u-boot/arch/arm/mach-imx/cmd_nandbcb.c

605 lines
15 KiB
C
Raw Normal View History

/*
* i.MX6 nand boot control block(bcb).
*
* Based on the common/imx-bbu-nand-fcb.c from barebox and imx kobs-ng
*
* Copyright (C) 2017 Jagan Teki <jagan@amarulasolutions.com>
* Copyright (C) 2016 Sergey Kubushyn <ksi@koi8.net>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <nand.h>
#include <dm/devres.h>
#include <asm/io.h>
#include <jffs2/jffs2.h>
#include <linux/bch.h>
#include <linux/mtd/mtd.h>
#include <asm/arch/sys_proto.h>
#include <asm/mach-imx/imx-nandbcb.h>
#include <asm/mach-imx/imximage.cfg>
#include <mxs_nand.h>
#include <linux/mtd/mtd.h>
#include <nand.h>
#include "../../../cmd/legacy-mtd-utils.h"
#define BF_VAL(v, bf) (((v) & bf##_MASK) >> bf##_OFFSET)
#define GETBIT(v, n) (((v) >> (n)) & 0x1)
#if defined(CONFIG_MX6UL) || defined(CONFIG_MX6ULL)
static uint8_t reverse_bit(uint8_t b)
{
b = (b & 0xf0) >> 4 | (b & 0x0f) << 4;
b = (b & 0xcc) >> 2 | (b & 0x33) << 2;
b = (b & 0xaa) >> 1 | (b & 0x55) << 1;
return b;
}
static void encode_bch_ecc(void *buf, struct fcb_block *fcb, int eccbits)
{
int i, j, m = 13;
int blocksize = 128;
int numblocks = 8;
int ecc_buf_size = (m * eccbits + 7) / 8;
struct bch_control *bch = init_bch(m, eccbits, 0);
u8 *ecc_buf = kzalloc(ecc_buf_size, GFP_KERNEL);
u8 *tmp_buf = kzalloc(blocksize * numblocks, GFP_KERNEL);
u8 *psrc, *pdst;
/*
* The blocks here are bit aligned. If eccbits is a multiple of 8,
* we just can copy bytes. Otherwiese we must move the blocks to
* the next free bit position.
*/
WARN_ON(eccbits % 8);
memcpy(tmp_buf, fcb, sizeof(*fcb));
for (i = 0; i < numblocks; i++) {
memset(ecc_buf, 0, ecc_buf_size);
psrc = tmp_buf + i * blocksize;
pdst = buf + i * (blocksize + ecc_buf_size);
/* copy data byte aligned to destination buf */
memcpy(pdst, psrc, blocksize);
/*
* imx-kobs use a modified encode_bch which reverse the
* bit order of the data before calculating bch.
* Do this in the buffer and use the bch lib here.
*/
for (j = 0; j < blocksize; j++)
psrc[j] = reverse_bit(psrc[j]);
encode_bch(bch, psrc, blocksize, ecc_buf);
/* reverse ecc bit */
for (j = 0; j < ecc_buf_size; j++)
ecc_buf[j] = reverse_bit(ecc_buf[j]);
/* Here eccbuf is byte aligned and we can just copy it */
memcpy(pdst + blocksize, ecc_buf, ecc_buf_size);
}
kfree(ecc_buf);
kfree(tmp_buf);
free_bch(bch);
}
#else
static u8 calculate_parity_13_8(u8 d)
{
u8 p = 0;
p |= (GETBIT(d, 6) ^ GETBIT(d, 5) ^ GETBIT(d, 3) ^ GETBIT(d, 2)) << 0;
p |= (GETBIT(d, 7) ^ GETBIT(d, 5) ^ GETBIT(d, 4) ^ GETBIT(d, 2) ^
GETBIT(d, 1)) << 1;
p |= (GETBIT(d, 7) ^ GETBIT(d, 6) ^ GETBIT(d, 5) ^ GETBIT(d, 1) ^
GETBIT(d, 0)) << 2;
p |= (GETBIT(d, 7) ^ GETBIT(d, 4) ^ GETBIT(d, 3) ^ GETBIT(d, 0)) << 3;
p |= (GETBIT(d, 6) ^ GETBIT(d, 4) ^ GETBIT(d, 3) ^ GETBIT(d, 2) ^
GETBIT(d, 1) ^ GETBIT(d, 0)) << 4;
return p;
}
static void encode_hamming_13_8(void *_src, void *_ecc, size_t size)
{
int i;
u8 *src = _src;
u8 *ecc = _ecc;
for (i = 0; i < size; i++)
ecc[i] = calculate_parity_13_8(src[i]);
}
#endif
