u-boot/board/sc520_spunk/flash.c

814 lines
18 KiB
C
Raw Normal View History

/*
* (C) Copyright 2002, 2003
* Daniel Engstr<EFBFBD>m, Omicron Ceti AB, daniel@omicron.se
*
* (C) Copyright 2002
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Alex Zuepke <azu@sysgo.de>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/io.h>
#include <pci.h>
#include <asm/ic/sc520.h>
#define PROBE_BUFFER_SIZE 1024
static unsigned char buffer[PROBE_BUFFER_SIZE];
#define SC520_MAX_FLASH_BANKS 1
#define SC520_FLASH_BANK0_BASE 0x38000000 /* BOOTCS */
#define SC520_FLASH_BANKSIZE 0x8000000
#define A29LV641DH_SIZE 0x800000
#define A29LV641DH_SECTORS 128
#define A29LV641MH_SIZE 0x800000
#define A29LV641MH_SECTORS 128
#define I28F320J3A_SIZE 0x400000
#define I28F320J3A_SECTORS 32
#define I28F640J3A_SIZE 0x800000
#define I28F640J3A_SECTORS 64
#define I28F128J3A_SIZE 0x1000000
#define I28F128J3A_SECTORS 128
flash_info_t flash_info[SC520_MAX_FLASH_BANKS];
#define READY 1
#define ERR 2
#define TMO 4
/*-----------------------------------------------------------------------
*/
static u32 _probe_flash(u32 addr, u32 bw, int il)
{
u32 result=0;
/* First do an unlock cycle for the benefit of
* devices that need it */
switch (bw) {
case 1:
*(volatile u8*)(addr+0x5555) = 0xaa;
*(volatile u8*)(addr+0x2aaa) = 0x55;
*(volatile u8*)(addr+0x5555) = 0x90;
/* Read vendor */
result = *(volatile u8*)addr;
result <<= 16;
/* Read device */
result |= *(volatile u8*)(addr+2);
/* Return device to data mode */
*(volatile u8*)addr = 0xff;
*(volatile u8*)(addr+0x5555), 0xf0;
break;
case 2:
*(volatile u16*)(addr+0xaaaa) = 0xaaaa;
*(volatile u16*)(addr+0x5554) = 0x5555;
/* Issue identification command */
if (il == 2) {
*(volatile u16*)(addr+0xaaaa) = 0x9090;
/* Read vendor */
result = *(volatile u8*)addr;
result <<= 16;
/* Read device */
result |= *(volatile u8*)(addr+2);
/* Return device to data mode */
*(volatile u16*)addr = 0xffff;
*(volatile u16*)(addr+0xaaaa), 0xf0f0;
} else {
*(volatile u8*)(addr+0xaaaa) = 0x90;
/* Read vendor */
result = *(volatile u16*)addr;
result <<= 16;
/* Read device */
result |= *(volatile u16*)(addr+2);
/* Return device to data mode */
*(volatile u8*)addr = 0xff;
*(volatile u8*)(addr+0xaaaa), 0xf0;
}
break;
case 4:
*(volatile u32*)(addr+0x5554) = 0xaaaaaaaa;
*(volatile u32*)(addr+0xaaa8) = 0x55555555;
switch (il) {
case 1:
/* Issue identification command */
*(volatile u8*)(addr+0x5554) = 0x90;
/* Read vendor */
result = *(volatile u16*)addr;
result <<= 16;
/* Read device */
result |= *(volatile u16*)(addr+4);
/* Return device to data mode */
*(volatile u8*)addr = 0xff;
*(volatile u8*)(addr+0x5554), 0xf0;
break;
case 2:
/* Issue identification command */
*(volatile u32*)(addr + 0x5554) = 0x00900090;
/* Read vendor */
result = *(volatile u16*)addr;
result <<= 16;
/* Read device */
result |= *(volatile u16*)(addr+4);
/* Return device to data mode */
*(volatile u32*)addr = 0x00ff00ff;
*(volatile u32*)(addr+0x5554), 0x00f000f0;
break;
case 4:
/* Issue identification command */
*(volatile u32*)(addr+0x5554) = 0x90909090;
/* Read vendor */
result = *(volatile u8*)addr;
result <<= 16;
/* Read device */
result |= *(volatile u8*)(addr+4);
/* Return device to data mode */
*(volatile u32*)addr = 0xffffffff;
