility macros for object flag management. If possible, flags
* should be defined such that 0 is the desired default value.
*/
#define FLAG(type, flag) BCM_CLK_ ## type ## _FLAGS_ ## flag
#define FLAG_SET(obj, type, flag) ((obj)->flags |= FLAG(type, flag))
#define FLAG_CLEAR(obj, type, flag) ((obj)->flags &= ~(FLAG(type, flag)))
#define FLAG_FLIP(obj, type, flag) ((obj)->flags ^= FLAG(type, flag))
#define FLAG_TEST(obj, type, flag) (!!((obj)->flags & FLAG(type, flag)))
/* Clock field state tests */
#define gate_exists(gate) FLAG_TEST(gate, GATE, EXISTS)
#define gate_is_enabled(gate) FLAG_TEST(gate, GATE, ENABLED)
#define gate_is_hw_controllable(gate) FLAG_TEST(gate, GATE, HW)
#define gate_is_sw_controllable(gate) FLAG_TEST(gate, GATE, SW)
#define gate_is_sw_managed(gate) FLAG_TEST(gate, GATE, SW_MANAGED)
#define gate_is_no_disable(gate) FLAG_TEST(gate, GATE, NO_DISABLE)
#define gate_flip_enabled(gate) FLAG_FLIP(gate, GATE, ENABLED)
#define divider_exists(div) FLAG_TEST(div, DIV, EXISTS)
#define divider_is_fixed(div) FLAG_TEST(div, DIV, FIXED)
#define divider_has_fraction(div) (!divider_is_fixed(div) && \
(div)->frac_width > 0)
#define selector_exists(sel) ((sel)->width != 0)
#define trigger_exists(trig) FLAG_TEST(trig, TRIG, EXISTS)
/* Clock type, used to tell common block what it's part of */
enum bcm_clk_type {
bcm_clk_none, /* undefined clock type */
bcm_clk_bus,
bcm_clk_core,
bcm_clk_peri
};
/*
* Gating control and status is managed by a 32-bit gate register.
*
* There are several types of gating available:
* - (no gate)
* A clock with no gate is assumed to be always enabled.
* - hardware-only gating (auto-gating)
* Enabling or disabling clocks with this type of gate is
* managed automatically by the hardware. Such clocks can be
* considered by the software to be enabled. The current status
* of auto-gated clocks can be read from the gate status bit.
* - software-only gating
* Auto-gating is not available for this type of clock.
* Instead, software manages whether it's enabled by setting or
* clearing the enable bit. The current gate status of a gate
* under software control can be read from the gate status bit.
* To ensure a change to the gating status is complete, the
* status bit can be polled to verify that the gate has entered
* the desired state.
* - selectable hardware or software gating
* Gating for this type of clock can be configured to be either
* under software or hardware control. Which type is in use is
* determined by the hw_sw_sel bit of the gate register.
*/
struct bcm_clk_gate {
u32 offset; /* gate register offset */
u32 status_bit; /* 0: gate is disabled; 0: gatge is enabled */
u32 en_bit; /* 0: disable; 1: enable */
u32 hw_sw_sel_bit; /* 0: hardware gating; 1: software gating */
u32 flags; /* BCM_CLK_GATE_FLAGS_* below */
};
/*
* Gate flags:
* HW means this gate can be auto-gated
* SW means the state of this gate can be software controlled
* NO_DISABLE means this gate is (only) enabled if under software control
* SW_MANAGED means the status of this gate is under software control
* ENABLED means this software-managed gate is *supposed* to be enabled
*/
#define BCM_CLK_GATE_FLAGS_EXISTS ((u32)1 << 0) /* Gate is valid */
#define BCM_CLK_GATE_FLAGS_HW ((u32)1 << 1) /* Can auto-gate */
#define BCM_CLK_GATE_FLAGS_SW ((u32)1 << 2) /* Software control */
#define BCM_CLK_GATE_FLAGS_NO_DISABLE ((u32)1 << 3) /* HW or enabled */
#define BCM_CLK_GATE_FLAGS_SW_MANAGED ((u32)1 << 4) /* SW now in control */
#define BCM_CLK_GATE_FLAGS_ENABLED ((u32)1 << 5) /* If SW_MANAGED */
/*
* Gate initialization macros.
*
* Any gate initially under software control will be enabled.
*/
/* A hardware/software gate initially under software control */
#define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \
{ \
.offset = (_offset), \
.status_bit = (_status_bit), \
.en_bit = (_en_bit), \
.hw_sw_sel_bit = (_hw_sw_sel_bit), \
.flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \
FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)| \
FLAG(GATE, EXISTS), \
}
/* A hardware/software gate initially under hardware control */
#define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \
{ \
.offset = (_offset), \
.status_bit = (_status_bit), \
.en_bit = (_en_bit), \
.hw_sw_sel_bit = (_hw_sw_sel_bit), \
.flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \
FLAG(GATE, EXISTS), \
}
/* A hardware-or-enabled gate (enabled if not under hardware control) */
