net: xilinx: axi_mrmac: Add MRMAC driver

Add support for xilinx multirate(MRMAC) ethernet driver.
This driver uses multichannel DMA(MCDMA) for data transfers of MRMAC.
Added support for 4 ports of MRMAC for speeds 10G and 25G.
MCDMA supports upto 16 channels but in this driver we have setup only
one channel which is enough.

Tested 10G and 25G on all 4 ports.

Signed-off-by: Ashok Reddy Soma <ashok.reddy.soma@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
This commit is contained in:
Ashok Reddy Soma 2021-07-02 04:40:34 -06:00 committed by Michal Simek
parent d20cf6b6c3
commit 258ce79cfc
5 changed files with 778 additions and 0 deletions

View File

@ -545,6 +545,7 @@ M: Michal Simek <michal.simek@xilinx.com>
S: Maintained S: Maintained
T: git https://source.denx.de/u-boot/custodians/u-boot-microblaze.git T: git https://source.denx.de/u-boot/custodians/u-boot-microblaze.git
F: arch/arm/mach-versal/ F: arch/arm/mach-versal/
F: drivers/net/xilinx_axi_mrmac.*
F: drivers/watchdog/xilinx_wwdt.c F: drivers/watchdog/xilinx_wwdt.c
N: (?<!uni)versal N: (?<!uni)versal

View File

@ -618,6 +618,15 @@ config XILINX_AXIEMAC
help help
This MAC is present in Xilinx Microblaze, Zynq and ZynqMP SoCs. This MAC is present in Xilinx Microblaze, Zynq and ZynqMP SoCs.
config XILINX_AXIMRMAC
depends on DM_ETH && ARCH_VERSAL
bool "Xilinx AXI MRMAC"
help
MRMAC is a high performance, low latency, adaptable Ethernet
integrated hard IP. This can be configured up to four ports with MAC
rates from 10GE to 100GE. This could be present in some of the Xilinx
Versal designs.
config XILINX_EMACLITE config XILINX_EMACLITE
depends on DM_ETH depends on DM_ETH
select PHYLIB select PHYLIB

View File

@ -79,6 +79,7 @@ obj-$(CONFIG_FMAN_ENET) += fsl_mdio.o
obj-$(CONFIG_ULI526X) += uli526x.o obj-$(CONFIG_ULI526X) += uli526x.o
obj-$(CONFIG_VSC7385_ENET) += vsc7385.o obj-$(CONFIG_VSC7385_ENET) += vsc7385.o
obj-$(CONFIG_XILINX_AXIEMAC) += xilinx_axi_emac.o obj-$(CONFIG_XILINX_AXIEMAC) += xilinx_axi_emac.o
obj-$(CONFIG_XILINX_AXIMRMAC) += xilinx_axi_mrmac.o
obj-$(CONFIG_XILINX_EMACLITE) += xilinx_emaclite.o obj-$(CONFIG_XILINX_EMACLITE) += xilinx_emaclite.o
obj-$(CONFIG_ZYNQ_GEM) += zynq_gem.o obj-$(CONFIG_ZYNQ_GEM) += zynq_gem.o
obj-$(CONFIG_FSL_MC_ENET) += fsl-mc/ obj-$(CONFIG_FSL_MC_ENET) += fsl-mc/

View File

@ -0,0 +1,564 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Xilinx Multirate Ethernet MAC(MRMAC) driver
*
* Author(s): Ashok Reddy Soma <ashok.reddy.soma@xilinx.com>
* Michal Simek <michal.simek@xilinx.com>
*
* Copyright (C) 2021 Xilinx, Inc. All rights reserved.
*/
#include <config.h>
#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <log.h>
#include <net.h>
#include <malloc.h>
#include <wait_bit.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include "xilinx_axi_mrmac.h"
static void axi_mrmac_dma_write(struct mcdma_bd *bd, u32 *desc)
{
if (IS_ENABLED(CONFIG_PHYS_64BIT))
writeq((unsigned long)bd, desc);
else
writel((uintptr_t)bd, desc);
}
/**
* axi_mrmac_ethernet_init - MRMAC init function
* @priv: MRMAC private structure
*
* Return: 0 on success, negative value on errors
*
* This function is called to reset and initialize MRMAC core. This is
* typically called during initialization. It does a reset of MRMAC Rx/Tx
* channels and Rx/Tx SERDES. It configures MRMAC speed based on mrmac_rate
* which is read from DT. This function waits for block lock bit to get set,
* if it is not set within 100ms time returns a timeout error.
