mtd: nand: omap: optimized chip->ecc.correct() for H/W ECC schemes
chip->ecc.correct() is used for detecting and correcting bit-flips during read operations. In omap-nand driver it implemented as: (a) omap_correct_data(): for h/w based ECC_HAM1 scheme (b) omap_correct_data_bch() + CONFIG_NAND_OMAP_ECC_BCH8_CODE_HW_DETECTION_SW for ECC_BCH8 scheme using GPMC and software lib/bch.c (c) omap_correct_data_bch() + CONFIG_NAND_OMAP_ECC_BCH8_CODE_HW for ECC_BCH8 scheme using GPMC and ELM This patch updates (c) - checks for calc_ecc[]==0x00 so that error_correction is not required for known good pages. - adds scalability for other ECC_BCHx scheme by merging following omap_rotate_ecc_bch() + omap_fix_errors_bch() => omap_correct_data_bch() - fixing logic for bit-flip correction based on error_loc[count] Signed-off-by: Pekon Gupta <pekon@ti.com>
This commit is contained in:
parent
71a7f95600
commit
6e562b1106
@ -21,6 +21,9 @@
|
||||
#define SECTOR_BYTES 512
|
||||
#define ECCCLEAR (0x1 << 8)
|
||||
#define ECCRESULTREG1 (0x1 << 0)
|
||||
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
|
||||
#define BCH4_BIT_PAD 4
|
||||
|
||||
#ifdef CONFIG_BCH
|
||||
static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
|
||||
0x97, 0x79, 0xe5, 0x24, 0xb5};
|
||||
@ -178,6 +181,23 @@ static __maybe_unused struct nand_bch_priv bch_priv = {
|
||||
.control = NULL
|
||||
};
|
||||
|
||||
/*
|
||||
* omap_reverse_list - re-orders list elements in reverse order [internal]
|
||||
* @list: pointer to start of list
|
||||
* @length: length of list
|
||||
*/
|
||||
void omap_reverse_list(u8 *list, unsigned int length)
|
||||
{
|
||||
unsigned int i, j;
|
||||
unsigned int half_length = length / 2;
|
||||
u8 tmp;
|
||||
for (i = 0, j = length - 1; i < half_length; i++, j--) {
|
||||
tmp = list[i];
|
||||
list[i] = list[j];
|
||||
list[j] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
|
||||
* @mtd: MTD device structure
|
||||
@ -311,77 +331,6 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
|
||||
}
|
||||
|
||||
#ifdef CONFIG_NAND_OMAP_ELM
|
||||
/*
|
||||
* omap_rotate_ecc_bch - Rotate the syndrome bytes
|
||||
*
|
||||
* @mtd: MTD device structure
|
||||
* @calc_ecc: ECC read from ECC registers
|
||||
* @syndrome: Rotated syndrome will be retuned in this array
|
||||
*
|
||||
*/
|
||||
static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
|
||||
uint8_t *syndrome)
|
||||
{
|
||||
struct nand_chip *chip = mtd->priv;
|
||||
struct nand_bch_priv *bch = chip->priv;
|
||||
uint8_t n_bytes = 0;
|
||||
int8_t i, j;
|
||||
|
||||
switch (bch->type) {
|
||||
case ECC_BCH4:
|
||||
n_bytes = 8;
|
||||
break;
|
||||
|
||||
case ECC_BCH16:
|
||||
n_bytes = 28;
|
||||
break;
|
||||
|
||||
case ECC_BCH8:
|
||||
default:
|
||||
n_bytes = 13;
|
||||
break;
|
||||
}
|
||||
|
||||
for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
|
||||
syndrome[i] = calc_ecc[j];
|
||||
}
|
||||
|
||||
/*
|
||||
* omap_fix_errors_bch - Correct bch error in the data
|
||||
*
|
||||
* @mtd: MTD device structure
|
||||
* @data: Data read from flash
|
||||
* @error_count:Number of errors in data
|
||||
* @error_loc: Locations of errors in the data
|
||||
*
|
||||
*/
|
||||
static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
|
||||
uint32_t error_count, uint32_t *error_loc)
|
||||
{
|
||||
struct nand_chip *chip = mtd->priv;
|
||||
struct nand_bch_priv *bch = chip->priv;
|
||||
uint8_t count = 0;
|
||||
uint32_t error_byte_pos;
|
||||
uint32_t error_bit_mask;
|
||||
uint32_t last_bit = (bch->nibbles * 4) - 1;
|
||||
|
||||
/* Flip all bits as specified by the error location array. */
|
||||
/* FOR( each found error location flip the bit ) */
|
||||
for (count = 0; count < error_count; count++) {