static u32 calc_chksum(void *buf, size_t size)
{
u32 chksum = 0;
u8 *bp = buf;
size_t i;
for (i = 0; i < size; i++)
chksum += bp[i];
return ~chksum;
}
static void fill_fcb(struct fcb_block *fcb, struct mtd_info *mtd,
u32 fw1_start, u32 fw2_start, u32 fw_pages)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
struct mxs_nand_layout l;
mxs_nand_get_layout(mtd, &l);
fcb->fingerprint = FCB_FINGERPRINT;
fcb->version = FCB_VERSION_1;
fcb->pagesize = mtd->writesize;
fcb->oob_pagesize = mtd->writesize + mtd->oobsize;
fcb->sectors = mtd->erasesize / mtd->writesize;
fcb->meta_size = l.meta_size;
fcb->nr_blocks = l.nblocks;
fcb->ecc_nr = l.data0_size;
fcb->ecc_level = l.ecc0;
fcb->ecc_size = l.datan_size;
fcb->ecc_type = l.eccn;
/* Also hardcoded in kobs-ng */
if (is_mx6()) {
fcb->datasetup = 80;
fcb->datahold = 60;
fcb->addr_setup = 25;
fcb->dsample_time = 6;
} else if (is_mx7()) {
fcb->datasetup = 10;
fcb->datahold = 7;
fcb->addr_setup = 15;
fcb->dsample_time = 6;
}
/* DBBT search area starts at second page on first block */
fcb->dbbt_start = 1;
fcb->bb_byte = nand_info->bch_geometry.block_mark_byte_offset;
fcb->bb_start_bit = nand_info->bch_geometry.block_mark_bit_offset;
fcb->phy_offset = mtd->writesize;
fcb->nr_blocks = mtd->writesize / fcb->ecc_nr - 1;
fcb->disbbm = 0;
fcb->disbbm_search = 0;
fcb->fw1_start = fw1_start; /* Firmware image starts on this sector */
fcb->fw2_start = fw2_start; /* Secondary FW Image starting Sector */
fcb->fw1_pages = fw_pages; /* Number of sectors in firmware image */
fcb->fw2_pages = fw_pages; /* Number of sector in secondary FW image */
fcb->checksum = calc_chksum((void *)fcb + 4, sizeof(*fcb) - 4);
}
static int dbbt_fill_data(struct mtd_info *mtd, void *buf, int num_blocks)
{
int n, n_bad_blocks = 0;
u32 *bb = buf + 0x8;
u32 *n_bad_blocksp = buf + 0x4;
for (n = 0; n < num_blocks; n++) {
loff_t offset = n * mtd->erasesize;
if (mtd_block_isbad(mtd, offset)) {
n_bad_blocks++;
*bb = n;
bb++;
}
}
*n_bad_blocksp = n_bad_blocks;
return n_bad_blocks;
}
static int write_fcb_dbbt(struct mtd_info *mtd, struct fcb_block *fcb,
struct dbbt_block *dbbt, void *dbbt_data_page,
loff_t off)
{
void *fcb_raw_page = 0;
int i, ret;
size_t dummy;
/*
* We prepare raw page only for i.MX6, for i.MX7 we
* leverage BCH hw module instead
*/
if (is_mx6()) {
/* write fcb/dbbt */
fcb_raw_page = kzalloc(mtd->writesize + mtd->oobsize,
GFP_KERNEL);
if (!fcb_raw_page) {
debug("failed to allocate fcb_raw_page\n");
ret = -ENOMEM;
return ret;
}
#if defined(CONFIG_MX6UL) || defined(CONFIG_MX6ULL)
/* 40 bit BCH, for i.MX6UL(L) */
encode_bch_ecc(fcb_raw_page + 32, fcb, 40);
#else
memcpy(fcb_raw_page + 12, fcb, sizeof(struct fcb_block));
encode_hamming_13_8(fcb_raw_page + 12,
fcb_raw_page + 12 + 512, 512);
#endif
/*
* Set the first and second byte of OOB data to 0xFF,
* not 0x00. These bytes are used as the Manufacturers Bad
* Block Marker (MBBM). Since the FCB is mostly written to
* the first page in a block, a scan for
* factory bad blocks will detect these blocks as bad, e.g.