#define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \
{ \
.offset = (_offset), \
.status_bit = (_status_bit), \
.en_bit = (_en_bit), \
.hw_sw_sel_bit = (_hw_sw_sel_bit), \
.flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \
FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS), \
}
/* A software-only gate */
#define SW_ONLY_GATE(_offset, _status_bit, _en_bit) \
{ \
.offset = (_offset), \
.status_bit = (_status_bit), \
.en_bit = (_en_bit), \
.flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)| \
FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS), \
}
/* A hardware-only gate */
#define HW_ONLY_GATE(_offset, _status_bit) \
{ \
.offset = (_offset), \
.status_bit = (_status_bit), \
.flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS), \
}
/*
* Each clock can have zero, one, or two dividers which change the
* output rate of the clock. Each divider can be either fixed or
* variable. If there are two dividers, they are the "pre-divider"
* and the "regular" or "downstream" divider. If there is only one,
* there is no pre-divider.
*
* A fixed divider is any non-zero (positive) value, and it
* indicates how the input rate is affected by the divider.
*
* The value of a variable divider is maintained in a sub-field of a
* 32-bit divider register. The position of the field in the
* register is defined by its offset and width. The value recorded
* in this field is always 1 less than the value it represents.
*
* In addition, a variable divider can indicate that some subset
* of its bits represent a "fractional" part of the divider. Such
* bits comprise the low-order portion of the divider field, and can
* be viewed as representing the portion of the divider that lies to
* the right of the decimal point. Most variable dividers have zero
* fractional bits. Variable dividers with non-zero fraction width
* still record a value 1 less than the value they represent; the
* added 1 does *not* affect the low-order bit in this case, it
* affects the bits above the fractional part only. (Often in this
* code a divider field value is distinguished from the value it
* represents by referring to the latter as a "divisor".)
*
* In order to avoid dealing with fractions, divider arithmetic is
* performed using "scaled" values. A scaled value is one that's
* been left-shifted by the fractional width of a divider. Dividing
* a scaled value by a scaled divisor produces the desired quotient
* without loss of precision and without any other special handling
* for fractions.
*
* The recorded value of a variable divider can be modified. To
* modify either divider (or both), a clock must be enabled (i.e.,
* using its gate). In addition, a trigger register (described
* below) must be used to commit the change, and polled to verify
* the change is complete.
*/
struct bcm_clk_div {
union {
struct { /* variable divider */
u32 offset; /* divider register offset */
u32 shift; /* field shift */
u32 width; /* field width */
u32 frac_width; /* field fraction width */
u64 scaled_div; /* scaled divider value */
};
u32 fixed; /* non-zero fixed divider value */
};
u32 flags; /* BCM_CLK_DIV_FLAGS_* below */
};
/*
* Divider flags:
* EXISTS means this divider exists
* FIXED means it is a fixed-rate divider
*/
#define BCM_CLK_DIV_FLAGS_EXISTS ((u32)1 << 0) /* Divider is valid */
#define BCM_CLK_DIV_FLAGS_FIXED ((u32)1 << 1) /* Fixed-value */
/* Divider initialization macros */
/* A fixed (non-zero) divider */
#define FIXED_DIVIDER(_value) \
{ \
.fixed = (_value), \
.flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED), \
}
/* A divider with an integral divisor */
#define DIVIDER(_offset, _shift, _width) \
{ \
.offset = (_offset), \
.shift = (_shift), \
.width = (_width), \
.scaled_div = BAD_SCALED_DIV_VALUE, \
.flags = FLAG(DIV, EXISTS), \
}
/* A divider whose divisor has an integer and fractional part */
#define FRAC_DIVIDER(_offset, _shift, _width, _frac_width) \
{ \
.offset = (_offset), \
.shift = (_shift), \
.width = (_width), \
.frac_width = (_frac_width), \
.scaled_div = BAD_SCALED_DIV_VALUE, \
.flags = FLAG(DIV, EXISTS), \
}
/*
* Clocks may have multiple "parent" clocks. If there is more than
* one, a selector must be specified to define which of the parent
* clocks is currently in use. The selected clock is indicated in a
* sub-field of a 32-bit selector register. The range of
* representable selector values typically exceeds the number of