*/
static int axi_mrmac_ethernet_init(struct axi_mrmac_priv *priv)
{
struct mrmac_regs *regs = priv->iobase;
u32 reg;
u32 ret;
/* Perform all the RESET's required */
setbits_le32(&regs->reset, MRMAC_RX_SERDES_RST_MASK | MRMAC_RX_RST_MASK
| MRMAC_TX_SERDES_RST_MASK | MRMAC_TX_RST_MASK);
mdelay(MRMAC_RESET_DELAY);
/* Configure Mode register */
reg = readl(&regs->mode);
log_debug("Configuring MRMAC speed to %d\n", priv->mrmac_rate);
if (priv->mrmac_rate == SPEED_25000) {
reg &= ~MRMAC_CTL_RATE_CFG_MASK;
reg |= MRMAC_CTL_DATA_RATE_25G;
reg |= (MRMAC_CTL_AXIS_CFG_25G_IND << MRMAC_CTL_AXIS_CFG_SHIFT);
reg |= (MRMAC_CTL_SERDES_WIDTH_25G <<
MRMAC_CTL_SERDES_WIDTH_SHIFT);
} else {
reg &= ~MRMAC_CTL_RATE_CFG_MASK;
reg |= MRMAC_CTL_DATA_RATE_10G;
reg |= (MRMAC_CTL_AXIS_CFG_10G_IND << MRMAC_CTL_AXIS_CFG_SHIFT);
reg |= (MRMAC_CTL_SERDES_WIDTH_10G <<
MRMAC_CTL_SERDES_WIDTH_SHIFT);
}
/* For tick reg */
reg |= MRMAC_CTL_PM_TICK_MASK;
writel(reg, &regs->mode);
clrbits_le32(&regs->reset, MRMAC_RX_SERDES_RST_MASK | MRMAC_RX_RST_MASK
| MRMAC_TX_SERDES_RST_MASK | MRMAC_TX_RST_MASK);
mdelay(MRMAC_RESET_DELAY);
/* Setup MRMAC hardware options */
setbits_le32(&regs->rx_config, MRMAC_RX_DEL_FCS_MASK);
setbits_le32(&regs->tx_config, MRMAC_TX_INS_FCS_MASK);
setbits_le32(&regs->tx_config, MRMAC_TX_EN_MASK);
setbits_le32(&regs->rx_config, MRMAC_RX_EN_MASK);
/* Check for block lock bit to be set. This ensures that
* MRMAC ethernet IP is functioning normally.
*/
writel(MRMAC_STS_ALL_MASK, (phys_addr_t)priv->iobase +
MRMAC_TX_STS_OFFSET);
writel(MRMAC_STS_ALL_MASK, (phys_addr_t)priv->iobase +
MRMAC_RX_STS_OFFSET);
writel(MRMAC_STS_ALL_MASK, (phys_addr_t)priv->iobase +
MRMAC_STATRX_BLKLCK_OFFSET);
ret = wait_for_bit_le32((u32 *)((phys_addr_t)priv->iobase +
MRMAC_STATRX_BLKLCK_OFFSET),
MRMAC_RX_BLKLCK_MASK, true,
MRMAC_BLKLCK_TIMEOUT, true);
if (ret) {
log_warning("Error: MRMAC block lock not complete!\n");
return -EIO;
}
writel(MRMAC_TICK_TRIGGER, &regs->tick_reg);
return 0;
}
/**
* axi_mcdma_init - Reset MCDMA engine
* @priv: MRMAC private structure
*
* Return: 0 on success, negative value on timeouts
*
* This function is called to reset and initialize MCDMA engine
*/
static int axi_mcdma_init(struct axi_mrmac_priv *priv)
{
u32 ret;
/* Reset the engine so the hardware starts from a known state */
writel(XMCDMA_CR_RESET, &priv->mm2s_cmn->control);
writel(XMCDMA_CR_RESET, &priv->s2mm_cmn->control);
/* Check Tx/Rx MCDMA.RST. Reset is done when the reset bit is low */
ret = wait_for_bit_le32(&priv->mm2s_cmn->control, XMCDMA_CR_RESET,
false, MRMAC_DMARST_TIMEOUT, true);
if (ret) {
log_warning("Tx MCDMA reset Timeout\n");
return -ETIMEDOUT;
}
ret = wait_for_bit_le32(&priv->s2mm_cmn->control, XMCDMA_CR_RESET,
false, MRMAC_DMARST_TIMEOUT, true);
if (ret) {
log_warning("Rx MCDMA reset Timeout\n");
return -ETIMEDOUT;
}
/* Enable channel 1 for Tx and Rx */
writel(XMCDMA_CHANNEL_1, &priv->mm2s_cmn->chen);
writel(XMCDMA_CHANNEL_1, &priv->s2mm_cmn->chen);
return 0;
}
/**
* axi_mrmac_start - MRMAC start
* @dev: udevice structure
*
* Return: 0 on success, negative value on errors
*
* This is a initialization function of MRMAC. Call MCDMA initialization
* function and setup Rx buffer descriptors for starting reception of packets.
