clk: Add K210 pll support
This pll code is primarily based on the code from the kendryte standalone sdk in lib/drivers/sysctl.c. k210_pll_calc_config is roughly analogous to the algorithm used to set the pll frequency, but it has been completely rewritten to be fixed-point based. Signed-off-by: Sean Anderson <seanga2@gmail.com> CC: Lukasz Majewski <lukma@denx.de>
This commit is contained in:
parent
675d79073c
commit
019ef9a3f3
@ -156,6 +156,7 @@ source "drivers/clk/analogbits/Kconfig"
|
||||
source "drivers/clk/at91/Kconfig"
|
||||
source "drivers/clk/exynos/Kconfig"
|
||||
source "drivers/clk/imx/Kconfig"
|
||||
source "drivers/clk/kendryte/Kconfig"
|
||||
source "drivers/clk/meson/Kconfig"
|
||||
source "drivers/clk/mvebu/Kconfig"
|
||||
source "drivers/clk/owl/Kconfig"
|
||||
|
@ -27,6 +27,7 @@ obj-$(CONFIG_CLK_BOSTON) += clk_boston.o
|
||||
obj-$(CONFIG_CLK_EXYNOS) += exynos/
|
||||
obj-$(CONFIG_$(SPL_TPL_)CLK_INTEL) += intel/
|
||||
obj-$(CONFIG_CLK_HSDK) += clk-hsdk-cgu.o
|
||||
obj-$(CONFIG_CLK_K210) += kendryte/
|
||||
obj-$(CONFIG_CLK_MPC83XX) += mpc83xx_clk.o
|
||||
obj-$(CONFIG_CLK_OWL) += owl/
|
||||
obj-$(CONFIG_CLK_RENESAS) += renesas/
|
||||
|
12
drivers/clk/kendryte/Kconfig
Normal file
12
drivers/clk/kendryte/Kconfig
Normal file
@ -0,0 +1,12 @@
|
||||
config CLK_K210
|
||||
bool "Clock support for Kendryte K210"
|
||||
depends on CLK && CLK_CCF
|
||||
help
|
||||
This enables support clock driver for Kendryte K210 platforms.
|
||||
|
||||
config CLK_K210_SET_RATE
|
||||
bool "Enable setting the Kendryte K210 PLL rate"
|
||||
depends on CLK_K210
|
||||
help
|
||||
Add functionality to calculate new rates for K210 PLLs. Enabling this
|
||||
feature adds around 1K to U-Boot's final size.
|
1
drivers/clk/kendryte/Makefile
Normal file
1
drivers/clk/kendryte/Makefile
Normal file
@ -0,0 +1 @@
|
||||
obj-y += pll.o
|
601
drivers/clk/kendryte/pll.c
Normal file
601
drivers/clk/kendryte/pll.c
Normal file
@ -0,0 +1,601 @@
|
||||
// SPDX-License-Identifier: GPL-2.0+
|
||||
/*
|
||||
* Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com>
|
||||
*/
|
||||
#define LOG_CATEGORY UCLASS_CLK
|
||||
#include <kendryte/pll.h>
|
||||
|
||||
#include <asm/io.h>
|
||||
/* For DIV_ROUND_DOWN_ULL, defined in linux/kernel.h */
|
||||
#include <div64.h>
|
||||
#include <dt-bindings/clock/k210-sysctl.h>
|
||||
#include <linux/bitfield.h>
|
||||
#include <linux/clk-provider.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/err.h>
|
||||
#include <log.h>
|
||||
#include <serial.h>
|
||||
|
||||
#define CLK_K210_PLL "k210_clk_pll"
|
||||
|
||||
#ifdef CONFIG_CLK_K210_SET_RATE
|
||||
static int k210_pll_enable(struct clk *clk);
|
||||
static int k210_pll_disable(struct clk *clk);
|
||||
|
||||
/*
|
||||
* The PLL included with the Kendryte K210 appears to be a True Circuits, Inc.