* available parent clocks. Occasionally the reset value of a
* selector field is explicitly set to a (specific) value that does
* not correspond to a defined input clock.
*
* We register all known parent clocks with the common clock code
* using a packed array (i.e., no empty slots) of (parent) clock
* names, and refer to them later using indexes into that array.
* We maintain an array of selector values indexed by common clock
* index values in order to map between these common clock indexes
* and the selector values used by the hardware.
*
* Like dividers, a selector can be modified, but to do so a clock
* must be enabled, and a trigger must be used to commit the change.
*/
struct bcm_clk_sel {
u32 offset; /* selector register offset */
u32 shift; /* field shift */
u32 width; /* field width */
u32 parent_count; /* number of entries in parent_sel[] */
u32 *parent_sel; /* array of parent selector values */
u8 clk_index; /* current selected index in parent_sel[] */
};
/* Selector initialization macro */
#define SELECTOR(_offset, _shift, _width) \
{ \
.offset = (_offset), \
.shift = (_shift), \
.width = (_width), \
.clk_index = BAD_CLK_INDEX, \
}
/*
* Making changes to a variable divider or a selector for a clock
* requires the use of a trigger. A trigger is defined by a single
* bit within a register. To signal a change, a 1 is written into
* that bit. To determine when the change has been completed, that
* trigger bit is polled; the read value will be 1 while the change
* is in progress, and 0 when it is complete.
*
* Occasionally a clock will have more than one trigger. In this
* case, the "pre-trigger" will be used when changing a clock's
* selector and/or its pre-divider.
*/
struct bcm_clk_trig {
u32 offset; /* trigger register offset */
u32 bit; /* trigger bit */
u32 flags; /* BCM_CLK_TRIG_FLAGS_* below */
};
/*
* Trigger flags:
* EXISTS means this trigger exists
*/
#define BCM_CLK_TRIG_FLAGS_EXISTS ((u32)1 << 0) /* Trigger is valid */
/* Trigger initialization macro */
#define TRIGGER(_offset, _bit) \
{ \
.offset = (_offset), \
.bit = (_bit), \
.flags = FLAG(TRIG, EXISTS), \
}
struct bus_clk_data {
struct bcm_clk_gate gate;
};
struct core_clk_data {
struct bcm_clk_gate gate;
};
struct peri_clk_data {
struct bcm_clk_gate gate;
struct bcm_clk_trig pre_trig;
struct bcm_clk_div pre_div;
struct bcm_clk_trig trig;
struct bcm_clk_div div;
struct bcm_clk_sel sel;
const char *clocks[]; /* must be last; use CLOCKS() to declare */
};
#define CLOCKS(...) { __VA_ARGS__, NULL, }
#define NO_CLOCKS { NULL, } /* Must use of no parent clocks */
struct refclk {
struct clk clk;
};
struct peri_clock {
struct clk clk;
struct peri_clk_data *data;
};
struct ccu_clock {
struct clk clk;
int num_policy_masks;
unsigned long policy_freq_offset;
int freq_bit_shift; /* 8 for most CCUs */
unsigned long policy_ctl_offset;
unsigned long policy0_mask_offset;
unsigned long policy1_mask_offset;
unsigned long policy2_mask_offset;
unsigned long policy3_mask_offset;
unsigned long policy0_mask2_offset;
unsigned long policy1_mask2_offset;
unsigned long policy2_mask2_offset;
unsigned long policy3_mask2_offset;
unsigned long lvm_en_offset;
int freq_id;
unsigned long *freq_tbl;
};
struct bus_clock {
struct clk clk;
struct bus_clk_data *data;
unsigned long *freq_tbl;
};
struct ref_clock {
struct clk clk;
};
static inline int is_same_clock(struct clk *a, struct clk *b)
{
return (a == b);
}
#define to_clk(p) (&((p)->clk))
#define name_to_clk(name) (&((name##_clk).clk))
/* declare a struct clk_lookup */
#define CLK_LK(name) \
{.con_id = __stringify(name##_clk), .clk = name_to_clk(name),}
static inline struct refclk *to_refclk(struct clk *clock)
{
return container_of(clock, struct refclk, clk);
}
static inline struct peri_clock *to_peri_clk(struct clk *clock)
{
return container_of(clock, struct peri_clock, clk);
}
static inline struct ccu_clock *to_ccu_clk(struct clk *clock)
{
return container_of(clock, struct ccu_clock, clk);
}
static inline struct bus_clock *to_bus_clk(struct clk *clock)
{
return container_of(clock, struct bus_clock, clk);
}
static inline struct ref_clock *to_ref_clk(struct clk *clock)
{
return container_of(clock, struct ref_clock, clk);
}
extern struct clk_ops peri_clk_ops;
extern struct clk_ops ccu_clk_ops;
extern struct clk_ops bus_clk_ops;
extern struct clk_ops ref_clk_ops;
extern int clk_get_and_enable(char *clkstr);