* when function nand_scan_bbt() is executed to build a new
* bad block table.
*/
memset(fcb_raw_page + mtd->writesize, 0xFF, 2);
}
for (i = 0; i < 2; i++) {
if (mtd_block_isbad(mtd, off)) {
printf("Block %d is bad, skipped\n", i);
continue;
}
/*
* User BCH ECC hardware module for i.MX7
*/
if (is_mx7()) {
u32 off = i * mtd->erasesize;
size_t rwsize = sizeof(*fcb);
printf("Writing %d bytes to 0x%x: ", rwsize, off);
/* switch nand BCH to FCB compatible settings */
mxs_nand_mode_fcb(mtd);
ret = nand_write(mtd, off, &rwsize,
(unsigned char *)fcb);
mxs_nand_mode_normal(mtd);
printf("%s\n", ret ? "ERROR" : "OK");
} else if (is_mx6()) {
/* raw write */
mtd_oob_ops_t ops = {
.datbuf = (u8 *)fcb_raw_page,
.oobbuf = ((u8 *)fcb_raw_page) +
mtd->writesize,
.len = mtd->writesize,
.ooblen = mtd->oobsize,
.mode = MTD_OPS_RAW
};
ret = mtd_write_oob(mtd, mtd->erasesize * i, &ops);
if (ret)
goto fcb_raw_page_err;
debug("NAND fcb write: 0x%x offset 0x%x written: %s\n",
mtd->erasesize * i, ops.len, ret ?
"ERROR" : "OK");
}
ret = mtd_write(mtd, mtd->erasesize * i + mtd->writesize,
mtd->writesize, &dummy, (void *)dbbt);
if (ret)
goto fcb_raw_page_err;
debug("NAND dbbt write: 0x%x offset, 0x%x bytes written: %s\n",
mtd->erasesize * i + mtd->writesize, dummy,
ret ? "ERROR" : "OK");
/* dbbtpages == 0 if no bad blocks */
if (dbbt->dbbtpages > 0) {
loff_t to = (mtd->erasesize * i + mtd->writesize * 5);
ret = mtd_write(mtd, to, mtd->writesize, &dummy,
dbbt_data_page);
if (ret)
goto fcb_raw_page_err;
}
}
fcb_raw_page_err:
if (is_mx6())
kfree(fcb_raw_page);
return ret;
}
static int nandbcb_update(struct mtd_info *mtd, loff_t off, size_t size,
size_t maxsize, const u_char *buf)
{
nand_erase_options_t opts;
struct fcb_block *fcb;
struct dbbt_block *dbbt;
loff_t fw1_off;
void *fwbuf, *dbbt_page, *dbbt_data_page;
u32 fw1_start, fw1_pages;
int nr_blks, nr_blks_fcb, fw1_blk;
size_t fwsize;
int ret;
/* erase */
memset(&opts, 0, sizeof(opts));
opts.offset = off;
opts.length = maxsize - 1;
ret = nand_erase_opts(mtd, &opts);
if (ret) {
printf("%s: erase failed (ret = %d)\n", __func__, ret);
return ret;
}
/*
* Reference documentation from i.MX6DQRM section 8.5.2.2
*
* Nand Boot Control Block(BCB) contains two data structures,
* - Firmware Configuration Block(FCB)
* - Discovered Bad Block Table(DBBT)
*
* FCB contains,
* - nand timings
* - DBBT search page address,
* - start page address of primary firmware
* - start page address of secondary firmware
*
* setup fcb:
* - number of blocks = mtd partition size / mtd erasesize
* - two firmware blocks, primary and secondary
* - first 4 block for FCB/DBBT
* - rest split in half for primary and secondary firmware