*(volatile u32*)(addr+0x5554), 0xf0f0f0f0;
break;
}
break;
}
return result;
}
extern int _probe_flash_end;
asm ("_probe_flash_end:\n"
".long 0\n");
static int identify_flash(unsigned address, int width)
{
int is;
int device;
int vendor;
int size;
unsigned res;
u32 (*_probe_flash_ptr)(u32 a, u32 bw, int il);
size = (unsigned)&_probe_flash_end - (unsigned)_probe_flash;
if (size > PROBE_BUFFER_SIZE) {
printf("_probe_flash() routine too large (%d) %p - %p\n",
size, &_probe_flash_end, _probe_flash);
return 0;
}
memcpy(buffer, _probe_flash, size);
_probe_flash_ptr = (void*)buffer;
is = disable_interrupts();
res = _probe_flash_ptr(address, width, 1);
if (is) {
enable_interrupts();
}
vendor = res >> 16;
device = res & 0xffff;
return res;
}
ulong flash_init(void)
{
int i, j;
ulong size = 0;
for (i = 0; i < SC520_MAX_FLASH_BANKS; i++) {
unsigned id;
ulong flashbase = 0;
int sectsize = 0;
memset(flash_info[i].protect, 0, CFG_MAX_FLASH_SECT);
switch (i) {
case 0:
flashbase = SC520_FLASH_BANK0_BASE;
break;
default:
panic("configured to many flash banks!\n");
}
id = identify_flash(flashbase, 2);
switch (id) {
case 0x000122d7:
/* 29LV641DH */
flash_info[i].flash_id =
(AMD_MANUFACT & FLASH_VENDMASK) |
(AMD_ID_LV640U & FLASH_TYPEMASK);
flash_info[i].size = A29LV641DH_SIZE;
flash_info[i].sector_count = A29LV641DH_SECTORS;
sectsize = A29LV641DH_SIZE/A29LV641DH_SECTORS;
printf("Bank %d: AMD 29LV641DH\n", i);
break;
case 0x0001227E:
/* 29LV641MH */
flash_info[i].flash_id =
(AMD_MANUFACT & FLASH_VENDMASK) |
(AMD_ID_DL640 & FLASH_TYPEMASK);
flash_info[i].size = A29LV641MH_SIZE;
flash_info[i].sector_count = A29LV641MH_SECTORS;
sectsize = A29LV641MH_SIZE/A29LV641MH_SECTORS;
printf("Bank %d: AMD 29LV641MH\n", i);
break;
case 0x00890016:
/* 28F320J3A */
flash_info[i].flash_id =
(INTEL_MANUFACT & FLASH_VENDMASK) |
(INTEL_ID_28F320J3A & FLASH_TYPEMASK);
flash_info[i].size = I28F320J3A_SIZE;
flash_info[i].sector_count = I28F320J3A_SECTORS;
sectsize = I28F320J3A_SIZE/I28F320J3A_SECTORS;
printf("Bank %d: Intel 28F320J3A\n", i);
break;
case 0x00890017:
/* 28F640J3A */
flash_info[i].flash_id =
(INTEL_MANUFACT & FLASH_VENDMASK) |
(INTEL_ID_28F640J3A & FLASH_TYPEMASK);
flash_info[i].size = I28F640J3A_SIZE;
flash_info[i].sector_count = I28F640J3A_SECTORS;
sectsize = I28F640J3A_SIZE/I28F640J3A_SECTORS;
printf("Bank %d: Intel 28F640J3A\n", i);
break;
case 0x00890018:
/* 28F128J3A */
flash_info[i].flash_id =
(INTEL_MANUFACT & FLASH_VENDMASK) |
(INTEL_ID_28F128J3A & FLASH_TYPEMASK);
flash_info[i].size = I28F128J3A_SIZE;
flash_info[i].sector_count = I28F128J3A_SECTORS;
sectsize = I28F128J3A_SIZE/I28F128J3A_SECTORS;
printf("Bank %d: Intel 28F128J3A\n", i);
break;
default:
printf("Bank %d have unknown flash %08x\n", i, id);
flash_info[i].flash_id = FLASH_UNKNOWN;
continue;
}
for (j = 0; j < flash_info[i].sector_count; j++) {
flash_info[i].start[j] = flashbase + j * sectsize;
}
size += flash_info[i].size;
flash_protect(FLAG_PROTECT_CLEAR,
flash_info[i].start[0],
flash_info[i].start[0] + flash_info[i].size - 1,
&flash_info[i]);
}
/*
* Protect monitor and environment sectors
*/
flash_protect(FLAG_PROTECT_SET,
i386boot_start,
i386boot_end,
&flash_info[0]);
#ifdef CFG_ENV_ADDR
flash_protect(FLAG_PROTECT_SET,
CFG_ENV_ADDR,
CFG_ENV_ADDR + CFG_ENV_SIZE - 1,