|
||||
* General-Purpose PLL. The logical layout of the PLL with internal feedback is
|
||||
* approximately the following:
|
||||
*
|
||||
* +---------------+
|
||||
* |reference clock|
|
||||
* +---------------+
|
||||
* |
|
||||
* v
|
||||
* +--+
|
||||
* |/r|
|
||||
* +--+
|
||||
* |
|
||||
* v
|
||||
* +-------------+
|
||||
* |divided clock|
|
||||
* +-------------+
|
||||
* |
|
||||
* v
|
||||
* +--------------+
|
||||
* |phase detector|<---+
|
||||
* +--------------+ |
|
||||
* | |
|
||||
* v +--------------+
|
||||
* +---+ |feedback clock|
|
||||
* |VCO| +--------------+
|
||||
* +---+ ^
|
||||
* | +--+ |
|
||||
* +--->|/f|---+
|
||||
* | +--+
|
||||
* v
|
||||
* +---+
|
||||
* |/od|
|
||||
* +---+
|
||||
* |
|
||||
* v
|
||||
* +------+
|
||||
* |output|
|
||||
* +------+
|
||||
*
|
||||
* The k210 PLLs have three factors: r, f, and od. Because of the feedback mode,
|
||||
* the effect of the division by f is to multiply the input frequency. The
|
||||
* equation for the output rate is
|
||||
* rate = (rate_in * f) / (r * od).
|
||||
* Moving knowns to one side of the equation, we get
|
||||
* rate / rate_in = f / (r * od)
|
||||
* Rearranging slightly,
|
||||
* abs_error = abs((rate / rate_in) - (f / (r * od))).
|
||||
* To get relative, error, we divide by the expected ratio
|
||||
* error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in).
|
||||
* Simplifying,
|
||||
* error = abs(1 - f / (r * od)) / (rate / rate_in)
|
||||
* error = abs(1 - (f * rate_in) / (r * od * rate))
|
||||
* Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate,
|
||||
* error = abs((f * inv_ratio) / (r * od) - 1)
|
||||
* This is the error used in evaluating parameters.
|
||||
*
|
||||
* r and od are four bits each, while f is six bits. Because r and od are
|
||||
* multiplied together, instead of the full 256 values possible if both bits
|
||||
* were used fully, there are only 97 distinct products. Combined with f, there
|
||||
* are 6208 theoretical settings for the PLL. However, most of these settings
|
||||
* can be ruled out immediately because they do not have the correct ratio.
|
||||
*
|
||||
* In addition to the constraint of approximating the desired ratio, parameters
|
||||
* must also keep internal pll frequencies within acceptable ranges. The divided
|
||||
* clock's minimum and maximum frequencies have a ratio of around 128. This
|
||||
* leaves fairly substantial room to work with, especially since the only
|
||||
* affected parameter is r. The VCO's minimum and maximum frequency have a ratio
|
||||
* of 5, which is considerably more restrictive.
|
||||
*
|
||||
* The r and od factors are stored in a table. This is to make it easy to find
|
||||
* the next-largest product. Some products have multiple factorizations, but
|
||||
* only when one factor has at least a 2.5x ratio to the factors of the other
|
||||
* factorization. This is because any smaller ratio would not make a difference
|
||||
* when ensuring the VCO's frequency is within spec.
|
||||
*
|
||||
* Throughout the calculation function, fixed point arithmetic is used. Because
|
||||
* the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit
|
||||
* 32.32 fixed-point numbers are used to represent ratios. In general, to
|
||||
* implement division, the numerator is first multiplied by 2^32. This gives a
|
||||
* result where the whole number part is in the upper 32 bits, and the fraction
|
||||
* is in the lower 32 bits.
