mtd: mxs_nand: Support EDO mode for imx8mn architecture

Add support for imx8mn architecture in order to run the NAND
in fast edo mode.

Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com>
Reviewed-by: Dario Binacchi <dario.binacchi@amarulasolutions.com>
Signed-off-by: Dario Binacchi <dario.binacchi@amarulasolutions.com>
This commit is contained in:
Michael Trimarchi 2022-08-30 16:48:47 +02:00 committed by Dario Binacchi
parent 6b7149a046
commit 90cce0582d
3 changed files with 239 additions and 24 deletions

View File

@ -14,6 +14,7 @@
*/ */
#include <common.h> #include <common.h>
#include <clk.h>
#include <cpu_func.h> #include <cpu_func.h>
#include <dm.h> #include <dm.h>
#include <dm/device_compat.h> #include <dm/device_compat.h>
@ -26,10 +27,12 @@
#include <asm/io.h> #include <asm/io.h>
#include <asm/mach-imx/regs-bch.h> #include <asm/mach-imx/regs-bch.h>
#include <asm/mach-imx/regs-gpmi.h> #include <asm/mach-imx/regs-gpmi.h>
#include <linux/delay.h>
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/mtd/rawnand.h> #include <linux/mtd/rawnand.h>
#include <linux/sizes.h> #include <linux/sizes.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/math64.h>
#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
@ -49,6 +52,10 @@
#endif #endif
#define MXS_NAND_BCH_TIMEOUT 10000 #define MXS_NAND_BCH_TIMEOUT 10000
#define USEC_PER_SEC 1000000
#define NSEC_PER_SEC 1000000000L
#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
struct nand_ecclayout fake_ecc_layout; struct nand_ecclayout fake_ecc_layout;
@ -1344,6 +1351,196 @@ err1:
return ret; return ret;
} }
/*
* <1> Firstly, we should know what's the GPMI-clock means.
* The GPMI-clock is the internal clock in the gpmi nand controller.
* If you set 100MHz to gpmi nand controller, the GPMI-clock's period
* is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
*
* <2> Secondly, we should know what's the frequency on the nand chip pins.
* The frequency on the nand chip pins is derived from the GPMI-clock.
* We can get it from the following equation:
*
* F = G / (DS + DH)
*
* F : the frequency on the nand chip pins.
* G : the GPMI clock, such as 100MHz.
* DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
* DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
*
* <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
* the nand EDO(extended Data Out) timing could be applied.
* The GPMI implements a feedback read strobe to sample the read data.
* The feedback read strobe can be delayed to support the nand EDO timing
* where the read strobe may deasserts before the read data is valid, and
* read data is valid for some time after read strobe.
*
* The following figure illustrates some aspects of a NAND Flash read:
*
* |<---tREA---->|
* | |
* | | |
* |<--tRP-->| |
* | | |
* __ ___|__________________________________
* RDN \________/ |
* |
* /---------\
* Read Data --------------< >---------
* \---------/
* | |
* |<-D->|
* FeedbackRDN ________ ____________
* \___________/
*
* D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
*
*
* <4> Now, we begin to describe how to compute the right RDN_DELAY.
*
* 4.1) From the aspect of the nand chip pins:
* Delay = (tREA + C - tRP) {1}
*
* tREA : the maximum read access time.
* C : a constant to adjust the delay. default is 4000ps.
* tRP : the read pulse width, which is exactly:
* tRP = (GPMI-clock-period) * DATA_SETUP
*
* 4.2) From the aspect of the GPMI nand controller:
* Delay = RDN_DELAY * 0.125 * RP {2}
*
* RP : the DLL reference period.
* if (GPMI-clock-period > DLL_THRETHOLD)
* RP = GPMI-clock-period / 2;
* else
* RP = GPMI-clock-period;
*
* Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
* is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
* is 16000ps, but in mx6q, we use 12000ps.
*
* 4.3) since {1} equals {2}, we get:
*
* (tREA + 4000 - tRP) * 8