* Enable Tx and Rx channels and trigger Rx channel fetch.
*/
static int axi_mrmac_start(struct udevice *dev)
{
struct axi_mrmac_priv *priv = dev_get_priv(dev);
struct mrmac_regs *regs = priv->iobase;
/*
* Initialize MCDMA engine. MCDMA engine must be initialized before
* MRMAC. During MCDMA engine initialization, MCDMA hardware is reset,
* since MCDMA reset line is connected to MRMAC, this would ensure a
* reset of MRMAC.
*/
axi_mcdma_init(priv);
/* Initialize MRMAC hardware */
if (axi_mrmac_ethernet_init(priv))
return -EIO;
/* Disable all Rx interrupts before RxBD space setup */
clrbits_le32(&priv->mcdma_rx->control, XMCDMA_IRQ_ALL_MASK);
/* Update current descriptor */
axi_mrmac_dma_write(priv->rx_bd[0], &priv->mcdma_rx->current);
/* Setup Rx BD. MRMAC needs atleast two descriptors */
memset(priv->rx_bd[0], 0, RX_BD_TOTAL_SIZE);
priv->rx_bd[0]->next_desc = lower_32_bits((u64)priv->rx_bd[1]);
priv->rx_bd[0]->buf_addr = lower_32_bits((u64)net_rx_packets[0]);
priv->rx_bd[1]->next_desc = lower_32_bits((u64)priv->rx_bd[0]);
priv->rx_bd[1]->buf_addr = lower_32_bits((u64)net_rx_packets[1]);
if (IS_ENABLED(CONFIG_PHYS_64BIT)) {
priv->rx_bd[0]->next_desc_msb = upper_32_bits((u64)priv->rx_bd[1]);
priv->rx_bd[0]->buf_addr_msb = upper_32_bits((u64)net_rx_packets[0]);
priv->rx_bd[1]->next_desc_msb = upper_32_bits((u64)priv->rx_bd[0]);
priv->rx_bd[1]->buf_addr_msb = upper_32_bits((u64)net_rx_packets[1]);
}
priv->rx_bd[0]->cntrl = PKTSIZE_ALIGN;
priv->rx_bd[1]->cntrl = PKTSIZE_ALIGN;
/* Flush the last BD so DMA core could see the updates */
flush_cache((phys_addr_t)priv->rx_bd[0], RX_BD_TOTAL_SIZE);
/* It is necessary to flush rx buffers because if you don't do it
* then cache can contain uninitialized data
*/
flush_cache((phys_addr_t)priv->rx_bd[0]->buf_addr, RX_BUFF_TOTAL_SIZE);
/* Start the hardware */
setbits_le32(&priv->s2mm_cmn->control, XMCDMA_CR_RUNSTOP_MASK);
setbits_le32(&priv->mm2s_cmn->control, XMCDMA_CR_RUNSTOP_MASK);
setbits_le32(&priv->mcdma_rx->control, XMCDMA_IRQ_ALL_MASK);
/* Channel fetch */
setbits_le32(&priv->mcdma_rx->control, XMCDMA_CR_RUNSTOP_MASK);
/* Update tail descriptor. Now it's ready to receive data */
axi_mrmac_dma_write(priv->rx_bd[1], &priv->mcdma_rx->tail);
/* Enable Tx */
setbits_le32(&regs->tx_config, MRMAC_TX_EN_MASK);
/* Enable Rx */
setbits_le32(&regs->rx_config, MRMAC_RX_EN_MASK);
return 0;
}
/**
* axi_mrmac_send - MRMAC Tx function
* @dev: udevice structure
* @ptr: pointer to Tx buffer
* @len: transfer length
*
* Return: 0 on success, negative value on errors
*
* This is a Tx send function of MRMAC. Setup Tx buffer descriptors and trigger
* transfer. Wait till the data is transferred.
