Merge git://git.denx.de/u-boot-nand-flash
This commit is contained in:
commit
2313d48445
41
cmd/nand.c
41
cmd/nand.c
@ -647,6 +647,9 @@ static int do_nand(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
|
||||
|
||||
#ifdef CONFIG_CMD_NAND_TORTURE
|
||||
if (strcmp(cmd, "torture") == 0) {
|
||||
loff_t endoff;
|
||||
unsigned int failed = 0, passed = 0;
|
||||
|
||||
if (argc < 3)
|
||||
goto usage;
|
||||
|
||||
@ -655,12 +658,37 @@ static int do_nand(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
|
||||
return 1;
|
||||
}
|
||||
|
||||
printf("\nNAND torture: device %d offset 0x%llx size 0x%x\n",
|
||||
dev, off, mtd->erasesize);
|
||||
ret = nand_torture(mtd, off);
|
||||
printf(" %s\n", ret ? "Failed" : "Passed");
|
||||
size = mtd->erasesize;
|
||||
if (argc > 3) {
|
||||
if (!str2off(argv[3], &size)) {
|
||||
puts("Size is not a valid number\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
return ret == 0 ? 0 : 1;
|
||||
endoff = off + size;
|
||||
if (endoff > mtd->size) {
|
||||
puts("Arguments beyond end of NAND\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
off = round_down(off, mtd->erasesize);
|
||||
endoff = round_up(endoff, mtd->erasesize);
|
||||
size = endoff - off;
|
||||
printf("\nNAND torture: device %d offset 0x%llx size 0x%llx (block size 0x%x)\n",
|
||||
dev, off, size, mtd->erasesize);
|
||||
while (off < endoff) {
|
||||
ret = nand_torture(mtd, off);
|
||||
if (ret) {
|
||||
failed++;
|
||||
printf(" block at 0x%llx failed\n", off);
|
||||
} else {
|
||||
passed++;
|
||||
}
|
||||
off += mtd->erasesize;
|
||||
}
|
||||
printf(" Passed: %u, failed: %u\n", passed, failed);
|
||||
return failed != 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -775,7 +803,8 @@ static char nand_help_text[] =
|
||||
"nand bad - show bad blocks\n"
|
||||
"nand dump[.oob] off - dump page\n"
|
||||
#ifdef CONFIG_CMD_NAND_TORTURE
|
||||
"nand torture off - torture block at offset\n"
|
||||
"nand torture off - torture one block at offset\n"
|
||||
"nand torture off [size] - torture blocks from off to off+size\n"
|
||||
#endif
|
||||
"nand scrub [-y] off size | scrub.part partition | scrub.chip\n"
|
||||
" really clean NAND erasing bad blocks (UNSAFE)\n"
|
||||
|
@ -34,7 +34,7 @@ __weak int board_fastboot_write_partition_setup(char *name)
|
||||
}
|
||||
|
||||
static int fb_nand_lookup(const char *partname, char *response,
|
||||
struct mtd_info **nand,
|
||||
struct mtd_info **mtd,
|
||||
struct part_info **part)
|
||||
{
|
||||
struct mtd_device *dev;
|
||||
|
@ -134,6 +134,13 @@ int spl_nand_load_image(void)
|
||||
#endif
|
||||
/* Load u-boot */
|
||||
err = spl_nand_load_element(CONFIG_SYS_NAND_U_BOOT_OFFS, header);
|
||||
#ifdef CONFIG_SYS_NAND_U_BOOT_OFFS_REDUND
|
||||
#if CONFIG_SYS_NAND_U_BOOT_OFFS != CONFIG_SYS_NAND_U_BOOT_OFFS_REDUND
|
||||
if (err)
|
||||
err = spl_nand_load_element(CONFIG_SYS_NAND_U_BOOT_OFFS_REDUND,
|
||||
header);
|
||||
#endif
|
||||
#endif
|
||||
nand_deselect();
|
||||
return err;
|
||||
}
|
||||
|
@ -137,7 +137,7 @@ Configuration Options:
|
||||
init:
|
||||
|
||||
/* chip is struct nand_chip, and is now provided by the driver. */
|
||||
mtd = &chip.mtd;
|
||||
mtd = nand_to_mtd(&chip);
|
||||
|
||||
/*
|
||||
* Fill in appropriate values if this driver uses these fields,
|
||||
@ -271,7 +271,7 @@ Platform specific options
|
||||
|
||||
However, for 4K pagesize NAND
|
||||
NAND_PAGESIZE = 4096
|
||||
NAND_OOBSIZE = 64
|
||||
NAND_OOBSIZE = 224
|
||||
ECC_BYTES = 26
|
||||
2 + (4096 / 512) * 26 = 210 < NAND_OOBSIZE
|
||||
Thus BCH16 can be supported on 4K page NAND.