* RDN_DELAY = ----------------------- {3}
* RP
*/
static void mxs_compute_timings(struct nand_chip *chip,
const struct nand_sdr_timings *sdr)
{
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
unsigned long clk_rate;
unsigned int dll_wait_time_us;
unsigned int dll_threshold_ps = nand_info->max_chain_delay;
unsigned int period_ps, reference_period_ps;
unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
unsigned int tRP_ps;
bool use_half_period;
int sample_delay_ps, sample_delay_factor;
u16 busy_timeout_cycles;
u8 wrn_dly_sel;
u32 timing0;
u32 timing1;
u32 ctrl1n;
if (sdr->tRC_min >= 30000) {
/* ONFI non-EDO modes [0-3] */
clk_rate = 22000000;
wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
} else if (sdr->tRC_min >= 25000) {
/* ONFI EDO mode 4 */
clk_rate = 80000000;
wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
debug("%s, setting ONFI onfi edo 4\n", __func__);
} else {
/* ONFI EDO mode 5 */
clk_rate = 100000000;
wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
debug("%s, setting ONFI onfi edo 5\n", __func__);
}
/* SDR core timings are given in picoseconds */
period_ps = div_u64((u64)NSEC_PER_SEC * 1000, clk_rate);
addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
timing0 = (addr_setup_cycles << GPMI_TIMING0_ADDRESS_SETUP_OFFSET) |
(data_hold_cycles << GPMI_TIMING0_DATA_HOLD_OFFSET) |
(data_setup_cycles << GPMI_TIMING0_DATA_SETUP_OFFSET);
timing1 = (busy_timeout_cycles * 4096) << GPMI_TIMING1_DEVICE_BUSY_TIMEOUT_OFFSET;
/*
* Derive NFC ideal delay from {3}:
*
* (tREA + 4000 - tRP) * 8
* RDN_DELAY = -----------------------
* RP
*/
if (period_ps > dll_threshold_ps) {
use_half_period = true;
reference_period_ps = period_ps / 2;
} else {
use_half_period = false;
reference_period_ps = period_ps;
}
tRP_ps = data_setup_cycles * period_ps;
sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
if (sample_delay_ps > 0)
sample_delay_factor = sample_delay_ps / reference_period_ps;
else
sample_delay_factor = 0;
ctrl1n = (wrn_dly_sel << GPMI_CTRL1_WRN_DLY_SEL_OFFSET);
if (sample_delay_factor)
ctrl1n |= (sample_delay_factor << GPMI_CTRL1_RDN_DELAY_OFFSET) |
GPMI_CTRL1_DLL_ENABLE |
(use_half_period ? GPMI_CTRL1_HALF_PERIOD : 0);
writel(timing0, &nand_info->gpmi_regs->hw_gpmi_timing0);
writel(timing1, &nand_info->gpmi_regs->hw_gpmi_timing1);
/*
* Clear several CTRL1 fields, DLL must be disabled when setting
* RDN_DELAY or HALF_PERIOD.
*/
writel(GPMI_CTRL1_CLEAR_MASK, &nand_info->gpmi_regs->hw_gpmi_ctrl1_clr);
writel(ctrl1n, &nand_info->gpmi_regs->hw_gpmi_ctrl1_set);
clk_set_rate(nand_info->gpmi_clk, clk_rate);
/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
dll_wait_time_us = USEC_PER_SEC / clk_rate * 64;
if (!dll_wait_time_us)
dll_wait_time_us = 1;
/* Wait for the DLL to settle. */
udelay(dll_wait_time_us);
}
static int mxs_nand_setup_interface(struct mtd_info *mtd, int chipnr,
const struct nand_data_interface *conf)
{
struct nand_chip *chip = mtd_to_nand(mtd);
const struct nand_sdr_timings *sdr;
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
/* Stop here if this call was just a check */
if (chipnr < 0)
return 0;
/* Do the actual derivation of the controller timings */
mxs_compute_timings(chip, sdr);
return 0;
}
int mxs_nand_init_spl(struct nand_chip *nand) int mxs_nand_init_spl(struct nand_chip *nand)
{ {
struct mxs_nand_info *nand_info; struct mxs_nand_info *nand_info;
@ -1432,6 +1629,9 @@ int mxs_nand_init_ctrl(struct mxs_nand_info *nand_info)
nand->read_buf = mxs_nand_read_buf; nand->read_buf = mxs_nand_read_buf;
nand->write_buf = mxs_nand_write_buf; nand->write_buf = mxs_nand_write_buf;
if (nand_info->gpmi_clk)
nand->setup_data_interface = mxs_nand_setup_interface;
/* first scan to find the device and get the page size */ /* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
goto err_free_buffers; goto err_free_buffers;