|
||||
*
|
||||
* In general, rounding is done to the closest integer. This helps find the best
|
||||
* approximation for the ratio. Rounding in one direction (e.g down) could cause
|
||||
* the function to miss a better ratio with one of the parameters increased by
|
||||
* one.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The factors table was generated with the following python code:
|
||||
*
|
||||
* def p(x, y):
|
||||
* return (1.0*x/y > 2.5) or (1.0*y/x > 2.5)
|
||||
*
|
||||
* factors = {}
|
||||
* for i in range(1, 17):
|
||||
* for j in range(1, 17):
|
||||
* fs = factors.get(i*j) or []
|
||||
* if fs == [] or all([
|
||||
* (p(i, x) and p(i, y)) or (p(j, x) and p(j, y))
|
||||
* for (x, y) in fs]):
|
||||
* fs.append((i, j))
|
||||
* factors[i*j] = fs
|
||||
*
|
||||
* for k, l in sorted(factors.items()):
|
||||
* for v in l:
|
||||
* print("PACK(%s, %s)," % v)
|
||||
*/
|
||||
#define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF))
|
||||
#define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1)
|
||||
#define UNPACK_OD(val) (((val) & 0xF) + 1)
|
||||
static const u8 factors[] = {
|
||||
PACK(1, 1),
|
||||
PACK(1, 2),
|
||||
PACK(1, 3),
|
||||
PACK(1, 4),
|
||||
PACK(1, 5),
|
||||
PACK(1, 6),
|
||||
PACK(1, 7),
|
||||
PACK(1, 8),
|
||||
PACK(1, 9),
|
||||
PACK(3, 3),
|
||||
PACK(1, 10),
|
||||
PACK(1, 11),
|
||||
PACK(1, 12),
|
||||
PACK(3, 4),
|
||||
PACK(1, 13),
|
||||
PACK(1, 14),
|
||||
PACK(1, 15),
|
||||
PACK(3, 5),
|
||||
PACK(1, 16),
|
||||
PACK(4, 4),
|
||||
PACK(2, 9),
|
||||
PACK(2, 10),
|
||||
PACK(3, 7),
|
||||
PACK(2, 11),
|
||||
PACK(2, 12),
|
||||
PACK(5, 5),
|
||||
PACK(2, 13),
|
||||
PACK(3, 9),
|
||||
PACK(2, 14),
|
||||
PACK(2, 15),
|
||||
PACK(2, 16),
|
||||
PACK(3, 11),
|
||||
PACK(5, 7),
|
||||
PACK(3, 12),
|
||||
PACK(3, 13),
|
||||
PACK(4, 10),
|
||||
PACK(3, 14),
|
||||
PACK(4, 11),
|
||||
PACK(3, 15),
|
||||
PACK(3, 16),
|
||||
PACK(7, 7),
|
||||
PACK(5, 10),
|
||||
PACK(4, 13),
|
||||
PACK(6, 9),
|
||||
PACK(5, 11),
|
||||
PACK(4, 14),
|
||||
PACK(4, 15),
|
||||
PACK(7, 9),
|
||||
PACK(4, 16),
|
||||
PACK(5, 13),
|
||||
PACK(6, 11),
|
||||
PACK(5, 14),
|
||||
PACK(6, 12),
|
||||
PACK(5, 15),
|
||||
PACK(7, 11),
|
||||
PACK(6, 13),
|
||||
PACK(5, 16),
|
||||
PACK(9, 9),
|
||||
PACK(6, 14),
|
||||
PACK(8, 11),
|
||||
PACK(6, 15),
|
||||
PACK(7, 13),
|
||||
PACK(6, 16),
|
||||
PACK(7, 14),
|
||||
PACK(9, 11),
|
||||
PACK(10, 10),
|
||||
PACK(8, 13),
|
||||
PACK(7, 15),
|
||||
PACK(9, 12),
|
||||
PACK(10, 11),
|
||||
PACK(7, 16),
|
||||
PACK(9, 13),
|
||||
PACK(8, 15),
|
||||
PACK(11, 11),
|
||||
PACK(9, 14),
|
||||
PACK(8, 16),
|
||||
PACK(10, 13),
|
||||
PACK(11, 12),
|
||||
PACK(9, 15),
|
||||
PACK(10, 14),
|
||||
PACK(11, 13),
|
||||
PACK(9, 16),
|
||||
PACK(10, 15),
|
||||
PACK(11, 14),
|
||||
PACK(12, 13),
|
||||
PACK(10, 16),
|
||||
PACK(11, 15),
|
||||
PACK(12, 14),
|
||||
PACK(13, 13),
|
||||
PACK(11, 16),
|
||||
PACK(12, 15),
|
||||
PACK(13, 14),
|
||||
PACK(12, 16),
|
||||
PACK(13, 15),
|
||||
PACK(14, 14),
|
||||
PACK(13, 16),
|
||||
PACK(14, 15),
|
||||
PACK(14, 16),
|
||||
PACK(15, 15),
|
||||
PACK(15, 16),
|
||||
PACK(16, 16),
|
||||
};
|
||||
|
||||
TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in,
|
||||
struct k210_pll_config *best)
|
||||
{
|
||||
int i;
|
||||
s64 error, best_error;
|
||||
u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */
|
||||
u64 max_r;
|
||||
u64 r, f, od;
|
||||
|
||||
/*
|
||||
* Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the
|
||||
* VCO frequency. These are not the same limits as below because od can
|
||||
* reduce the output frequency by 16.