|
||||
@ -307,7 +307,7 @@ Miscellaneous and testing commands:
|
||||
DANGEROUS!!! Factory set bad blocks will be lost. Use only
|
||||
to remove artificial bad blocks created with the "markbad" command.
|
||||
|
||||
"torture offset"
|
||||
"torture offset [size]"
|
||||
Torture block to determine if it is still reliable.
|
||||
Enabled by the CONFIG_CMD_NAND_TORTURE configuration option.
|
||||
This command returns 0 if the block is still reliable, else 1.
|
||||
@ -324,6 +324,10 @@ Miscellaneous and testing commands:
|
||||
automate actions following a nand->write() error. This would e.g. be required
|
||||
in order to program or update safely firmware to NAND, especially for the UBI
|
||||
part of such firmware.
|
||||
Optionally, a second parameter size can be given to test multiple blocks with
|
||||
one call. If size is not a multiple of the NAND's erase size, then the block
|
||||
that contains offset + size will be tested in full. If used with size, this
|
||||
command returns 0 if all tested blocks have been found reliable, else 1.
|
||||
|
||||
|
||||
NAND locking command (for chips with active LOCKPRE pin)
|
||||
|
@ -99,16 +99,31 @@ config SYS_NAND_BUSWIDTH_16BIT
|
||||
not available while configuring controller. So a static CONFIG_NAND_xx
|
||||
is needed to know the device's bus-width in advance.
|
||||
|
||||
# Enhance depends when converting drivers to Kconfig which use this config
|
||||
if SPL
|
||||
|
||||
config SYS_NAND_U_BOOT_LOCATIONS
|
||||
bool "Define U-boot binaries locations in NAND"
|
||||
help
|
||||
Enable CONFIG_SYS_NAND_U_BOOT_OFFS though Kconfig.
|
||||
This option should not be enabled when compiling U-boot for boards
|
||||
defining CONFIG_SYS_NAND_U_BOOT_OFFS in their include/configs/<board>.h
|
||||
file.
|
||||
|
||||
config SYS_NAND_U_BOOT_OFFS
|
||||
hex "Location in NAND to read U-Boot from"
|
||||
default 0x8000 if NAND_SUNXI
|
||||
depends on NAND_SUNXI
|
||||
depends on SYS_NAND_U_BOOT_LOCATIONS
|
||||
help
|
||||
Set the offset from the start of the nand where u-boot should be
|
||||
loaded from.
|
||||
|
||||
if SPL
|
||||
config SYS_NAND_U_BOOT_OFFS_REDUND
|
||||
hex "Location in NAND to read U-Boot from"
|
||||
default SYS_NAND_U_BOOT_OFFS
|
||||
depends on SYS_NAND_U_BOOT_LOCATIONS
|
||||
help
|
||||
Set the offset from the start of the nand where the redundant u-boot
|
||||
should be loaded from.
|
||||
|
||||
config SPL_NAND_DENALI
|
||||
bool "Support Denali NAND controller for SPL"
|
||||
|
@ -223,7 +223,7 @@ void nand_init(void)
|
||||
/*
|
||||
* Init board specific nand support
|
||||
*/
|
||||
mtd = &nand_chip.mtd;
|
||||
mtd = nand_to_mtd(&nand_chip);
|
||||
nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W =
|
||||
(void __iomem *)CONFIG_SYS_NAND_BASE;
|
||||
board_nand_init(&nand_chip);
|
||||
|
@ -1449,7 +1449,7 @@ int board_nand_init(struct nand_chip *nand)
|
||||
|
||||
void nand_init(void)
|
||||
{
|
||||
mtd = &nand_chip.mtd;
|
||||
mtd = nand_to_mtd(&nand_chip);
|
||||
mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
|
||||
mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
|
||||
nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
|
||||
|
@ -541,7 +541,7 @@ static struct nand_chip lpc32xx_chip;
|
||||
|
||||
void board_nand_init(void)
|
||||
{
|
||||
struct mtd_info *mtd = &lpc32xx_chip.mtd;
|
||||
struct mtd_info *mtd = nand_to_mtd(&lpc32xx_chip);
|
||||
int ret;
|
||||
|
||||
/* Set all BOARDSPECIFIC (actually core-specific) fields */
|
||||
|
@ -147,7 +147,7 @@ static int mxs_nand_init(void)
|
||||
|
||||
/* init mxs nand driver */
|
||||
board_nand_init(&nand_chip);
