linux/drivers/media/dvb/frontends/s5h1420.c
Douglas Schilling Landgraf ff699e6bd0 V4L/DVB (7094): static memory
- Static memory is always initialized with 0.
- Replaced in some cases C99 comments for /* */

Signed-off-by: Douglas Schilling Landgraf <dougsland@gmail.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-04-24 13:42:20 -03:00

836 lines
21 KiB
C

/*
Driver for Samsung S5H1420 QPSK Demodulator
Copyright (C) 2005 Andrew de Quincey <adq_dvb@lidskialf.net>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <asm/div64.h>
#include "dvb_frontend.h"
#include "s5h1420.h"
#define TONE_FREQ 22000
struct s5h1420_state {
struct i2c_adapter* i2c;
const struct s5h1420_config* config;
struct dvb_frontend frontend;
u8 postlocked:1;
u32 fclk;
u32 tunedfreq;
fe_code_rate_t fec_inner;
u32 symbol_rate;
};
static u32 s5h1420_getsymbolrate(struct s5h1420_state* state);
static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
struct dvb_frontend_tune_settings* fesettings);
static int debug;
#define dprintk if (debug) printk
static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data)
{
u8 buf [] = { reg, data };
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
int err;
if ((err = i2c_transfer (state->i2c, &msg, 1)) != 1) {
dprintk ("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __FUNCTION__, err, reg, data);
return -EREMOTEIO;
}
return 0;
}
static u8 s5h1420_readreg (struct s5h1420_state* state, u8 reg)
{
int ret;
u8 b0 [] = { reg };
u8 b1 [] = { 0 };
struct i2c_msg msg1 = { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 };
struct i2c_msg msg2 = { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 };
if ((ret = i2c_transfer (state->i2c, &msg1, 1)) != 1)
return ret;
if ((ret = i2c_transfer (state->i2c, &msg2, 1)) != 1)
return ret;
return b1[0];
}
static int s5h1420_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage)
{
struct s5h1420_state* state = fe->demodulator_priv;
switch(voltage) {
case SEC_VOLTAGE_13:
s5h1420_writereg(state, 0x3c,
(s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02);
break;
case SEC_VOLTAGE_18:
s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03);
break;
case SEC_VOLTAGE_OFF:
s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd);
break;
}
return 0;
}
static int s5h1420_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
{
struct s5h1420_state* state = fe->demodulator_priv;
switch(tone) {
case SEC_TONE_ON:
s5h1420_writereg(state, 0x3b,
(s5h1420_readreg(state, 0x3b) & 0x74) | 0x08);
break;
case SEC_TONE_OFF:
s5h1420_writereg(state, 0x3b,
(s5h1420_readreg(state, 0x3b) & 0x74) | 0x01);
break;
}
return 0;
}
static int s5h1420_send_master_cmd (struct dvb_frontend* fe,
struct dvb_diseqc_master_cmd* cmd)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val;
int i;
unsigned long timeout;
int result = 0;
if (cmd->msg_len > 8)
return -EINVAL;
/* setup for DISEQC */
val = s5h1420_readreg(state, 0x3b);
s5h1420_writereg(state, 0x3b, 0x02);
msleep(15);
/* write the DISEQC command bytes */
for(i=0; i< cmd->msg_len; i++) {
s5h1420_writereg(state, 0x3d + i, cmd->msg[i]);
}
/* kick off transmission */
s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) |
((cmd->msg_len-1) << 4) | 0x08);
/* wait for transmission to complete */
timeout = jiffies + ((100*HZ) / 1000);
while(time_before(jiffies, timeout)) {
if (!(s5h1420_readreg(state, 0x3b) & 0x08))
break;
msleep(5);
}
if (time_after(jiffies, timeout))
result = -ETIMEDOUT;
/* restore original settings */
s5h1420_writereg(state, 0x3b, val);
msleep(15);
return result;
}
static int s5h1420_recv_slave_reply (struct dvb_frontend* fe,
struct dvb_diseqc_slave_reply* reply)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val;
int i;
int length;
unsigned long timeout;
int result = 0;
/* setup for DISEQC recieve */
val = s5h1420_readreg(state, 0x3b);
s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */
msleep(15);
/* wait for reception to complete */
timeout = jiffies + ((reply->timeout*HZ) / 1000);
while(time_before(jiffies, timeout)) {
if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */
break;
msleep(5);
}
if (time_after(jiffies, timeout)) {
result = -ETIMEDOUT;
goto exit;
}
/* check error flag - FIXME: not sure what this does - docs do not describe
* beyond "error flag for diseqc receive data :( */