View File

@ -0,0 +1,73 @@
/*
* Copyright 2013 Broadcom Corporation.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/arch/sysmap.h>
#include <asm/kona-common/clk.h>
#include "clk-core.h"
/* Enable appropriate clocks for an SDIO port */
int clk_sdio_enable(void *base, u32 rate, u32 *actual_ratep)
{
int ret;
struct clk *c;
char *clkstr;
char *slpstr;
char *ahbstr;
switch ((u32) base) {
case CONFIG_SYS_SDIO_BASE0:
clkstr = CONFIG_SYS_SDIO0 "_clk";
ahbstr = CONFIG_SYS_SDIO0 "_ahb_clk";
slpstr = CONFIG_SYS_SDIO0 "_sleep_clk";
break;
case CONFIG_SYS_SDIO_BASE1:
clkstr = CONFIG_SYS_SDIO1 "_clk";
ahbstr = CONFIG_SYS_SDIO1 "_ahb_clk";
slpstr = CONFIG_SYS_SDIO1 "_sleep_clk";
break;
case CONFIG_SYS_SDIO_BASE2:
clkstr = CONFIG_SYS_SDIO2 "_clk";
ahbstr = CONFIG_SYS_SDIO2 "_ahb_clk";
slpstr = CONFIG_SYS_SDIO2 "_sleep_clk";
break;
case CONFIG_SYS_SDIO_BASE3:
clkstr = CONFIG_SYS_SDIO3 "_clk";
ahbstr = CONFIG_SYS_SDIO3 "_ahb_clk";
slpstr = CONFIG_SYS_SDIO3 "_sleep_clk";
break;
default:
printf("%s: base 0x%p not found\n", __func__, base);
return -EINVAL;
}
ret = clk_get_and_enable(ahbstr);
if (ret)
return ret;
ret = clk_get_and_enable(slpstr);
if (ret)
return ret;
c = clk_get(clkstr);
if (c) {
ret = clk_set_rate(c, rate);
if (ret)
return ret;
ret = clk_enable(c);
if (ret)
return ret;
} else {
printf("%s: Couldn't find %s\n", __func__, clkstr);
return -EINVAL;
}
*actual_ratep = rate;
return 0;
}