|
||||
mtd = &nand_chip.mtd;
|
||||
mtd = nand_to_mtd(&nand_chip);
|
||||
/* set mtd functions */
|
||||
nand_chip.cmdfunc = mxs_nand_command;
|
||||
nand_chip.numchips = 1;
|
||||
|
@ -249,7 +249,7 @@ void nand_init(void)
|
||||
/*
|
||||
* Init board specific nand support
|
||||
*/
|
||||
mtd = &nand_chip.mtd;
|
||||
mtd = nand_to_mtd(&nand_chip);
|
||||
nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W =
|
||||
(void __iomem *)CONFIG_SYS_NAND_BASE;
|
||||
board_nand_init(&nand_chip);
|
||||
|
@ -820,7 +820,7 @@ int nand_torture(struct mtd_info *mtd, loff_t offset)
|
||||
{
|
||||
u_char patterns[] = {0xa5, 0x5a, 0x00};
|
||||
struct erase_info instr = {
|
||||
.mtd = nand,
|
||||
.mtd = mtd,
|
||||
.addr = offset,
|
||||
.len = mtd->erasesize,
|
||||
};
|
||||
|
@ -66,6 +66,8 @@
|
||||
#define NFC_ROW_AUTO_INC (1 << 27)
|
||||
#define NFC_SEND_CMD3 (1 << 28)
|
||||
#define NFC_SEND_CMD4 (1 << 29)
|
||||
#define NFC_RAW_CMD (0 << 30)
|
||||
#define NFC_PAGE_CMD (2 << 30)
|
||||
|
||||
#define NFC_ST_CMD_INT_FLAG (1 << 1)
|
||||
#define NFC_ST_DMA_INT_FLAG (1 << 2)
|
||||
@ -78,9 +80,6 @@
|
||||
#define NFC_CMD_RNDOUT 0x05
|
||||
#define NFC_CMD_READSTART 0x30
|
||||
|
||||
|
||||
#define NFC_PAGE_CMD (2 << 30)
|
||||
|
||||
#define SUNXI_DMA_CFG_REG0 0x300
|
||||
#define SUNXI_DMA_SRC_START_ADDR_REG0 0x304
|
||||
#define SUNXI_DMA_DEST_START_ADDRR_REG0 0x308
|
||||
@ -97,6 +96,16 @@
|
||||
#define SUNXI_DMA_DDMA_PARA_REG_SRC_WAIT_CYC (0x0F << 0)
|
||||
#define SUNXI_DMA_DDMA_PARA_REG_SRC_BLK_SIZE (0x7F << 8)
|
||||
|
||||
struct nfc_config {
|
||||
int page_size;
|
||||
int ecc_strength;
|
||||
int ecc_size;
|
||||
int addr_cycles;
|
||||
int nseeds;
|
||||
bool randomize;
|
||||
bool valid;
|
||||
};
|
||||
|
||||
/* minimal "boot0" style NAND support for Allwinner A20 */
|
||||
|
||||
/* random seed used by linux */
|
||||
@ -119,38 +128,31 @@ const uint16_t random_seed[128] = {
|
||||
0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
|
||||
};
|
||||
|
||||
/* random seed used for syndrome calls */
|
||||
const uint16_t random_seed_syndrome = 0x4a80;
|
||||
|
||||
#define MAX_RETRIES 10
|
||||
#define DEFAULT_TIMEOUT_US 100000
|
||||
|
||||
static int check_value_inner(int offset, int expected_bits,
|
||||
int max_number_of_retries, int negation)
|
||||
int timeout_us, int negation)
|
||||
{
|
||||
int retries = 0;
|
||||
do {
|
||||
int val = readl(offset) & expected_bits;
|
||||
if (negation ? !val : val)
|
||||
return 1;
|
||||
mdelay(1);
|
||||
retries++;
|
||||
} while (retries < max_number_of_retries);
|
||||
udelay(1);
|
||||
} while (--timeout_us);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int check_value(int offset, int expected_bits,
|
||||
int max_number_of_retries)
|
||||
int timeout_us)
|
||||
{
|
||||
return check_value_inner(offset, expected_bits,
|
||||
max_number_of_retries, 0);
|
||||
return check_value_inner(offset, expected_bits, timeout_us, 0);
|
||||
}
|
||||
|
||||
static inline int check_value_negated(int offset, int unexpected_bits,
|
||||
int max_number_of_retries)
|
||||
int timeout_us)
|
||||
{
|
||||
return check_value_inner(offset, unexpected_bits,
|
||||
max_number_of_retries, 1);
|
||||
return check_value_inner(offset, unexpected_bits, timeout_us, 1);
|
||||
}
|
||||
|
||||
void nand_init(void)
|
||||
@ -165,7 +167,7 @@ void nand_init(void)
|
||||
SUNXI_NFC_BASE + NFC_CTL);
|
||||
|
||||
if (!check_value_negated(SUNXI_NFC_BASE + NFC_CTL,
|
||||
NFC_CTL_RESET, MAX_RETRIES)) {
|
||||
NFC_CTL_RESET, DEFAULT_TIMEOUT_US)) {
|
||||
printf("Couldn't initialize nand\n");
|
||||
}
|
||||
|
||||