|
||||
if (error_loc[count] > last_bit) {
|
||||
/* Remove the ECC spare bits from correction. */
|
||||
error_loc[count] -= (last_bit + 1);
|
||||
/* Offset bit in data region */
|
||||
error_byte_pos = ((512 * 8) -
|
||||
(error_loc[count]) - 1) / 8;
|
||||
/* Error Bit mask */
|
||||
error_bit_mask = 0x1 << (error_loc[count] % 8);
|
||||
/* Toggle the error bit to make the correction. */
|
||||
data[error_byte_pos] ^= error_bit_mask;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* omap_correct_data_bch - Compares the ecc read from nand spare area
|
||||
* with ECC registers values and corrects one bit error if it has occured
|
||||
@ -398,40 +347,72 @@ static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
|
||||
{
|
||||
struct nand_chip *chip = mtd->priv;
|
||||
struct nand_bch_priv *bch = chip->priv;
|
||||
uint8_t syndrome[28];
|
||||
uint32_t error_count = 0;
|
||||
uint32_t eccbytes = chip->ecc.bytes;
|
||||
uint32_t error_count = 0, error_max;
|
||||
uint32_t error_loc[8];
|
||||
uint32_t i, ecc_flag;
|
||||
uint32_t i, ecc_flag = 0;
|
||||
uint8_t count, err = 0;
|
||||
uint32_t byte_pos, bit_pos;
|
||||
|
||||
ecc_flag = 0;
|
||||
for (i = 0; i < chip->ecc.bytes; i++)
|
||||
if (read_ecc[i] != 0xff)
|
||||
/* check calculated ecc */
|
||||
for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) {
|
||||
if (calc_ecc[i] != 0x00)
|
||||
ecc_flag = 1;
|
||||
|
||||
}
|
||||
if (!ecc_flag)
|
||||
return 0;
|
||||
|
||||
elm_reset();
|
||||
elm_config((enum bch_level)(bch->type));
|
||||
/* check for whether its a erased-page */
|
||||
ecc_flag = 0;
|
||||
for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) {
|
||||
if (read_ecc[i] != 0xff)
|
||||
ecc_flag = 1;
|
||||
}
|
||||
if (!ecc_flag)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* while reading ECC result we read it in big endian.
|
||||
* Hence while loading to ELM we have rotate to get the right endian.
|
||||
*/
|
||||
omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
|
||||
|
||||
/* use elm module to check for errors */
|
||||
if (elm_check_error(syndrome, bch->nibbles, &error_count,
|
||||
error_loc) != 0) {
|
||||
printf("ECC: uncorrectable.\n");
|
||||
return -1;
|
||||
switch (bch->ecc_scheme) {
|
||||
case OMAP_ECC_BCH8_CODE_HW:
|
||||
omap_reverse_list(calc_ecc, eccbytes - 1);
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
/* use elm module to check for errors */
|
||||
elm_config((enum bch_level)(bch->type));
|
||||
if (elm_check_error(calc_ecc, bch->nibbles, &error_count, error_loc)) {
|
||||
printf("nand: error: uncorrectable ECC errors\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* correct bch error */
|
||||
if (error_count > 0)
|
||||
omap_fix_errors_bch(mtd, dat, error_count, error_loc);
|
||||
|
||||
return 0;
|
||||
for (count = 0; count < error_count; count++) {
|
||||
switch (bch->type) {
|
||||
case ECC_BCH8:
|
||||
/* 14th byte in ECC is reserved to match ROM layout */
|
||||
error_max = SECTOR_BYTES + (eccbytes - 1);
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
byte_pos = error_max - (error_loc[count] / 8) - 1;
|
||||
bit_pos = error_loc[count] % 8;
|
||||
if (byte_pos < SECTOR_BYTES) {
|
||||
dat[byte_pos] ^= 1 << bit_pos;
|
||||
printf("nand: bit-flip corrected @data=%d\n", byte_pos);
|
||||
} else if (byte_pos < error_max) {
|
||||
read_ecc[byte_pos - SECTOR_BYTES] = 1 << bit_pos;
|
||||
printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
|
||||
SECTOR_BYTES);
|
||||
} else {
|
||||
err = -EBADMSG;
|
||||
printf("nand: error: invalid bit-flip location\n");
|
||||
}
|
||||
}
|
||||
return (err) ? err : error_count;
|
||||
}
|
||||
|
||||
/**
|
||||
|
Loading…
Reference in New Issue
Block a user