|
||||
*/
|
||||
if (rate > 1750000000 || rate < 21250000)
|
||||
return -EINVAL;
|
||||
|
||||
/* Similar restrictions on the input rate */
|
||||
if (rate_in > 1750000000 || rate_in < 13300000)
|
||||
return -EINVAL;
|
||||
|
||||
ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in);
|
||||
inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate);
|
||||
/* Can't increase by more than 64 or reduce by more than 256 */
|
||||
if (rate > rate_in && ratio > (64ULL << 32))
|
||||
return -EINVAL;
|
||||
else if (rate <= rate_in && inv_ratio > (256ULL << 32))
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
* The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3
|
||||
* MHz. There is no minimum, since the only way to get a higher input
|
||||
* clock than 26 MHz is to use a clock generated by a PLL. Because PLLs
|
||||
* cannot output frequencies greater than 1.75 GHz, the minimum would
|
||||
* never be greater than one.
|
||||
*/
|
||||
max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000);
|
||||
|
||||
/* Variables get immediately incremented, so start at -1th iteration */
|
||||
i = -1;
|
||||
f = 0;
|
||||
r = 0;
|
||||
od = 0;
|
||||
best_error = S64_MAX;
|
||||
error = best_error;
|
||||
/* do-while here so we always try at least one ratio */
|
||||
do {
|
||||
/*
|
||||
* Whether we swapped r and od while enforcing frequency limits
|
||||
*/
|
||||
bool swapped = false;
|
||||
u64 last_od = od;
|
||||
u64 last_r = r;
|
||||
|
||||
/*
|
||||
* Try the next largest value for f (or r and od) and
|
||||
* recalculate the other parameters based on that
|
||||
*/
|
||||
if (rate > rate_in) {
|
||||
/*
|
||||
* Skip factors of the same product if we already tried
|
||||
* out that product
|
||||
*/
|
||||
do {
|
||||
i++;
|
||||
r = UNPACK_R(factors[i]);
|
||||
od = UNPACK_OD(factors[i]);
|
||||
} while (i + 1 < ARRAY_SIZE(factors) &&
|
||||
r * od == last_r * last_od);
|
||||
|
||||
/* Round close */
|
||||
f = (r * od * ratio + BIT(31)) >> 32;
|
||||
if (f > 64)
|
||||
f = 64;
|
||||
} else {
|
||||
u64 tmp = ++f * inv_ratio;
|
||||
bool round_up = !!(tmp & BIT(31));
|
||||
u32 goal = (tmp >> 32) + round_up;
|
||||
u32 err, last_err;
|
||||
|
||||
/* Get the next r/od pair in factors */
|
||||
while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) {
|
||||
i++;
|
||||
r = UNPACK_R(factors[i]);
|
||||
od = UNPACK_OD(factors[i]);
|
||||
}
|
||||
|
||||
/*
|
||||
* This is a case of double rounding. If we rounded up
|
||||
* above, we need to round down (in cases of ties) here.
|
||||
* This prevents off-by-one errors resulting from
|
||||
* choosing X+2 over X when X.Y rounds up to X+1 and
|
||||
* there is no r * od = X+1. For the converse, when X.Y
|
||||
* is rounded down to X, we should choose X+1 over X-1.
|
||||
*/
|
||||
err = abs(r * od - goal);
|
||||
last_err = abs(last_r * last_od - goal);
|
||||
if (last_err < err || (round_up && last_err == err)) {
|
||||
i--;
|
||||
r = last_r;
|
||||
od = last_od;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Enforce limits on internal clock frequencies. If we
|
||||
* aren't in spec, try swapping r and od. If everything is
|
||||
* in-spec, calculate the relative error.
|
||||
*/
|
||||
while (true) {
|
||||
/*
|
||||
* Whether the intermediate frequencies are out-of-spec
|
||||
*/
|
||||
bool out_of_spec = false;
|
||||
|
||||
if (r > max_r) {
|
||||
out_of_spec = true;
|
||||
} else {
|
||||
/*
|
||||
* There is no way to only divide once; we need
|
||||
* to examine the frequency with and without the
|
||||
* effect of od.