@ -175,64 +177,97 @@ void nand_init(void)
|
||||
SUNXI_NFC_BASE + NFC_CMD);
|
||||
|
||||
if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_INT_FLAG,
|
||||
MAX_RETRIES)) {
|
||||
DEFAULT_TIMEOUT_US)) {
|
||||
printf("Error timeout waiting for nand reset\n");
|
||||
return;
|
||||
}
|
||||
writel(NFC_ST_CMD_INT_FLAG, SUNXI_NFC_BASE + NFC_ST);
|
||||
}
|
||||
|
||||
static int nand_read_page(int page_size, int ecc_strength, int ecc_page_size,
|
||||
int addr_cycles, uint32_t real_addr, dma_addr_t dst, int syndrome)
|
||||
static void nand_apply_config(const struct nfc_config *conf)
|
||||
{
|
||||
uint32_t val;
|
||||
int i, ecc_off = 0;
|
||||
uint16_t ecc_mode = 0;
|
||||
uint16_t rand_seed;
|
||||
uint32_t page;
|
||||
uint16_t column;
|
||||
static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
|
||||
u32 val;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(strengths); i++) {
|
||||
if (ecc_strength == strengths[i]) {
|
||||
ecc_mode = i;
|
||||
break;
|
||||
}
|
||||
val = readl(SUNXI_NFC_BASE + NFC_CTL);
|
||||
val &= ~NFC_CTL_PAGE_SIZE_MASK;
|
||||
writel(val | NFC_CTL_RAM_METHOD | NFC_CTL_PAGE_SIZE(conf->page_size),
|
||||
SUNXI_NFC_BASE + NFC_CTL);
|
||||
writel(conf->ecc_size, SUNXI_NFC_BASE + NFC_CNT);
|
||||
writel(conf->page_size, SUNXI_NFC_BASE + NFC_SPARE_AREA);
|
||||
}
|
||||
|
||||
static int nand_load_page(const struct nfc_config *conf, u32 offs)
|
||||
{
|
||||
int page = offs / conf->page_size;
|
||||
|
||||
writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET) |
|
||||
(NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET) |
|
||||
(NFC_CMD_READSTART << NFC_READ_CMD_OFFSET),
|
||||
SUNXI_NFC_BASE + NFC_RCMD_SET);
|
||||
writel(((page & 0xFFFF) << 16), SUNXI_NFC_BASE + NFC_ADDR_LOW);
|
||||
writel((page >> 16) & 0xFF, SUNXI_NFC_BASE + NFC_ADDR_HIGH);
|
||||
writel(NFC_ST_CMD_INT_FLAG, SUNXI_NFC_BASE + NFC_ST);
|
||||
writel(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_RAW_CMD | NFC_WAIT_FLAG |
|
||||
((conf->addr_cycles - 1) << NFC_ADDR_NUM_OFFSET) | NFC_SEND_ADR,
|
||||
SUNXI_NFC_BASE + NFC_CMD);
|
||||
|
||||
if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_INT_FLAG,
|
||||
DEFAULT_TIMEOUT_US)) {
|
||||
printf("Error while initializing dma interrupt\n");
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
/* HW ECC always request ECC bytes for 1024 bytes blocks */
|
||||
ecc_off = DIV_ROUND_UP(ecc_strength * fls(8 * 1024), 8);
|
||||
/* HW ECC always work with even numbers of ECC bytes */
|
||||
ecc_off += (ecc_off & 1);
|
||||
ecc_off += 4; /* prepad */
|
||||
return 0;
|
||||
}
|
||||
|
||||
page = real_addr / page_size;
|
||||
column = real_addr % page_size;
|
||||
static int nand_reset_column(void)
|
||||
{
|
||||
writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET) |
|
||||
(NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET) |
|
||||
(NFC_CMD_RNDOUTSTART << NFC_READ_CMD_OFFSET),
|
||||
SUNXI_NFC_BASE + NFC_RCMD_SET);
|
||||
writel(0, SUNXI_NFC_BASE + NFC_ADDR_LOW);
|
||||
writel(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_RAW_CMD |
|
||||
(1 << NFC_ADDR_NUM_OFFSET) | NFC_SEND_ADR | NFC_CMD_RNDOUT,
|
||||
SUNXI_NFC_BASE + NFC_CMD);
|
||||
|
||||
if (syndrome)
|
||||
column += (column / ecc_page_size) * ecc_off;
|
||||
if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_INT_FLAG,
|
||||
DEFAULT_TIMEOUT_US)) {
|
||||
printf("Error while initializing dma interrupt\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nand_read_page(const struct nfc_config *conf, u32 offs,
|
||||
void *dest, int len)
|
||||
{
|
||||
dma_addr_t dst = (dma_addr_t)dest;
|
||||