* - same firmware will write two times
*/
nr_blks_fcb = 2;
nr_blks = maxsize / mtd->erasesize;
fw1_blk = nr_blks_fcb;
/* write fw */
fwsize = ALIGN(size + FLASH_OFFSET_STANDARD + mtd->writesize,
mtd->writesize);
fwbuf = kzalloc(fwsize, GFP_KERNEL);
if (!fwbuf) {
debug("failed to allocate fwbuf\n");
ret = -ENOMEM;
goto err;
}
memcpy(fwbuf + FLASH_OFFSET_STANDARD, buf, size);
fw1_off = fw1_blk * mtd->erasesize;
ret = nand_write_skip_bad(mtd, fw1_off, &fwsize, NULL, maxsize,
(u_char *)fwbuf, WITH_WR_VERIFY);
printf("NAND fw write: 0x%llx offset, 0x%x bytes written: %s\n",
fw1_off, fwsize, ret ? "ERROR" : "OK");
if (ret)
goto fwbuf_err;
/* fill fcb */
fcb = kzalloc(sizeof(*fcb), GFP_KERNEL);
if (!fcb) {
debug("failed to allocate fcb\n");
ret = -ENOMEM;
goto fwbuf_err;
}
fw1_start = (fw1_blk * mtd->erasesize) / mtd->writesize;
fw1_pages = size / mtd->writesize + 1;
fill_fcb(fcb, mtd, fw1_start, 0, fw1_pages);
/* fill dbbt */
dbbt_page = kzalloc(mtd->writesize, GFP_KERNEL);
if (!dbbt_page) {
debug("failed to allocate dbbt_page\n");
ret = -ENOMEM;
goto fcb_err;
}
dbbt_data_page = kzalloc(mtd->writesize, GFP_KERNEL);
if (!dbbt_data_page) {
debug("failed to allocate dbbt_data_page\n");
ret = -ENOMEM;
goto dbbt_page_err;
}
dbbt = dbbt_page;
dbbt->checksum = 0;
dbbt->fingerprint = DBBT_FINGERPRINT2;
dbbt->version = DBBT_VERSION_1;
ret = dbbt_fill_data(mtd, dbbt_data_page, nr_blks);
if (ret < 0)
goto dbbt_data_page_err;
else if (ret > 0)
dbbt->dbbtpages = 1;
/* write fcb and dbbt to nand */
ret = write_fcb_dbbt(mtd, fcb, dbbt, dbbt_data_page, off);
if (ret < 0)
printf("failed to write FCB/DBBT\n");
dbbt_data_page_err:
kfree(dbbt_data_page);
dbbt_page_err:
kfree(dbbt_page);
fcb_err:
kfree(fcb);
fwbuf_err:
kfree(fwbuf);
err:
return ret;
}
static int do_nandbcb_bcbonly(int argc, char * const argv[])
{
struct fcb_block *fcb;
struct dbbt_block *dbbt;
u32 fw_len, fw1_off, fw2_off;
struct mtd_info *mtd;
void *dbbt_page, *dbbt_data_page;
int dev, ret;
dev = nand_curr_device;
if ((dev < 0) || (dev >= CONFIG_SYS_MAX_NAND_DEVICE) ||
(!get_nand_dev_by_index(dev))) {
puts("No devices available\n");
return CMD_RET_FAILURE;
}
mtd = get_nand_dev_by_index(dev);
if (argc < 3)
return CMD_RET_FAILURE;
fw_len = simple_strtoul(argv[1], NULL, 16);
fw1_off = simple_strtoul(argv[2], NULL, 16);
if (argc > 3)
fw2_off = simple_strtoul(argv[3], NULL, 16);
else
fw2_off = fw1_off;
/* fill fcb */
fcb = kzalloc(sizeof(*fcb), GFP_KERNEL);
if (!fcb) {
debug("failed to allocate fcb\n");
ret = -ENOMEM;
return CMD_RET_FAILURE;
}
fill_fcb(fcb, mtd, fw1_off / mtd->writesize,
fw2_off / mtd->writesize, fw_len / mtd->writesize);
/* fill dbbt */