View File

@ -22,22 +22,27 @@
struct mxs_nand_dt_data { struct mxs_nand_dt_data {
unsigned int max_ecc_strength_supported; unsigned int max_ecc_strength_supported;
int max_chain_delay; /* See the async EDO mode */
}; };
static const struct mxs_nand_dt_data mxs_nand_imx6q_data = { static const struct mxs_nand_dt_data mxs_nand_imx6q_data = {
.max_ecc_strength_supported = 40, .max_ecc_strength_supported = 40,
.max_chain_delay = 12000,
}; };
static const struct mxs_nand_dt_data mxs_nand_imx6sx_data = { static const struct mxs_nand_dt_data mxs_nand_imx6sx_data = {
.max_ecc_strength_supported = 62, .max_ecc_strength_supported = 62,
.max_chain_delay = 12000,
}; };
static const struct mxs_nand_dt_data mxs_nand_imx7d_data = { static const struct mxs_nand_dt_data mxs_nand_imx7d_data = {
.max_ecc_strength_supported = 62, .max_ecc_strength_supported = 62,
.max_chain_delay = 12000,
}; };
static const struct mxs_nand_dt_data mxs_nand_imx8qxp_data = { static const struct mxs_nand_dt_data mxs_nand_imx8qxp_data = {
.max_ecc_strength_supported = 62, .max_ecc_strength_supported = 62,
.max_chain_delay = 12000,
}; };
static const struct udevice_id mxs_nand_dt_ids[] = { static const struct udevice_id mxs_nand_dt_ids[] = {
@ -72,8 +77,10 @@ static int mxs_nand_dt_probe(struct udevice *dev)
int ret; int ret;
data = (void *)dev_get_driver_data(dev); data = (void *)dev_get_driver_data(dev);
if (data) if (data) {
info->max_ecc_strength_supported = data->max_ecc_strength_supported; info->max_ecc_strength_supported = data->max_ecc_strength_supported;
info->max_chain_delay = data->max_chain_delay;
}
info->dev = dev; info->dev = dev;
@ -92,44 +99,49 @@ static int mxs_nand_dt_probe(struct udevice *dev)
info->use_minimum_ecc = dev_read_bool(dev, "fsl,use-minimum-ecc"); info->use_minimum_ecc = dev_read_bool(dev, "fsl,use-minimum-ecc");
if (IS_ENABLED(CONFIG_CLK) && IS_ENABLED(CONFIG_IMX8)) { if (IS_ENABLED(CONFIG_CLK) &&
(IS_ENABLED(CONFIG_IMX8) || IS_ENABLED(CONFIG_IMX8M))) {
/* Assigned clock already set clock */ /* Assigned clock already set clock */
struct clk gpmi_clk; struct clk gpmi_clk;
ret = clk_get_by_name(dev, "gpmi_io", &gpmi_clk); info->gpmi_clk = devm_clk_get(dev, "gpmi_io");
if (ret < 0) {
if (IS_ERR(info->gpmi_clk)) {
ret = PTR_ERR(info->gpmi_clk);
debug("Can't get gpmi io clk: %d\n", ret); debug("Can't get gpmi io clk: %d\n", ret);
return ret; return ret;
} }
ret = clk_enable(&gpmi_clk); ret = clk_enable(info->gpmi_clk);
if (ret < 0) { if (ret < 0) {
debug("Can't enable gpmi io clk: %d\n", ret); debug("Can't enable gpmi io clk: %d\n", ret);
return ret; return ret;
} }
ret = clk_get_by_name(dev, "gpmi_apb", &gpmi_clk); if (IS_ENABLED(CONFIG_IMX8)) {
if (ret < 0) { ret = clk_get_by_name(dev, "gpmi_apb", &gpmi_clk);
debug("Can't get gpmi_apb clk: %d\n", ret); if (ret < 0) {
return ret; debug("Can't get gpmi_apb clk: %d\n", ret);
} return ret;
}
ret = clk_enable(&gpmi_clk); ret = clk_enable(&gpmi_clk);
if (ret < 0) { if (ret < 0) {
debug("Can't enable gpmi_apb clk: %d\n", ret); debug("Can't enable gpmi_apb clk: %d\n", ret);
return ret; return ret;
} }
ret = clk_get_by_name(dev, "gpmi_bch", &gpmi_clk); ret = clk_get_by_name(dev, "gpmi_bch", &gpmi_clk);
if (ret < 0) { if (ret < 0) {
debug("Can't get gpmi_bch clk: %d\n", ret); debug("Can't get gpmi_bch clk: %d\n", ret);
return ret; return ret;
} }
ret = clk_enable(&gpmi_clk); ret = clk_enable(&gpmi_clk);
if (ret < 0) { if (ret < 0) {
debug("Can't enable gpmi_bch clk: %d\n", ret); debug("Can't enable gpmi_bch clk: %d\n", ret);
return ret; return ret;
}
} }
ret = clk_get_by_name(dev, "gpmi_bch_apb", &gpmi_clk); ret = clk_get_by_name(dev, "gpmi_bch_apb", &gpmi_clk);

View File

@ -12,6 +12,7 @@
#include <asm/cache.h> #include <asm/cache.h>
#include <nand.h> #include <nand.h>
#include <asm/mach-imx/dma.h> #include <asm/mach-imx/dma.h>
#include <clk.h>
/** /**
* @gf_len: The length of Galois Field. (e.g., 13 or 14) * @gf_len: The length of Galois Field. (e.g., 13 or 14)
@ -43,6 +44,7 @@ struct mxs_nand_info {
struct nand_chip chip; struct nand_chip chip;
struct udevice *dev; struct udevice *dev;
unsigned int max_ecc_strength_supported; unsigned int max_ecc_strength_supported;
int max_chain_delay;
bool use_minimum_ecc; bool use_minimum_ecc;
int cur_chip; int cur_chip;
@ -59,6 +61,7 @@ struct mxs_nand_info {
struct mxs_gpmi_regs *gpmi_regs; struct mxs_gpmi_regs *gpmi_regs;
struct mxs_bch_regs *bch_regs; struct mxs_bch_regs *bch_regs;
struct clk *gpmi_clk;
/* Functions with altered behaviour */ /* Functions with altered behaviour */
int (*hooked_read_oob)(struct mtd_info *mtd, int (*hooked_read_oob)(struct mtd_info *mtd,