int nsectors = len / conf->ecc_size;
|
||||
u16 rand_seed;
|
||||
u32 val;
|
||||
int page;
|
||||
|
||||
page = offs / conf->page_size;
|
||||
|
||||
if (offs % conf->page_size || len % conf->ecc_size ||
|
||||
len > conf->page_size || len < 0)
|
||||
return -EINVAL;
|
||||
|
||||
/* clear ecc status */
|
||||
writel(0, SUNXI_NFC_BASE + NFC_ECC_ST);
|
||||
|
||||
/* Choose correct seed */
|
||||
if (syndrome)
|
||||
rand_seed = random_seed_syndrome;
|
||||
else
|
||||
rand_seed = random_seed[page % 128];
|
||||
rand_seed = random_seed[page % conf->nseeds];
|
||||
|
||||
writel((rand_seed << 16) | NFC_ECC_RANDOM_EN | NFC_ECC_EN
|
||||
| NFC_ECC_PIPELINE | (ecc_mode << 12),
|
||||
writel((rand_seed << 16) | (conf->ecc_strength << 12) |
|
||||
(conf->randomize ? NFC_ECC_RANDOM_EN : 0) |
|
||||
(conf->ecc_size == 512 ? NFC_ECC_BLOCK_SIZE : 0) |
|
||||
NFC_ECC_EN | NFC_ECC_PIPELINE | NFC_ECC_EXCEPTION,
|
||||
SUNXI_NFC_BASE + NFC_ECC_CTL);
|
||||
|
||||
val = readl(SUNXI_NFC_BASE + NFC_CTL);
|
||||
writel(val | NFC_CTL_RAM_METHOD, SUNXI_NFC_BASE + NFC_CTL);
|
||||
|
||||
if (!syndrome)
|
||||
writel(page_size + (column / ecc_page_size) * ecc_off,
|
||||
SUNXI_NFC_BASE + NFC_SPARE_AREA);
|
||||
|
||||
flush_dcache_range(dst, ALIGN(dst + ecc_page_size, ARCH_DMA_MINALIGN));
|
||||
flush_dcache_range(dst, ALIGN(dst + conf->ecc_size, ARCH_DMA_MINALIGN));
|
||||
|
||||
/* SUNXI_DMA */
|
||||
writel(0x0, SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0); /* clr dma cmd */
|
||||
@ -241,158 +276,261 @@ static int nand_read_page(int page_size, int ecc_strength, int ecc_page_size,
|
||||
SUNXI_DMA_BASE + SUNXI_DMA_SRC_START_ADDR_REG0);
|
||||
/* read to RAM */
|
||||
writel(dst, SUNXI_DMA_BASE + SUNXI_DMA_DEST_START_ADDRR_REG0);
|
||||
writel(SUNXI_DMA_DDMA_PARA_REG_SRC_WAIT_CYC
|
||||
| SUNXI_DMA_DDMA_PARA_REG_SRC_BLK_SIZE,
|
||||
SUNXI_DMA_BASE + SUNXI_DMA_DDMA_PARA_REG0);
|
||||
writel(ecc_page_size,
|
||||
SUNXI_DMA_BASE + SUNXI_DMA_DDMA_BC_REG0); /* 1kB */
|
||||
writel(SUNXI_DMA_DDMA_CFG_REG_LOADING
|
||||
| SUNXI_DMA_DDMA_CFG_REG_DMA_DEST_DATA_WIDTH_32
|
||||
| SUNXI_DMA_DDMA_CFG_REG_DDMA_DST_DRQ_TYPE_DRAM
|
||||
| SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_DATA_WIDTH_32
|
||||
| SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_ADDR_MODE_IO
|
||||
| SUNXI_DMA_DDMA_CFG_REG_DDMA_SRC_DRQ_TYPE_NFC,
|
||||
SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0);
|
||||
writel(SUNXI_DMA_DDMA_PARA_REG_SRC_WAIT_CYC |
|
||||
SUNXI_DMA_DDMA_PARA_REG_SRC_BLK_SIZE,
|
||||
SUNXI_DMA_BASE + SUNXI_DMA_DDMA_PARA_REG0);
|
||||
writel(len, SUNXI_DMA_BASE + SUNXI_DMA_DDMA_BC_REG0);
|
||||
writel(SUNXI_DMA_DDMA_CFG_REG_LOADING |
|
||||
SUNXI_DMA_DDMA_CFG_REG_DMA_DEST_DATA_WIDTH_32 |
|
||||
SUNXI_DMA_DDMA_CFG_REG_DDMA_DST_DRQ_TYPE_DRAM |
|
||||
SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_DATA_WIDTH_32 |
|
||||
SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_ADDR_MODE_IO |
|
||||
SUNXI_DMA_DDMA_CFG_REG_DDMA_SRC_DRQ_TYPE_NFC,
|
||||
SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0);
|
||||
|
||||
writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET)
|
||||
| (NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET)
|
||||
| (NFC_CMD_READSTART | NFC_READ_CMD_OFFSET), SUNXI_NFC_BASE
|
||||
+ NFC_RCMD_SET);
|
||||
writel(1, SUNXI_NFC_BASE + NFC_SECTOR_NUM);
|
||||
writel(((page & 0xFFFF) << 16) | column,
|
||||
SUNXI_NFC_BASE + NFC_ADDR_LOW);
|
||||
writel((page >> 16) & 0xFF, SUNXI_NFC_BASE + NFC_ADDR_HIGH);
|
||||
writel(nsectors, SUNXI_NFC_BASE + NFC_SECTOR_NUM);
|
||||
writel(NFC_ST_DMA_INT_FLAG, SUNXI_NFC_BASE + NFC_ST);