&flash_info[0]);
#endif
return size;
}
/*-----------------------------------------------------------------------
*/
void flash_print_info(flash_info_t *info)
{
int i;
switch (info->flash_id & FLASH_VENDMASK) {
case (INTEL_MANUFACT & FLASH_VENDMASK):
printf("INTEL: ");
switch (info->flash_id & FLASH_TYPEMASK) {
case (INTEL_ID_28F320J3A & FLASH_TYPEMASK):
printf("1x I28F320J3A (32Mbit)\n");
break;
case (INTEL_ID_28F640J3A & FLASH_TYPEMASK):
printf("1x I28F640J3A (64Mbit)\n");
break;
case (INTEL_ID_28F128J3A & FLASH_TYPEMASK):
printf("1x I28F128J3A (128Mbit)\n");
break;
default:
printf("Unknown Chip Type\n");
goto done;
break;
}
break;
case (AMD_MANUFACT & FLASH_VENDMASK):
printf("AMD: ");
switch (info->flash_id & FLASH_TYPEMASK) {
case (AMD_ID_LV640U & FLASH_TYPEMASK):
printf("1x AMD29LV641DH (64Mbit)\n");
break;
case (AMD_ID_DL640 & FLASH_TYPEMASK):
printf("1x AMD29LV641MH (64Mbit)\n");
break;
default:
printf("Unknown Chip Type\n");
goto done;
break;
}
break;
default:
printf("Unknown Vendor ");
break;
}
printf(" Size: %ld MB in %d Sectors\n",
info->size >> 20, info->sector_count);
printf(" Sector Start Addresses:");
for (i = 0; i < info->sector_count; i++) {
if ((i % 5) == 0) {
printf ("\n ");
}
printf (" %08lX%s", info->start[i],
info->protect[i] ? " (RO)" : " ");
}
printf ("\n");
done:
}
/*-----------------------------------------------------------------------
*/
static u32 _amd_erase_flash(u32 addr, u32 sector)
{
unsigned elapsed;
/* Issue erase */
*(volatile u16*)(addr + 0xaaaa) = 0x00AA;
*(volatile u16*)(addr + 0x5554) = 0x0055;
*(volatile u16*)(addr + 0xaaaa) = 0x0080;
/* And one unlock */
*(volatile u16*)(addr + 0xaaaa) = 0x00AA;
*(volatile u16*)(addr + 0x5554) = 0x0055;
/* Sector erase command comes last */
*(volatile u16*)(addr + sector) = 0x0030;
elapsed = *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); /* dummy read */
elapsed = 0;
while (((*(volatile u16*)(addr + sector)) & 0x0080) != 0x0080) {
elapsed += *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI);
if (elapsed > ((CFG_FLASH_ERASE_TOUT/CFG_HZ) * 1000)) {
*(volatile u16*)(addr) = 0x00f0;
return 1;
}
}
*(volatile u16*)(addr) = 0x00f0;
return 0;
}
extern int _amd_erase_flash_end;
asm ("_amd_erase_flash_end:\n"
".long 0\n");
/* this needs to be inlined, the SWTMRMMILLI register is reset by each read */
#define __udelay(delay) \
{ \
unsigned micro; \
unsigned milli=0; \
\
micro = *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); \
\
for (;;) { \
\
milli += *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); \
micro = *(volatile u16*)(0xfffef000+SC520_SWTMRMICRO); \
\
if ((delay) <= (micro + (milli * 1000))) { \
break; \
} \
} \
} while (0)
static u32 _intel_erase_flash(u32 addr, u32 sector)
{
unsigned elapsed;
*(volatile u16*)(addr + sector) = 0x0050; /* clear status register */
*(volatile u16*)(addr + sector) = 0x0020; /* erase setup */
*(volatile u16*)(addr + sector) = 0x00D0; /* erase confirm */
/* Wait at least 80us - let's wait 1 ms */
__udelay(1000);
elapsed = 0;
while (((*(volatile u16*)(addr + sector)) & 0x0080) != 0x0080) {
elapsed += *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI);
if (elapsed > ((CFG_FLASH_ERASE_TOUT/CFG_HZ) * 1000)) {
*(volatile u16*)(addr + sector) = 0x00B0; /* suspend erase */