*/
static int axi_mrmac_send(struct udevice *dev, void *ptr, int len)
{
struct axi_mrmac_priv *priv = dev_get_priv(dev);
u32 ret;
#ifdef DEBUG
print_buffer(ptr, ptr, 1, len, 16);
#endif
if (len > PKTSIZE_ALIGN)
len = PKTSIZE_ALIGN;
/* If size is less than min packet size, pad to min size */
if (len < MIN_PKT_SIZE) {
memset(priv->txminframe, 0, MIN_PKT_SIZE);
memcpy(priv->txminframe, ptr, len);
len = MIN_PKT_SIZE;
ptr = priv->txminframe;
}
writel(XMCDMA_IRQ_ALL_MASK, &priv->mcdma_tx->status);
clrbits_le32(&priv->mcdma_tx->control, XMCDMA_CR_RUNSTOP_MASK);
/* Flush packet to main memory to be trasfered by DMA */
flush_cache((phys_addr_t)ptr, len);
/* Setup Tx BD. MRMAC needs atleast two descriptors */
memset(priv->tx_bd[0], 0, TX_BD_TOTAL_SIZE);
priv->tx_bd[0]->next_desc = lower_32_bits((u64)priv->tx_bd[1]);
priv->tx_bd[0]->buf_addr = lower_32_bits((u64)ptr);
/* At the end of the ring, link the last BD back to the top */
priv->tx_bd[1]->next_desc = lower_32_bits((u64)priv->tx_bd[0]);
priv->tx_bd[1]->buf_addr = lower_32_bits((u64)ptr + len / 2);
if (IS_ENABLED(CONFIG_PHYS_64BIT)) {
priv->tx_bd[0]->next_desc_msb = upper_32_bits((u64)priv->tx_bd[1]);
priv->tx_bd[0]->buf_addr_msb = upper_32_bits((u64)ptr);
priv->tx_bd[1]->next_desc_msb = upper_32_bits((u64)priv->tx_bd[0]);
priv->tx_bd[1]->buf_addr_msb = upper_32_bits((u64)ptr + len / 2);
}
/* Split Tx data in to half and send in two descriptors */
priv->tx_bd[0]->cntrl = (len / 2) | XMCDMA_BD_CTRL_TXSOF_MASK;
priv->tx_bd[1]->cntrl = (len - len / 2) | XMCDMA_BD_CTRL_TXEOF_MASK;
/* Flush the last BD so DMA core could see the updates */
flush_cache((phys_addr_t)priv->tx_bd[0], TX_BD_TOTAL_SIZE);
if (readl(&priv->mcdma_tx->status) & XMCDMA_CH_IDLE) {
axi_mrmac_dma_write(priv->tx_bd[0], &priv->mcdma_tx->current);
/* Channel fetch */
setbits_le32(&priv->mcdma_tx->control, XMCDMA_CR_RUNSTOP_MASK);
} else {
log_warning("Error: current desc is not updated\n");
return -EIO;
}
setbits_le32(&priv->mcdma_tx->control, XMCDMA_IRQ_ALL_MASK);
/* Start transfer */
axi_mrmac_dma_write(priv->tx_bd[1], &priv->mcdma_tx->tail);
/* Wait for transmission to complete */
ret = wait_for_bit_le32(&priv->mcdma_tx->status, XMCDMA_IRQ_IOC_MASK,
true, 1, true);
if (ret) {
log_warning("%s: Timeout\n", __func__);
return -ETIMEDOUT;
}
/* Clear status */
priv->tx_bd[0]->sband_stats = 0;
priv->tx_bd[1]->sband_stats = 0;
log_debug("Sending complete\n");
return 0;
}
static bool isrxready(struct axi_mrmac_priv *priv)
{
u32 status;
/* Read pending interrupts */
status = readl(&priv->mcdma_rx->status);
/* Acknowledge pending interrupts */
writel(status & XMCDMA_IRQ_ALL_MASK, &priv->mcdma_rx->status);
/*
* If Reception done interrupt is asserted, call Rx call back function
* to handle the processed BDs and then raise the according flag.
*/
if (status & (XMCDMA_IRQ_IOC_MASK | XMCDMA_IRQ_DELAY_MASK))
return 1;
return 0;
}
/**
* axi_mrmac_recv - MRMAC Rx function
* @dev: udevice structure
* @flags: flags from network stack
* @packetp pointer to received data
*
* Return: received data length on success, negative value on errors
*
* This is a Rx function of MRMAC. Check if any data is received on MCDMA.