|
||||
*/
|
||||
u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r);
|
||||
|
||||
if (vco > 1750000000 || vco < 340000000)
|
||||
out_of_spec = true;
|
||||
}
|
||||
|
||||
if (out_of_spec) {
|
||||
if (!swapped) {
|
||||
u64 tmp = r;
|
||||
|
||||
r = od;
|
||||
od = tmp;
|
||||
swapped = true;
|
||||
continue;
|
||||
} else {
|
||||
/*
|
||||
* Try looking ahead to see if there are
|
||||
* additional factors for the same
|
||||
* product.
|
||||
*/
|
||||
if (i + 1 < ARRAY_SIZE(factors)) {
|
||||
u64 new_r, new_od;
|
||||
|
||||
i++;
|
||||
new_r = UNPACK_R(factors[i]);
|
||||
new_od = UNPACK_OD(factors[i]);
|
||||
if (r * od == new_r * new_od) {
|
||||
r = new_r;
|
||||
od = new_od;
|
||||
swapped = false;
|
||||
continue;
|
||||
}
|
||||
i--;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od);
|
||||
/* The lower 16 bits are spurious */
|
||||
error = abs((error - BIT(32))) >> 16;
|
||||
|
||||
if (error < best_error) {
|
||||
best->r = r;
|
||||
best->f = f;
|
||||
best->od = od;
|
||||
best_error = error;
|
||||
}
|
||||
break;
|
||||
}
|
||||
} while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0);
|
||||
|
||||
if (best_error == S64_MAX)
|
||||
return -EINVAL;
|
||||
|
||||
log_debug("best error %lld\n", best_error);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static ulong k210_pll_set_rate(struct clk *clk, ulong rate)
|
||||
{
|
||||
int err;
|
||||
long long rate_in = clk_get_parent_rate(clk);
|
||||
struct k210_pll_config config = {};
|
||||
struct k210_pll *pll = to_k210_pll(clk);
|
||||
u32 reg;
|
||||
|
||||
if (rate_in < 0)
|
||||
return rate_in;
|
||||
|
||||
log_debug("Calculating parameters with rate=%lu and rate_in=%lld\n",
|
||||
rate, rate_in);
|
||||
err = k210_pll_calc_config(rate, rate_in, &config);
|
||||
if (err)
|
||||
return err;
|
||||
log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od);
|
||||
|
||||
/*
|
||||
* Don't use clk_disable as it might not actually disable the pll due to
|
||||
* refcounting
|
||||
*/
|
||||
k210_pll_disable(clk);
|
||||
|
||||
reg = readl(pll->reg);
|
||||
reg &= ~K210_PLL_CLKR
|
||||
& ~K210_PLL_CLKF
|
||||
& ~K210_PLL_CLKOD
|
||||
& ~K210_PLL_BWADJ;
|
||||
reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1)
|
||||
| FIELD_PREP(K210_PLL_CLKF, config.f - 1)
|
||||
| FIELD_PREP(K210_PLL_CLKOD, config.od - 1)
|
||||
| FIELD_PREP(K210_PLL_BWADJ, config.f - 1);
|
||||
writel(reg, pll->reg);
|
||||
|
||||
err = k210_pll_enable(clk);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
serial_setbrg();
|
||||
return clk_get_rate(clk);
|
||||
}
|
||||
#endif /* CONFIG_CLK_K210_SET_RATE */
|
||||
|
||||
static ulong k210_pll_get_rate(struct clk *clk)
|
||||
{
|
||||
long long rate_in = clk_get_parent_rate(clk);
|
||||
struct k210_pll *pll = to_k210_pll(clk);
|
||||
u64 r, f, od;
|
||||
u32 reg = readl(pll->reg);
|
||||
|
||||
if (rate_in < 0 || (reg & K210_PLL_BYPASS))
|
||||
return rate_in;
|
||||
|
||||
if (!(reg & K210_PLL_PWRD))
|
||||
return 0;
|
||||
|
||||
r = FIELD_GET(K210_PLL_CLKR, reg) + 1;
|
||||
f = FIELD_GET(K210_PLL_CLKF, reg) + 1;
|
||||
od = FIELD_GET(K210_PLL_CLKOD, reg) + 1;
|
||||
|
||||