*(volatile u16*)(addr + sector) = 0x00FF; /* reset to read mode */
return 1;
}
}
*(volatile u16*)(addr + sector) = 0x00FF; /* reset to read mode */
return 0;
}
extern int _intel_erase_flash_end;
asm ("_intel_erase_flash_end:\n"
".long 0\n");
int flash_erase(flash_info_t *info, int s_first, int s_last)
{
u32 (*_erase_flash_ptr)(u32 a, u32 so);
int prot;
int sect;
unsigned size;
if ((s_first < 0) || (s_first > s_last)) {
if (info->flash_id == FLASH_UNKNOWN) {
printf("- missing\n");
} else {
printf("- no sectors to erase\n");
}
return 1;
}
if ((info->flash_id & FLASH_VENDMASK) == (AMD_MANUFACT & FLASH_VENDMASK)) {
size = (unsigned)&_amd_erase_flash_end - (unsigned)_amd_erase_flash;
if (size > PROBE_BUFFER_SIZE) {
printf("_amd_erase_flash() routine too large (%d) %p - %p\n",
size, &_amd_erase_flash_end, _amd_erase_flash);
return 0;
}
memcpy(buffer, _amd_erase_flash, size);
_erase_flash_ptr = (void*)buffer;
} else if ((info->flash_id & FLASH_VENDMASK) == (INTEL_MANUFACT & FLASH_VENDMASK)) {
size = (unsigned)&_intel_erase_flash_end - (unsigned)_intel_erase_flash;
if (size > PROBE_BUFFER_SIZE) {
printf("_intel_erase_flash() routine too large (%d) %p - %p\n",
size, &_intel_erase_flash_end, _intel_erase_flash);
return 0;
}
memcpy(buffer, _intel_erase_flash, size);
_erase_flash_ptr = (void*)buffer;
} else {
printf ("Can't erase unknown flash type - aborted\n");
return 1;
}
prot = 0;
for (sect=s_first; sect<=s_last; ++sect) {
if (info->protect[sect]) {
prot++;
}
}
if (prot) {
printf ("- Warning: %d protected sectors will not be erased!\n", prot);
} else {
printf ("\n");
}
/* Start erase on unprotected sectors */
for (sect = s_first; sect<=s_last; sect++) {
if (info->protect[sect] == 0) { /* not protected */
int res;
int flag;
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts();
res = _erase_flash_ptr(info->start[0], info->start[sect]-info->start[0]);
/* re-enable interrupts if necessary */
if (flag) {
enable_interrupts();
}
if (res) {
printf("Erase timed out, sector %d\n", sect);
return res;
}
putc('.');
}
}
return 0;
}
/*-----------------------------------------------------------------------
* Write a word to Flash, returns:
* 0 - OK
* 1 - write timeout
* 2 - Flash not erased
*/
static int _amd_write_word(unsigned start, unsigned dest, unsigned data)
{
volatile u16 *addr2 = (u16*)start;
volatile u16 *dest2 = (u16*)dest;
volatile u16 *data2 = (u16*)&data;
int i;
unsigned elapsed;
/* Check if Flash is (sufficiently) erased */
if ((*((volatile u16*)dest) & (u16)data) != (u16)data) {
return 2;
}
for (i = 0; i < 2; i++) {
addr2[0x5555] = 0x00AA;
addr2[0x2aaa] = 0x0055;
addr2[0x5555] = 0x00A0;
dest2[i] = (data >> (i*16)) & 0xffff;
elapsed = *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); /* dummy read */
elapsed = 0;
/* data polling for D7 */
while ((dest2[i] & 0x0080) != (data2[i] & 0x0080)) {
elapsed += *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI);
if (elapsed > ((CFG_FLASH_WRITE_TOUT/CFG_HZ) * 1000)) {
addr2[i] = 0x00f0;
return 1;
}
}
}
addr2[i] = 0x00f0;
return 0;
}
extern int _amd_write_word_end;
asm ("_amd_write_word_end:\n"
".long 0\n");
static int _intel_write_word(unsigned start, unsigned dest, unsigned data)
{
int i;
unsigned elapsed;