dbbt_page = kzalloc(mtd->writesize, GFP_KERNEL);
if (!dbbt_page) {
debug("failed to allocate dbbt_page\n");
ret = -ENOMEM;
goto fcb_err;
}
dbbt_data_page = kzalloc(mtd->writesize, GFP_KERNEL);
if (!dbbt_data_page) {
debug("failed to allocate dbbt_data_page\n");
ret = -ENOMEM;
goto dbbt_page_err;
}
dbbt = dbbt_page;
dbbt->checksum = 0;
dbbt->fingerprint = DBBT_FINGERPRINT2;
dbbt->version = DBBT_VERSION_1;
ret = dbbt_fill_data(mtd, dbbt_data_page, 0);
if (ret < 0)
goto dbbt_data_page_err;
else if (ret > 0)
dbbt->dbbtpages = 1;
/* write fcb and dbbt to nand */
ret = write_fcb_dbbt(mtd, fcb, dbbt, dbbt_data_page, 0);
dbbt_data_page_err:
kfree(dbbt_data_page);
dbbt_page_err:
kfree(dbbt_page);
fcb_err:
kfree(fcb);
if (ret < 0) {
printf("failed to write FCB/DBBT\n");
return CMD_RET_FAILURE;
}
return CMD_RET_SUCCESS;
}
static int do_nandbcb_update(int argc, char * const argv[])
{
struct mtd_info *mtd;
loff_t addr, offset, size, maxsize;
char *endp;
u_char *buf;
int dev;
int ret;
if (argc != 4)
return CMD_RET_USAGE;
dev = nand_curr_device;
if (dev < 0) {
printf("failed to get nand_curr_device, run nand device\n");
return CMD_RET_FAILURE;
}
addr = simple_strtoul(argv[1], &endp, 16);
if (*argv[1] == 0 || *endp != 0)
return CMD_RET_FAILURE;
mtd = get_nand_dev_by_index(dev);
if (mtd_arg_off_size(argc - 2, argv + 2, &dev, &offset, &size,
&maxsize, MTD_DEV_TYPE_NAND, mtd->size))
return CMD_RET_FAILURE;
buf = map_physmem(addr, size, MAP_WRBACK);
if (!buf) {
puts("failed to map physical memory\n");
return CMD_RET_FAILURE;
}
ret = nandbcb_update(mtd, offset, size, maxsize, buf);
return ret == 0 ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
}
static int do_nandbcb(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[])
{
const char *cmd;
int ret = 0;
if (argc < 5)
goto usage;
cmd = argv[1];
--argc;
++argv;
if (strcmp(cmd, "update") == 0) {
ret = do_nandbcb_update(argc, argv);
goto done;
}
if (strcmp(cmd, "bcbonly") == 0) {
ret = do_nandbcb_bcbonly(argc, argv);
goto done;
}
done:
if (ret != -1)
return ret;
usage:
return CMD_RET_USAGE;
}
#ifdef CONFIG_SYS_LONGHELP
static char nandbcb_help_text[] =
"update addr off|partition len - update 'len' bytes starting at\n"
" 'off|part' to memory address 'addr', skipping bad blocks\n"
"bcbonly fw-size fw1-off [fw2-off] - write only BCB (FCB and DBBT)\n"
" where `fw-size` is fw sizes in bytes, `fw1-off`\n"
" and `fw2-off` - firmware offsets\n"
" FIY, BCB isn't erased automatically, so mtd erase should\n"
" be called in advance before writing new BCB:\n"
" > mtd erase mx7-bcb";
#endif
U_BOOT_CMD(nandbcb, 5, 1, do_nandbcb,
"i.MX6/i.MX7 NAND Boot Control Blocks write",
nandbcb_help_text
);