|
||||
writel(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_DATA_TRANS |
|
||||
NFC_PAGE_CMD | NFC_WAIT_FLAG |
|
||||
((addr_cycles - 1) << NFC_ADDR_NUM_OFFSET) |
|
||||
NFC_SEND_ADR | NFC_DATA_SWAP_METHOD | (syndrome ? NFC_SEQ : 0),
|
||||
SUNXI_NFC_BASE + NFC_CMD);
|
||||
writel(NFC_DATA_TRANS | NFC_PAGE_CMD | NFC_DATA_SWAP_METHOD,
|
||||
SUNXI_NFC_BASE + NFC_CMD);
|
||||
|
||||
if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_DMA_INT_FLAG,
|
||||
MAX_RETRIES)) {
|
||||
DEFAULT_TIMEOUT_US)) {
|
||||
printf("Error while initializing dma interrupt\n");
|
||||
return -1;
|
||||
return -EIO;
|
||||
}
|
||||
writel(NFC_ST_DMA_INT_FLAG, SUNXI_NFC_BASE + NFC_ST);
|
||||
|
||||
if (!check_value_negated(SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0,
|
||||
SUNXI_DMA_DDMA_CFG_REG_LOADING, MAX_RETRIES)) {
|
||||
SUNXI_DMA_DDMA_CFG_REG_LOADING,
|
||||
DEFAULT_TIMEOUT_US)) {
|
||||
printf("Error while waiting for dma transfer to finish\n");
|
||||
return -1;
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
invalidate_dcache_range(dst,
|
||||
ALIGN(dst + ecc_page_size, ARCH_DMA_MINALIGN));
|
||||
ALIGN(dst + conf->ecc_size, ARCH_DMA_MINALIGN));
|
||||
|
||||
if (readl(SUNXI_NFC_BASE + NFC_ECC_ST))
|
||||
return -1;
|
||||
val = readl(SUNXI_NFC_BASE + NFC_ECC_ST);
|
||||
|
||||
return 0;
|
||||
/* ECC error detected. */
|
||||
if (val & 0xffff)
|
||||
return -EIO;
|
||||
|
||||
/*
|
||||
* Return 1 if the page is empty.
|
||||
* We consider the page as empty if the first ECC block is marked
|
||||
* empty.
|
||||
*/
|
||||
return (val & 0x10000) ? 1 : 0;
|
||||
}
|
||||
|
||||
static int nand_read_ecc(int page_size, int ecc_strength, int ecc_page_size,
|
||||
int addr_cycles, uint32_t offs, uint32_t size, void *dest, int syndrome)
|
||||
static int nand_max_ecc_strength(struct nfc_config *conf)
|
||||
{
|
||||
void *end = dest + size;
|
||||
|
||||
clrsetbits_le32(SUNXI_NFC_BASE + NFC_CTL, NFC_CTL_PAGE_SIZE_MASK,
|
||||
NFC_CTL_PAGE_SIZE(page_size));
|
||||
|
||||
for ( ;dest < end; dest += ecc_page_size, offs += ecc_page_size) {
|
||||
if (nand_read_page(page_size, ecc_strength, ecc_page_size,
|
||||
addr_cycles, offs, (dma_addr_t)dest,
|
||||
syndrome))
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nand_read_buffer(uint32_t offs, unsigned int size, void *dest,
|
||||
int syndrome)
|
||||
{
|
||||
const struct {
|
||||
int page_size;
|
||||
int ecc_strength;
|
||||
int ecc_page_size;
|
||||
int addr_cycles;
|
||||
} nand_configs[] = {
|
||||
{ 8192, 40, 1024, 5 },
|
||||
{ 16384, 56, 1024, 5 },
|
||||
{ 8192, 24, 1024, 5 },
|
||||
{ 4096, 24, 1024, 5 },
|
||||
};
|
||||
static int nand_config = -1;
|
||||
static const int ecc_bytes[] = { 32, 46, 54, 60, 74, 88, 102, 110, 116 };
|
||||
int max_oobsize, max_ecc_bytes;
|
||||
int nsectors = conf->page_size / conf->ecc_size;
|
||||
int i;
|
||||
|
||||
if (nand_config == -1) {
|
||||
for (i = 0; i < ARRAY_SIZE(nand_configs); i++) {
|
||||
debug("nand: trying page %d ecc %d / %d addr %d: ",
|
||||
nand_configs[i].page_size,
|
||||
nand_configs[i].ecc_strength,
|
||||
nand_configs[i].ecc_page_size,
|
||||
nand_configs[i].addr_cycles);
|
||||
if (nand_read_ecc(nand_configs[i].page_size,
|
||||
nand_configs[i].ecc_strength,
|
||||
nand_configs[i].ecc_page_size,
|
||||
nand_configs[i].addr_cycles,
|
||||
offs, size, dest, syndrome) == 0) {
|
||||
debug("success\n");
|
||||
nand_config = i;
|
||||
return 0;
|
||||
}
|
||||
debug("failed\n");
|
||||
}
|
||||
return -1;
|
||||
/*
|
||||
* ECC strength is limited by the size of the OOB area which is
|
||||
* correlated with the page size.