return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od);
|
||||
}
|
||||
|
||||
/*
|
||||
* Wait for the PLL to be locked. If the PLL is not locked, try clearing the
|
||||
* slip before retrying
|
||||
*/
|
||||
static void k210_pll_waitfor_lock(struct k210_pll *pll)
|
||||
{
|
||||
u32 mask = GENMASK(pll->width - 1, 0) << pll->shift;
|
||||
|
||||
while (true) {
|
||||
u32 reg = readl(pll->lock);
|
||||
|
||||
if ((reg & mask) == mask)
|
||||
break;
|
||||
|
||||
reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP);
|
||||
writel(reg, pll->lock);
|
||||
}
|
||||
}
|
||||
|
||||
/* Adapted from sysctl_pll_enable */
|
||||
static int k210_pll_enable(struct clk *clk)
|
||||
{
|
||||
struct k210_pll *pll = to_k210_pll(clk);
|
||||
u32 reg = readl(pll->reg);
|
||||
|
||||
if ((reg | K210_PLL_PWRD) && !(reg | K210_PLL_RESET))
|
||||
return 0;
|
||||
|
||||
reg |= K210_PLL_PWRD;
|
||||
writel(reg, pll->reg);
|
||||
|
||||
/* Ensure reset is low before asserting it */
|
||||
reg &= ~K210_PLL_RESET;
|
||||
writel(reg, pll->reg);
|
||||
reg |= K210_PLL_RESET;
|
||||
writel(reg, pll->reg);
|
||||
nop();
|
||||
nop();
|
||||
reg &= ~K210_PLL_RESET;
|
||||
writel(reg, pll->reg);
|
||||
|
||||
k210_pll_waitfor_lock(pll);
|
||||
|
||||
reg &= ~K210_PLL_BYPASS;
|
||||
writel(reg, pll->reg);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int k210_pll_disable(struct clk *clk)
|
||||
{
|
||||
struct k210_pll *pll = to_k210_pll(clk);
|
||||
u32 reg = readl(pll->reg);
|
||||
|
||||
/*
|
||||
* Bypassing before powering off is important so child clocks don't stop
|
||||
* working. This is especially important for pll0, the indirect parent
|
||||
* of the cpu clock.
|
||||
*/
|
||||
reg |= K210_PLL_BYPASS;
|
||||
writel(reg, pll->reg);
|
||||
|
||||
reg &= ~K210_PLL_PWRD;
|
||||
writel(reg, pll->reg);
|
||||
return 0;
|
||||
}
|
||||
|
||||
const struct clk_ops k210_pll_ops = {
|
||||
.get_rate = k210_pll_get_rate,
|
||||
#ifdef CONFIG_CLK_K210_SET_RATE
|
||||
.set_rate = k210_pll_set_rate,
|
||||
#endif
|
||||
.enable = k210_pll_enable,
|
||||
.disable = k210_pll_disable,
|
||||
};
|
||||
|
||||
struct clk *k210_register_pll_struct(const char *name, const char *parent_name,
|
||||
struct k210_pll *pll)
|
||||
{
|
||||
int ret;
|
||||
struct clk *clk = &pll->clk;
|
||||
|
||||
ret = clk_register(clk, CLK_K210_PLL, name, parent_name);
|
||||
if (ret)
|
||||
return ERR_PTR(ret);
|
||||
return clk;
|
||||
}
|
||||
|
||||
struct clk *k210_register_pll(const char *name, const char *parent_name,
|
||||
void __iomem *reg, void __iomem *lock, u8 shift,
|
||||
u8 width)
|
||||
{
|
||||
struct clk *clk;
|
||||
struct k210_pll *pll;
|
||||
|
||||
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
|
||||
if (!pll)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
pll->reg = reg;
|
||||
pll->lock = lock;
|
||||
pll->shift = shift;
|
||||
pll->width = width;
|
||||
|
||||
clk = k210_register_pll_struct(name, parent_name, pll);
|
||||
if (IS_ERR(clk))
|
||||
kfree(pll);
|
||||
return clk;
|
||||
}
|
||||
|
||||
U_BOOT_DRIVER(k210_pll) = {
|
||||
.name = CLK_K210_PLL,
|
||||
.id = UCLASS_CLK,
|
||||
.ops = &k210_pll_ops,
|
||||
};
|
57
include/kendryte/pll.h