* Copy buffer pointer to packetp and return received data length.
*/
static int axi_mrmac_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct axi_mrmac_priv *priv = dev_get_priv(dev);
u32 rx_bd_end;
u32 length;
/* Wait for an incoming packet */
if (!isrxready(priv))
return -EAGAIN;
/* Clear all interrupts */
writel(XMCDMA_IRQ_ALL_MASK, &priv->mcdma_rx->status);
/* Disable IRQ for a moment till packet is handled */
clrbits_le32(&priv->mcdma_rx->control, XMCDMA_IRQ_ALL_MASK);
/* Disable channel fetch */
clrbits_le32(&priv->mcdma_rx->control, XMCDMA_CR_RUNSTOP_MASK);
rx_bd_end = (ulong)priv->rx_bd[0] + roundup(RX_BD_TOTAL_SIZE,
ARCH_DMA_MINALIGN);
/* Invalidate Rx descriptors to see proper Rx length */
invalidate_dcache_range((phys_addr_t)priv->rx_bd[0], rx_bd_end);
length = priv->rx_bd[0]->status & XMCDMA_BD_STS_ACTUAL_LEN_MASK;
*packetp = (uchar *)(ulong)priv->rx_bd[0]->buf_addr;
if (!length) {
length = priv->rx_bd[1]->status & XMCDMA_BD_STS_ACTUAL_LEN_MASK;
*packetp = (uchar *)(ulong)priv->rx_bd[1]->buf_addr;
}
#ifdef DEBUG
print_buffer(*packetp, *packetp, 1, length, 16);
#endif
/* Clear status */
priv->rx_bd[0]->status = 0;
priv->rx_bd[1]->status = 0;
return length;
}
/**
* axi_mrmac_free_pkt - MRMAC free packet function
* @dev: udevice structure
* @packet: receive buffer pointer
* @length received data length
*
* Return: 0 on success, negative value on errors
*
* This is Rx free packet function of MRMAC. Prepare MRMAC for reception of
* data again. Invalidate previous data from Rx buffers and set Rx buffer
* descriptors. Trigger reception by updating tail descriptor.
*/
static int axi_mrmac_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct axi_mrmac_priv *priv = dev_get_priv(dev);
#ifdef DEBUG
/* It is useful to clear buffer to be sure that it is consistent */
memset(priv->rx_bd[0]->buf_addr, 0, RX_BUFF_TOTAL_SIZE);
#endif
/* Disable all Rx interrupts before RxBD space setup */
clrbits_le32(&priv->mcdma_rx->control, XMCDMA_IRQ_ALL_MASK);
/* Disable channel fetch */
clrbits_le32(&priv->mcdma_rx->control, XMCDMA_CR_RUNSTOP_MASK);
/* Update current descriptor */
axi_mrmac_dma_write(priv->rx_bd[0], &priv->mcdma_rx->current);
/* Write bd to HW */
flush_cache((phys_addr_t)priv->rx_bd[0], RX_BD_TOTAL_SIZE);
/* It is necessary to flush rx buffers because if you don't do it
* then cache will contain previous packet
*/
flush_cache((phys_addr_t)priv->rx_bd[0]->buf_addr, RX_BUFF_TOTAL_SIZE);
/* Enable all IRQ */
setbits_le32(&priv->mcdma_rx->control, XMCDMA_IRQ_ALL_MASK);
/* Channel fetch */
setbits_le32(&priv->mcdma_rx->control, XMCDMA_CR_RUNSTOP_MASK);
/* Update tail descriptor. Now it's ready to receive data */
axi_mrmac_dma_write(priv->rx_bd[1], &priv->mcdma_rx->tail);
log_debug("Rx completed, framelength = %x\n", length);
return 0;
}
/**
* axi_mrmac_stop - Stop MCDMA transfers
* @dev: udevice structure
*
* Return: 0 on success, negative value on errors
*
* Stop MCDMA engine for both Tx and Rx transfers.