|
||||
*/
|
||||
switch (conf->page_size) {
|
||||
case 2048:
|
||||
max_oobsize = 64;
|
||||
break;
|
||||
case 4096:
|
||||
max_oobsize = 256;
|
||||
break;
|
||||
case 8192:
|
||||
max_oobsize = 640;
|
||||
break;
|
||||
case 16384:
|
||||
max_oobsize = 1664;
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
return nand_read_ecc(nand_configs[nand_config].page_size,
|
||||
nand_configs[nand_config].ecc_strength,
|
||||
nand_configs[nand_config].ecc_page_size,
|
||||
nand_configs[nand_config].addr_cycles,
|
||||
offs, size, dest, syndrome);
|
||||
max_ecc_bytes = max_oobsize / nsectors;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(ecc_bytes); i++) {
|
||||
if (ecc_bytes[i] > max_ecc_bytes)
|
||||
break;
|
||||
}
|
||||
|
||||
if (!i)
|
||||
return -EINVAL;
|
||||
|
||||
return i - 1;
|
||||
}
|
||||
|
||||
static int nand_detect_ecc_config(struct nfc_config *conf, u32 offs,
|
||||
void *dest)
|
||||
{
|
||||
/* NAND with pages > 4k will likely require 1k sector size. */
|
||||
int min_ecc_size = conf->page_size > 4096 ? 1024 : 512;
|
||||
int page = offs / conf->page_size;
|
||||
int ret;
|
||||
|
||||
/*
|
||||
* In most cases, 1k sectors are preferred over 512b ones, start
|
||||
* testing this config first.
|
||||
*/
|
||||
for (conf->ecc_size = 1024; conf->ecc_size >= min_ecc_size;
|
||||
conf->ecc_size >>= 1) {
|
||||
int max_ecc_strength = nand_max_ecc_strength(conf);
|
||||
|
||||
nand_apply_config(conf);
|
||||
|
||||
/*
|
||||
* We are starting from the maximum ECC strength because
|
||||
* most of the time NAND vendors provide an OOB area that
|
||||
* barely meets the ECC requirements.
|
||||
*/
|
||||
for (conf->ecc_strength = max_ecc_strength;
|
||||
conf->ecc_strength >= 0;
|
||||
conf->ecc_strength--) {
|
||||
conf->randomize = false;
|
||||
if (nand_reset_column())
|
||||
return -EIO;
|
||||
|
||||
/*
|
||||
* Only read the first sector to speedup detection.
|
||||
*/
|
||||
ret = nand_read_page(conf, offs, dest, conf->ecc_size);
|
||||
if (!ret) {
|
||||
return 0;
|
||||
} else if (ret > 0) {
|
||||
/*
|
||||
* If page is empty we can't deduce anything
|
||||
* about the ECC config => stop the detection.
|
||||
*/
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
conf->randomize = true;
|
||||
conf->nseeds = ARRAY_SIZE(random_seed);
|
||||
do {
|
||||
if (nand_reset_column())
|
||||
return -EIO;
|
||||
|
||||
if (!nand_read_page(conf, offs, dest,
|
||||
conf->ecc_size))
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* Find the next ->nseeds value that would
|
||||
* change the randomizer seed for the page
|
||||
* we're trying to read.
|
||||
*/
|
||||
while (conf->nseeds >= 16) {
|
||||
int seed = page % conf->nseeds;
|
||||
|
||||
conf->nseeds >>= 1;
|
||||
if (seed != page % conf->nseeds)
|
||||
break;
|
||||
}
|
||||
} while (conf->nseeds >= 16);
|
||||
}
|
||||
}
|
||||
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
static int nand_detect_config(struct nfc_config *conf, u32 offs, void *dest)
|
||||
{
|
||||
if (conf->valid)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* Modern NANDs are more likely than legacy ones, so we start testing
|
||||
* with 5 address cycles.