Normal file
57
include/kendryte/pll.h
Normal file
@ -0,0 +1,57 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0+ */
|
||||
/*
|
||||
* Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com>
|
||||
*/
|
||||
#ifndef K210_PLL_H
|
||||
#define K210_PLL_H
|
||||
|
||||
#include <clk.h>
|
||||
#include <test/export.h>
|
||||
|
||||
#define K210_PLL_CLKR GENMASK(3, 0)
|
||||
#define K210_PLL_CLKF GENMASK(9, 4)
|
||||
#define K210_PLL_CLKOD GENMASK(13, 10) /* Output Divider */
|
||||
#define K210_PLL_BWADJ GENMASK(19, 14) /* BandWidth Adjust */
|
||||
#define K210_PLL_RESET BIT(20)
|
||||
#define K210_PLL_PWRD BIT(21) /* PoWeReD */
|
||||
#define K210_PLL_INTFB BIT(22) /* Internal FeedBack */
|
||||
#define K210_PLL_BYPASS BIT(23)
|
||||
#define K210_PLL_TEST BIT(24)
|
||||
#define K210_PLL_EN BIT(25)
|
||||
#define K210_PLL_TEST_EN BIT(26)
|
||||
|
||||
#define K210_PLL_LOCK 0
|
||||
#define K210_PLL_CLEAR_SLIP 2
|
||||
#define K210_PLL_TEST_OUT 3
|
||||
|
||||
struct k210_pll {
|
||||
struct clk clk;
|
||||
void __iomem *reg; /* Base PLL register */
|
||||
void __iomem *lock; /* Common PLL lock register */
|
||||
u8 shift; /* Offset of bits in lock register */
|
||||
u8 width; /* Width of lock bits to test against */
|
||||
};
|
||||
|
||||
#define to_k210_pll(_clk) container_of(_clk, struct k210_pll, clk)
|
||||
|
||||
struct k210_pll_config {
|
||||
u8 r;
|
||||
u8 f;
|
||||
u8 od;
|
||||
};
|
||||
|
||||
#ifdef CONFIG_UNIT_TEST
|
||||
TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in,
|
||||
struct k210_pll_config *best);
|
||||
#define nop()
|
||||
#endif
|
||||
|
||||
extern const struct clk_ops k210_pll_ops;
|
||||
|
||||
struct clk *k210_register_pll_struct(const char *name, const char *parent_name,
|
||||
struct k210_pll *pll);
|
||||
struct clk *k210_register_pll(const char *name, const char *parent_name,
|
||||
void __iomem *reg, void __iomem *lock, u8 shift,
|
||||
u8 width);
|
||||
|
||||
#endif /* K210_PLL_H */
|
16
include/test/export.h
Normal file
16
include/test/export.h
Normal file
@ -0,0 +1,16 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0+ */
|
||||
/*
|
||||
* Copyright (C) 2020 Sean Anderson <seanga2@gmail.com>
|
||||
*/
|
||||
|
||||
#ifndef TEST_EXPORT_H
|
||||
#define TEST_EXPORT_H
|
||||
|
||||
/* Declare something static, unless we are doing unit tests */
|
||||
#ifdef CONFIG_UNIT_TEST
|
||||
#define TEST_STATIC
|
||||
#else
|
||||
#define TEST_STATIC static
|
||||
#endif
|
||||
|
||||
#endif /* TEST_EXPORT_H */
|
@ -73,4 +73,5 @@ obj-$(CONFIG_DMA) += dma.o
|
||||
obj-$(CONFIG_DM_MDIO) += mdio.o
|
||||
obj-$(CONFIG_DM_MDIO_MUX) += mdio_mux.o
|
||||
obj-$(CONFIG_DM_RNG) += rng.o
|
||||
obj-$(CONFIG_CLK_K210_SET_RATE) += k210_pll.o
|
||||
endif
|
||||
|
96
test/dm/k210_pll.c
Normal file
96
test/dm/k210_pll.c
Normal file
@ -0,0 +1,96 @@
|
||||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* Copyright (C) 2020 Sean Anderson <seanga2@gmail.com>
|
||||
*/
|
||||
|
||||
#include <common.h>
|
||||
/* For DIV_ROUND_DOWN_ULL, defined in linux/kernel.h */
|
||||
#include <div64.h>
|
||||
#include <dm/test.h>
|
||||
#include <kendryte/pll.h>
|
||||
#include <test/ut.h>
|
||||
|