*/
static void axi_mrmac_stop(struct udevice *dev)
{
struct axi_mrmac_priv *priv = dev_get_priv(dev);
/* Stop the hardware */
clrbits_le32(&priv->mcdma_tx->control, XMCDMA_CR_RUNSTOP_MASK);
clrbits_le32(&priv->mcdma_rx->control, XMCDMA_CR_RUNSTOP_MASK);
log_debug("Halted\n");
}
static int axi_mrmac_probe(struct udevice *dev)
{
struct axi_mrmac_plat *plat = dev_get_plat(dev);
struct eth_pdata *pdata = &plat->eth_pdata;
struct axi_mrmac_priv *priv = dev_get_priv(dev);
priv->iobase = (struct mrmac_regs *)pdata->iobase;
priv->mm2s_cmn = plat->mm2s_cmn;
priv->mcdma_tx = (struct mcdma_chan_reg *)((phys_addr_t)priv->mm2s_cmn
+ XMCDMA_CHAN_OFFSET);
priv->s2mm_cmn = (struct mcdma_common_regs *)((phys_addr_t)priv->mm2s_cmn
+ XMCDMA_RX_OFFSET);
priv->mcdma_rx = (struct mcdma_chan_reg *)((phys_addr_t)priv->s2mm_cmn
+ XMCDMA_CHAN_OFFSET);
priv->mrmac_rate = plat->mrmac_rate;
/* Align buffers to ARCH_DMA_MINALIGN */
priv->tx_bd[0] = memalign(ARCH_DMA_MINALIGN, TX_BD_TOTAL_SIZE);
priv->tx_bd[1] = (struct mcdma_bd *)((ulong)priv->tx_bd[0] +
sizeof(struct mcdma_bd));
priv->rx_bd[0] = memalign(ARCH_DMA_MINALIGN, RX_BD_TOTAL_SIZE);
priv->rx_bd[1] = (struct mcdma_bd *)((ulong)priv->rx_bd[0] +
sizeof(struct mcdma_bd));
priv->txminframe = memalign(ARCH_DMA_MINALIGN, MIN_PKT_SIZE);
return 0;
}
static int axi_mrmac_remove(struct udevice *dev)
{
struct axi_mrmac_priv *priv = dev_get_priv(dev);
/* Free buffer descriptors */
free(priv->tx_bd[0]);
free(priv->rx_bd[0]);
free(priv->txminframe);
return 0;
}
static int axi_mrmac_of_to_plat(struct udevice *dev)
{
struct axi_mrmac_plat *plat = dev_get_plat(dev);
struct eth_pdata *pdata = &plat->eth_pdata;
struct ofnode_phandle_args phandle_args;
int ret = 0;
pdata->iobase = dev_read_addr(dev);
ret = dev_read_phandle_with_args(dev, "axistream-connected", NULL, 0, 0,
&phandle_args);
if (ret) {
log_debug("axistream not found\n");
return -EINVAL;
}
plat->mm2s_cmn = (struct mcdma_common_regs *)ofnode_read_u64_default
(phandle_args.node, "reg", -1);
if (!plat->mm2s_cmn) {
log_warning("MRMAC dma register space not found\n");
return -EINVAL;
}
/* Set default MRMAC rate to 10000 */
plat->mrmac_rate = dev_read_u32_default(dev, "xlnx,mrmac-rate", 10000);
return 0;
}
static const struct eth_ops axi_mrmac_ops = {
.start = axi_mrmac_start,
.send = axi_mrmac_send,
.recv = axi_mrmac_recv,
.free_pkt = axi_mrmac_free_pkt,
.stop = axi_mrmac_stop,
};
static const struct udevice_id axi_mrmac_ids[] = {
{ .compatible = "xlnx,mrmac-ethernet-1.0" },
{ }
};
U_BOOT_DRIVER(axi_mrmac) = {
.name = "axi_mrmac",
.id = UCLASS_ETH,
.of_match = axi_mrmac_ids,
.of_to_plat = axi_mrmac_of_to_plat,
.probe = axi_mrmac_probe,
.remove = axi_mrmac_remove,
.ops = &axi_mrmac_ops,
.priv_auto = sizeof(struct axi_mrmac_priv),
.plat_auto = sizeof(struct axi_mrmac_plat),
};

View File

@ -0,0 +1,203 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Xilinx Multirate Ethernet MAC(MRMAC) driver
*
* Author(s): Ashok Reddy Soma <ashok.reddy.soma@xilinx.com>
* Michal Simek <michal.simek@xilinx.com>
*
* Copyright (C) 2021 Xilinx, Inc. All rights reserved.
*/
#ifndef __XILINX_AXI_MRMAC_H
#define __XILINX_AXI_MRMAC_H
#define MIN_PKT_SIZE 60
/* MRMAC needs atleast two buffer descriptors for Tx/Rx to work.
* Otherwise MRMAC will drop the packets. So, have atleast two Tx and
* two Rx bd's.