|
||||
*/
|
||||
for (conf->addr_cycles = 5;
|
||||
conf->addr_cycles >= 4;
|
||||
conf->addr_cycles--) {
|
||||
int max_page_size = conf->addr_cycles == 4 ? 2048 : 16384;
|
||||
|
||||
/*
|
||||
* Ignoring 1k pages cause I'm not even sure this case exist
|
||||
* in the real world.
|
||||
*/
|
||||
for (conf->page_size = 2048; conf->page_size <= max_page_size;
|
||||
conf->page_size <<= 1) {
|
||||
if (nand_load_page(conf, offs))
|
||||
return -1;
|
||||
|
||||
if (!nand_detect_ecc_config(conf, offs, dest)) {
|
||||
conf->valid = true;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
static int nand_read_buffer(struct nfc_config *conf, uint32_t offs,
|
||||
unsigned int size, void *dest)
|
||||
{
|
||||
int first_seed, page, ret;
|
||||
|
||||
size = ALIGN(size, conf->page_size);
|
||||
page = offs / conf->page_size;
|
||||
first_seed = page % conf->nseeds;
|
||||
|
||||
for (; size; size -= conf->page_size) {
|
||||
if (nand_load_page(conf, offs))
|
||||
return -1;
|
||||
|
||||
ret = nand_read_page(conf, offs, dest, conf->page_size);
|
||||
/*
|
||||
* The ->nseeds value should be equal to the number of pages
|
||||
* in an eraseblock. Since we don't know this information in
|
||||
* advance we might have picked a wrong value.
|
||||
*/
|
||||
if (ret < 0 && conf->randomize) {
|
||||
int cur_seed = page % conf->nseeds;
|
||||
|
||||
/*
|
||||
* We already tried all the seed values => we are
|
||||
* facing a real corruption.
|
||||
*/
|
||||
if (cur_seed < first_seed)
|
||||
return -EIO;
|
||||
|
||||
/* Try to adjust ->nseeds and read the page again... */
|
||||
conf->nseeds = cur_seed;
|
||||
|
||||
if (nand_reset_column())
|
||||
return -EIO;
|
||||
|
||||
/* ... it still fails => it's a real corruption. */
|
||||
if (nand_read_page(conf, offs, dest, conf->page_size))
|
||||
return -EIO;
|
||||
} else if (ret && conf->randomize) {
|
||||
memset(dest, 0xff, conf->page_size);
|
||||
}
|
||||
|
||||
page++;
|
||||
offs += conf->page_size;
|
||||
dest += conf->page_size;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int nand_spl_load_image(uint32_t offs, unsigned int size, void *dest)
|
||||
{
|
||||
#if CONFIG_SYS_NAND_U_BOOT_OFFS == CONFIG_SPL_PAD_TO
|
||||
/*
|
||||
* u-boot-dtb.bin appended to SPL, use syndrome (like the BROM does)
|
||||
* and try different erase block sizes to find the backup.
|
||||
*/
|
||||
const uint32_t boot_offsets[] = {
|
||||
0 * 1024 * 1024 + CONFIG_SYS_NAND_U_BOOT_OFFS,
|
||||
1 * 1024 * 1024 + CONFIG_SYS_NAND_U_BOOT_OFFS,
|
||||
2 * 1024 * 1024 + CONFIG_SYS_NAND_U_BOOT_OFFS,
|
||||
4 * 1024 * 1024 + CONFIG_SYS_NAND_U_BOOT_OFFS,
|
||||
};
|
||||
const int syndrome = 1;
|
||||
#else
|
||||
/*
|
||||
* u-boot-dtb.bin on its own partition, do not use syndrome, u-boot
|
||||
* partition sits after 2 eraseblocks (spl, spl-backup), look for
|
||||
* backup u-boot 1 erase block further.
|
||||
*/
|
||||
const uint32_t eraseblock_size = CONFIG_SYS_NAND_U_BOOT_OFFS / 2;
|
||||
const uint32_t boot_offsets[] = {
|
||||
CONFIG_SYS_NAND_U_BOOT_OFFS,
|
||||
CONFIG_SYS_NAND_U_BOOT_OFFS + eraseblock_size,
|
||||
};
|
||||
const int syndrome = 0;
|
||||
#endif
|
||||
int i;
|
||||
static struct nfc_config conf = { };
|
||||
int ret;
|
||||
|
||||
if (offs == CONFIG_SYS_NAND_U_BOOT_OFFS) {
|
||||
for (i = 0; i < ARRAY_SIZE(boot_offsets); i++) {
|
||||
if (nand_read_buffer(boot_offsets[i], size,
|
||||
dest, syndrome) == 0)
|
||||
return 0;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
ret = nand_detect_config(&conf, offs, dest);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return nand_read_buffer(offs, size, dest, syndrome);
|
||||
return nand_read_buffer(&conf, offs, size, dest);
|
||||
}
|
||||
|
||||
void nand_deselect(void)
|
||||
|
Loading…
Reference in New Issue
Block a user