/* Check if Flash is (sufficiently) erased */
if ((*((volatile u16*)dest) & (u16)data) != (u16)data) {
return 2;
}
for (i = 0; i < 2; i++) {
*(volatile u16*)(dest+2*i) = 0x0040; /* write setup */
*(volatile u16*)(dest+2*i) = (data >> (i*16)) & 0xffff;
elapsed = *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); /* dummy read */
elapsed = 0;
/* data polling for D7 */
while ((*(volatile u16*)dest & 0x0080) != 0x0080) {
elapsed += *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI);
if (elapsed > ((CFG_FLASH_WRITE_TOUT/CFG_HZ) * 1000)) {
*(volatile u16*)dest = 0x00ff;
return 1;
}
}
}
*(volatile u16*)dest = 0x00ff;
return 0;
}
extern int _intel_write_word_end;
asm ("_intel_write_word_end:\n"
".long 0\n");
/*-----------------------------------------------------------------------
* Copy memory to flash, returns:
* 0 - OK
* 1 - write timeout
* 2 - Flash not erased
* 3 - Unsupported flash type
*/
int write_buff(flash_info_t *info, uchar *src, ulong addr, ulong cnt)
{
ulong cp, wp, data;
int i, l, rc;
int flag;
u32 (*_write_word_ptr)(unsigned start, unsigned dest, unsigned data);
unsigned size;
if ((info->flash_id & FLASH_VENDMASK) == (AMD_MANUFACT & FLASH_VENDMASK)) {
size = (unsigned)&_amd_write_word_end - (unsigned)_amd_write_word;
if (size > PROBE_BUFFER_SIZE) {
printf("_amd_write_word() routine too large (%d) %p - %p\n",
size, &_amd_write_word_end, _amd_write_word);
return 0;
}
memcpy(buffer, _amd_write_word, size);
_write_word_ptr = (void*)buffer;
} else if ((info->flash_id & FLASH_VENDMASK) == (INTEL_MANUFACT & FLASH_VENDMASK)) {
size = (unsigned)&_intel_write_word_end - (unsigned)_intel_write_word;
if (size > PROBE_BUFFER_SIZE) {
printf("_intel_write_word() routine too large (%d) %p - %p\n",
size, &_intel_write_word_end, _intel_write_word);
return 0;
}
memcpy(buffer, _intel_write_word, size);
_write_word_ptr = (void*)buffer;
} else {
printf ("Can't program unknown flash type - aborted\n");
return 3;
}
wp = (addr & ~3); /* get lower word aligned address */
/*
* handle unaligned start bytes
*/
if ((l = addr - wp) != 0) {
data = 0;
for (i=0, cp=wp; i<l; ++i, ++cp) {
data |= (*(uchar *)cp) << (8*i);
}
for (; i<4 && cnt>0; ++i) {
data |= *src++ << (8*i);
--cnt;
++cp;
}
for (; cnt==0 && i<4; ++i, ++cp) {
data |= (*(uchar *)cp) << (8*i);
}
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts();
rc = _write_word_ptr(info->start[0], wp, data);
/* re-enable interrupts if necessary */
if (flag) {
enable_interrupts();
}
if (rc != 0) {
return rc;
}
wp += 4;
}
/*
* handle word aligned part
*/
while (cnt >= 4) {
data = 0;
for (i=0; i<4; ++i) {
data |= *src++ << (8*i);
}
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts();
rc = _write_word_ptr(info->start[0], wp, data);
/* re-enable interrupts if necessary */
if (flag) {
enable_interrupts();
}
if (rc != 0) {
return rc;
}
wp += 4;
cnt -= 4;
}
if (cnt == 0) {
return 0;
}
/*
* handle unaligned tail bytes
*/
data = 0;
for (i=0, cp=wp; i<4 && cnt>0; ++i, ++cp) {
data |= *src++ << (8*i);
--cnt;
}
for (; i<4; ++i, ++cp) {
data |= (*(uchar *)cp) << (8*i);
}
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts();
rc = _write_word_ptr(info->start[0], wp, data);
/* re-enable interrupts if necessary */
if (flag) {
enable_interrupts();
}
return rc;
}