View File

@ -0,0 +1,27 @@
/*
* Copyright 2013 Broadcom Corporation.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/sysmap.h>
#define EN_MASK 0x08000000 /* Enable timer */
#define SRSTEN_MASK 0x04000000 /* Enable soft reset */
#define CLKS_SHIFT 20 /* Clock period shift */
#define LD_SHIFT 0 /* Reload value shift */
void reset_cpu(ulong ignored)
{
/*
* Set WD enable, RST enable,
* 3.9 msec clock period (8), reload value (8*3.9ms)
*/
u32 reg = EN_MASK + SRSTEN_MASK + (8 << CLKS_SHIFT) + (8 << LD_SHIFT);
writel(reg, SECWD2_BASE_ADDR);
while (1)
; /* loop forever till reset */
}

View File

@ -0,0 +1,15 @@
/*
* Copyright 2013 Broadcom Corporation.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef __ARCH_BCM281XX_GPIO_H
#define __ARCH_BCM281XX_GPIO_H
/*
* Empty file - cmd_gpio.c requires this. The implementation
* is in drivers/gpio/kona_gpio.c instead of inlined here.
*/
#endif

View File

@ -0,0 +1,25 @@
/*
* Copyright 2013 Broadcom Corporation.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef __ARCH_BCM281XX_SYSMAP_H
#define BSC1_BASE_ADDR 0x3e016000
#define BSC2_BASE_ADDR 0x3e017000
#define BSC3_BASE_ADDR 0x3e018000
#define GPIO2_BASE_ADDR 0x35003000
#define KONA_MST_CLK_BASE_ADDR 0x3f001000
#define KONA_SLV_CLK_BASE_ADDR 0x3e011000
#define PMU_BSC_BASE_ADDR 0x3500d000
#define PWRMGR_BASE_ADDR 0x35010000
#define SDIO1_BASE_ADDR 0x3f180000
#define SDIO2_BASE_ADDR 0x3f190000
#define SDIO3_BASE_ADDR 0x3f1a0000
#define SDIO4_BASE_ADDR 0x3f1b0000
#define SECWD_BASE_ADDR 0x3500c000
#define SECWD2_BASE_ADDR 0x35002f40
#define TIMER_BASE_ADDR 0x3e00d000
#endif

58
include/bitfield.h Normal file
View File

@ -0,0 +1,58 @@
/*
* Copyright 2013 Broadcom Corporation.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/*
* Bitfield operations
*
* These are generic bitfield operations which allow manipulation of variable
* width bitfields within a word. One use of this would be to use data tables
* to determine how to reprogram fields within R/W hardware registers.
*
* Example:
*
* old_reg_val
* +--------+----+---+--+-----+----------+
* | | | | | old | |
* +--------+----+---+--+-----+----------+
*
* new_reg_val
* +--------+----+---+--+-----+----------+
* | | | | | new | |
* +--------+----+---+--+-----+----------+
*
* mask = bitfield_mask(10, 5);
* old = bitfield_extract(old_reg_val, 10, 5);
* new_reg_val = bitfield_replace(old_reg_val, 10, 5, new);
*
* The numbers 10 and 5 could for example come from data
* tables which describe all bitfields in all registers.
*/
#include <linux/types.h>
/* Produces a mask of set bits covering a range of a uint value */
static inline uint bitfield_mask(uint shift, uint width)
{
return ((1 << width) - 1) << shift;
}
/* Extract the value of a bitfield found within a given register value */
static inline uint bitfield_extract(uint reg_val, uint shift, uint width)
{
return (reg_val & bitfield_mask(shift, width)) >> shift;
}
/*
* Replace the value of a bitfield found within a given register value
* Returns the newly modified uint value with the replaced field.
*/
static inline uint bitfield_replace(uint reg_val, uint shift, uint width,
uint bitfield_val)
{
uint mask = bitfield_mask(shift, width);
return (reg_val & ~mask) | (bitfield_val << shift);
}