*/
#define TX_DESC 2
#define RX_DESC 2
/* MRMAC platform data structure */
struct axi_mrmac_plat {
struct eth_pdata eth_pdata;
struct mcdma_common_regs *mm2s_cmn;
u32 mrmac_rate; /* Hold the value from DT property "mrmac-rate" */
};
/* MRMAC private driver structure */
struct axi_mrmac_priv {
struct mrmac_regs *iobase;
struct mcdma_common_regs *mm2s_cmn;
struct mcdma_common_regs *s2mm_cmn;
struct mcdma_chan_reg *mcdma_tx;
struct mcdma_chan_reg *mcdma_rx;
struct mcdma_bd *tx_bd[TX_DESC];
struct mcdma_bd *rx_bd[RX_DESC];
u8 *txminframe; /* Pointer to hold min length Tx frame(60) */
u32 mrmac_rate; /* Speed to configure(Read from DT 10G/25G..) */
};
/* MRMAC Register Definitions */
struct mrmac_regs {
u32 revision; /* 0x0: Revision Register */
u32 reset; /* 0x4: Reset Register */
u32 mode; /* 0x8: Mode */
u32 tx_config; /* 0xc: Tx Configuration */
u32 rx_config; /* 0x10: Rx Configuration */
u32 reserved[6];/* 0x14-0x28: Reserved */
u32 tick_reg; /* 0x2c: Tick Register */
};
#define TX_BD_TOTAL_SIZE (TX_DESC * sizeof(struct mcdma_bd))
#define RX_BD_TOTAL_SIZE (RX_DESC * sizeof(struct mcdma_bd))
#define RX_BUFF_TOTAL_SIZE (RX_DESC * PKTSIZE_ALIGN)
/* Status Registers */
#define MRMAC_TX_STS_OFFSET 0x740
#define MRMAC_RX_STS_OFFSET 0x744
#define MRMAC_TX_RT_STS_OFFSET 0x748
#define MRMAC_RX_RT_STS_OFFSET 0x74c
#define MRMAC_STATRX_BLKLCK_OFFSET 0x754
/* Register bit masks */
#define MRMAC_RX_SERDES_RST_MASK (BIT(3) | BIT(2) | BIT(1) | BIT(0))
#define MRMAC_TX_SERDES_RST_MASK BIT(4)
#define MRMAC_RX_RST_MASK BIT(5)
#define MRMAC_TX_RST_MASK BIT(6)
#define MRMAC_RX_AXI_RST_MASK BIT(8)
#define MRMAC_TX_AXI_RST_MASK BIT(9)
#define MRMAC_STS_ALL_MASK 0xffffffff
#define MRMAC_RX_EN_MASK BIT(0)
#define MRMAC_RX_DEL_FCS_MASK BIT(1)
#define MRMAC_TX_EN_MASK BIT(0)
#define MRMAC_TX_INS_FCS_MASK BIT(1)
#define MRMAC_RX_BLKLCK_MASK BIT(0)
#define MRMAC_TICK_TRIGGER BIT(0)
#define MRMAC_RESET_DELAY 1 /* Delay in msecs */
#define MRMAC_BLKLCK_TIMEOUT 100 /* Block lock timeout in msecs */
#define MRMAC_DMARST_TIMEOUT 500 /* MCDMA reset timeout in msecs */
#define XMCDMA_RX_OFFSET 0x500
#define XMCDMA_CHAN_OFFSET 0x40
/* MCDMA Channel numbers are from 1-16 */
#define XMCDMA_CHANNEL_1 BIT(0)
#define XMCDMA_CHANNEL_2 BIT(1)
#define XMCDMA_CR_RUNSTOP BIT(0)
#define XMCDMA_CR_RESET BIT(2)
#define XMCDMA_BD_CTRL_TXSOF_MASK BIT(31) /* First tx packet */
#define XMCDMA_BD_CTRL_TXEOF_MASK BIT(30) /* Last tx packet */
#define XMCDMA_BD_CTRL_ALL_MASK GENMASK(31, 30) /* All control bits */
#define XMCDMA_BD_STS_ALL_MASK GENMASK(31, 28) /* All status bits */
/* MCDMA Mask registers */
#define XMCDMA_CR_RUNSTOP_MASK BIT(0) /* Start/stop DMA channel */
#define XMCDMA_CR_RESET_MASK BIT(2) /* Reset DMA engine */
#define XMCDMA_SR_HALTED_MASK BIT(0)
#define XMCDMA_SR_IDLE_MASK BIT(1)