||||
static int dm_test_k210_pll_calc_config(u32 rate, u32 rate_in,
|
||||
struct k210_pll_config *best)
|
||||
{
|
||||
u64 f, r, od, max_r, inv_ratio;
|
||||
s64 error, best_error;
|
||||
|
||||
best_error = S64_MAX;
|
||||
error = best_error;
|
||||
max_r = min(16ULL, DIV_ROUND_DOWN_ULL(rate_in, 13300000));
|
||||
inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate);
|
||||
|
||||
/* Brute force it */
|
||||
for (r = 1; r <= max_r; r++) {
|
||||
for (f = 1; f <= 64; f++) {
|
||||
for (od = 1; od <= 16; od++) {
|
||||
u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r);
|
||||
|
||||
if (vco > 1750000000 || vco < 340000000)
|
||||
continue;
|
||||
|
||||
error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio,
|
||||
r * od);
|
||||
/* The lower 16 bits are spurious */
|
||||
error = abs((error - BIT(32))) >> 16;
|
||||
if (error < best_error) {
|
||||
best->r = r;
|
||||
best->f = f;
|
||||
best->od = od;
|
||||
best_error = error;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (best_error == S64_MAX)
|
||||
return -EINVAL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int dm_test_k210_pll_compare(struct k210_pll_config *ours,
|
||||
struct k210_pll_config *theirs)
|
||||
{
|
||||
return (u32)ours->f * theirs->r * theirs->od !=
|
||||
(u32)theirs->f * ours->r * ours->od;
|
||||
}
|
||||
|
||||
static int dm_test_k210_pll(struct unit_test_state *uts)
|
||||
{
|
||||
struct k210_pll_config ours, theirs;
|
||||
|
||||
/* General range checks */
|
||||
ut_asserteq(-EINVAL, k210_pll_calc_config(0, 26000000, &theirs));
|
||||
ut_asserteq(-EINVAL, k210_pll_calc_config(390000000, 0, &theirs));
|
||||
ut_asserteq(-EINVAL, k210_pll_calc_config(2000000000, 26000000,
|
||||
&theirs));
|
||||
ut_asserteq(-EINVAL, k210_pll_calc_config(390000000, 2000000000,
|
||||
&theirs));
|
||||
ut_asserteq(-EINVAL, k210_pll_calc_config(1500000000, 20000000,
|
||||
&theirs));
|
||||
|
||||
/* Verify we get the same output with brute-force */
|
||||
ut_assertok(dm_test_k210_pll_calc_config(390000000, 26000000, &ours));
|
||||
ut_assertok(k210_pll_calc_config(390000000, 26000000, &theirs));
|
||||
ut_assertok(dm_test_k210_pll_compare(&ours, &theirs));
|
||||
|
||||
ut_assertok(dm_test_k210_pll_calc_config(26000000, 390000000, &ours));
|
||||
ut_assertok(k210_pll_calc_config(26000000, 390000000, &theirs));
|
||||
ut_assertok(dm_test_k210_pll_compare(&ours, &theirs));
|
||||
|
||||
ut_assertok(dm_test_k210_pll_calc_config(400000000, 26000000, &ours));
|
||||
ut_assertok(k210_pll_calc_config(400000000, 26000000, &theirs));
|
||||
ut_assertok(dm_test_k210_pll_compare(&ours, &theirs));
|
||||
|
||||
ut_assertok(dm_test_k210_pll_calc_config(27000000, 26000000, &ours));
|
||||
ut_assertok(k210_pll_calc_config(27000000, 26000000, &theirs));
|
||||
ut_assertok(dm_test_k210_pll_compare(&ours, &theirs));
|
||||
|
||||
ut_assertok(dm_test_k210_pll_calc_config(26000000, 27000000, &ours));
|
||||
ut_assertok(k210_pll_calc_config(26000000, 27000000, &theirs));
|
||||
ut_assertok(dm_test_k210_pll_compare(&ours, &theirs));
|
||||
|
||||
return 0;
|
||||
}
|
||||
DM_TEST(dm_test_k210_pll, 0);
|
Loading…
Reference in New Issue
Block a user