#define XMCDMA_CH_IDLE BIT(0)
#define XMCDMA_BD_STS_COMPLETE BIT(31) /* Completed */
#define XMCDMA_BD_STS_DEC_ERR BIT(20) /* Decode error */
#define XMCDMA_BD_STS_SLV_ERR BIT(29) /* Slave error */
#define XMCDMA_BD_STS_INT_ERR BIT(28) /* Internal err */
#define XMCDMA_BD_STS_ALL_ERR GENMASK(30, 28) /* All errors */
#define XMCDMA_IRQ_ERRON_OTHERQ_MASK BIT(3)
#define XMCDMA_IRQ_PKTDROP_MASK BIT(4)
#define XMCDMA_IRQ_IOC_MASK BIT(5)
#define XMCDMA_IRQ_DELAY_MASK BIT(6)
#define XMCDMA_IRQ_ERR_MASK BIT(7)
#define XMCDMA_IRQ_ALL_MASK GENMASK(7, 5)
#define XMCDMA_PKTDROP_COALESCE_MASK GENMASK(15, 8)
#define XMCDMA_COALESCE_MASK GENMASK(23, 16)
#define XMCDMA_DELAY_MASK GENMASK(31, 24)
#define MRMAC_CTL_DATA_RATE_MASK GENMASK(2, 0)
#define MRMAC_CTL_DATA_RATE_10G 0
#define MRMAC_CTL_DATA_RATE_25G 1
#define MRMAC_CTL_DATA_RATE_40G 2
#define MRMAC_CTL_DATA_RATE_50G 3
#define MRMAC_CTL_DATA_RATE_100G 4
#define MRMAC_CTL_AXIS_CFG_MASK GENMASK(11, 9)
#define MRMAC_CTL_AXIS_CFG_SHIFT 9
#define MRMAC_CTL_AXIS_CFG_10G_IND 1
#define MRMAC_CTL_AXIS_CFG_25G_IND 1
#define MRMAC_CTL_SERDES_WIDTH_MASK GENMASK(6, 4)
#define MRMAC_CTL_SERDES_WIDTH_SHIFT 4
#define MRMAC_CTL_SERDES_WIDTH_10G 4
#define MRMAC_CTL_SERDES_WIDTH_25G 6
#define MRMAC_CTL_RATE_CFG_MASK (MRMAC_CTL_DATA_RATE_MASK | \
MRMAC_CTL_AXIS_CFG_MASK | \
MRMAC_CTL_SERDES_WIDTH_MASK)
#define MRMAC_CTL_PM_TICK_MASK BIT(30)
#define MRMAC_TICK_TRIGGER BIT(0)
#define XMCDMA_BD_STS_ACTUAL_LEN_MASK 0x007fffff /* Actual length */
/* MCDMA common offsets */
struct mcdma_common_regs {
u32 control; /* Common control */
u32 status; /* Common status */
u32 chen; /* Channel enable/disable */
u32 chser; /* Channel in progress */
u32 err; /* Error */
u32 ch_schd_type; /* Channel Q scheduler type */
u32 wrr_reg1; /* Weight of each channel (ch1-8) */
u32 wrr_reg2; /* Weight of each channel (ch9-16) */
u32 ch_serviced; /* Channels completed */
u32 arcache_aruser; /* ARCACHE and ARUSER values for AXI4 read */
u32 intr_status; /* Interrupt monitor */
u32 reserved[5];
};
/* MCDMA per-channel registers */
struct mcdma_chan_reg {
u32 control; /* Control */
u32 status; /* Status */
u32 current; /* Current descriptor */
u32 current_hi; /* Current descriptor high 32bit */
u32 tail; /* Tail descriptor */
u32 tail_hi; /* Tail descriptor high 32bit */
u32 pktcnt; /* Packet processed count */
};
/* MCDMA buffer descriptors */
struct mcdma_bd {
u32 next_desc; /* Next descriptor pointer */
u32 next_desc_msb;
u32 buf_addr; /* Buffer address */
u32 buf_addr_msb;
u32 reserved1;
u32 cntrl; /* Control */
u32 status; /* Status */
u32 sband_stats;
u32 app0;
u32 app1; /* Tx start << 16 | insert */
u32 app2; /* Tx csum seed */
u32 app3;
u32 app4;
u32 sw_id_offset;
u32 reserved2;
u32 reserved3;
u32 reserved4[16];
};
#endif /* __XILINX_AXI_MRMAC_H */