if (s5h1420_readreg(state, 0x49)) {
result = -EIO;
goto exit;
}
/* check length */
length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4;
if (length > sizeof(reply->msg)) {
result = -EOVERFLOW;
goto exit;
}
reply->msg_len = length;
/* extract data */
for(i=0; i< length; i++) {
reply->msg[i] = s5h1420_readreg(state, 0x3d + i);
}
exit:
/* restore original settings */
s5h1420_writereg(state, 0x3b, val);
msleep(15);
return result;
}
static int s5h1420_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val;
int result = 0;
unsigned long timeout;
/* setup for tone burst */
val = s5h1420_readreg(state, 0x3b);
s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01);
/* set value for B position if requested */
if (minicmd == SEC_MINI_B) {
s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04);
}
msleep(15);
/* start transmission */
s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08);
/* wait for transmission to complete */
timeout = jiffies + ((100*HZ) / 1000);
while(time_before(jiffies, timeout)) {
if (!(s5h1420_readreg(state, 0x3b) & 0x08))
break;
msleep(5);
}
if (time_after(jiffies, timeout))
result = -ETIMEDOUT;
/* restore original settings */
s5h1420_writereg(state, 0x3b, val);
msleep(15);
return result;
}
static fe_status_t s5h1420_get_status_bits(struct s5h1420_state* state)
{
u8 val;
fe_status_t status = 0;
val = s5h1420_readreg(state, 0x14);
if (val & 0x02)
status |= FE_HAS_SIGNAL;
if (val & 0x01)
status |= FE_HAS_CARRIER;
val = s5h1420_readreg(state, 0x36);
if (val & 0x01)
status |= FE_HAS_VITERBI;
if (val & 0x20)
status |= FE_HAS_SYNC;
if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC))
status |= FE_HAS_LOCK;
return status;
}
static int s5h1420_read_status(struct dvb_frontend* fe, fe_status_t* status)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val;
if (status == NULL)
return -EINVAL;
/* determine lock state */
*status = s5h1420_get_status_bits(state);
/* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert
the inversion, wait a bit and check again */
if (*status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI)) {
val = s5h1420_readreg(state, 0x32);
if ((val & 0x07) == 0x03) {
if (val & 0x08)
s5h1420_writereg(state, 0x31, 0x13);
else
s5h1420_writereg(state, 0x31, 0x1b);
/* wait a bit then update lock status */
mdelay(200);
*status = s5h1420_get_status_bits(state);
}
}
/* perform post lock setup */
if ((*status & FE_HAS_LOCK) && (!state->postlocked)) {
/* calculate the data rate */
u32 tmp = s5h1420_getsymbolrate(state);
switch(s5h1420_readreg(state, 0x32) & 0x07) {
case 0:
tmp = (tmp * 2 * 1) / 2;
break;
case 1:
tmp = (tmp * 2 * 2) / 3;
break;
case 2:
tmp = (tmp * 2 * 3) / 4;
break;
case 3:
tmp = (tmp * 2 * 5) / 6;
break;
case 4:
tmp = (tmp * 2 * 6) / 7;
break;
case 5:
tmp = (tmp * 2 * 7) / 8;
break;
}
if (tmp == 0) {
printk("s5h1420: avoided division by 0\n");
tmp = 1;
}
tmp = state->fclk / tmp;
/* set the MPEG_CLK_INTL for the calculated data rate */
if (tmp < 4)
val = 0x00;
else if (tmp < 8)
val = 0x01;
else if (tmp < 12)
val = 0x02;
else if (tmp < 16)
val = 0x03;
else if (tmp < 24)
val = 0x04;
else if (tmp < 32)
val = 0x05;
else
val = 0x06;
s5h1420_writereg(state, 0x22, val);
/* DC freeze */
s5h1420_writereg(state, 0x1f, s5h1420_readreg(state, 0x1f) | 0x01);
/* kicker disable + remove DC offset */
s5h1420_writereg(state, 0x05, s5h1420_readreg(state, 0x05) & 0x6f);
/* post-lock processing has been done! */
state->postlocked = 1;
}
return 0;
}
static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct s5h1420_state* state = fe->demodulator_priv;
s5h1420_writereg(state, 0x46, 0x1d);
mdelay(25);
*ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
return 0;
}
static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val = s5h1420_readreg(state, 0x15);
*strength = (u16) ((val << 8) | val);
return 0;
}
static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct s5h1420_state* state = fe->demodulator_priv;
s5h1420_writereg(state, 0x46, 0x1f);
mdelay(25);
*ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
return 0;
}
static void s5h1420_reset(struct s5h1420_state* state)
{
s5h1420_writereg (state, 0x01, 0x08);
s5h1420_writereg (state, 0x01, 0x00);
udelay(10);
}
static void s5h1420_setsymbolrate(struct s5h1420_state* state,
struct dvb_frontend_parameters *p)
{
u64 val;
val = ((u64) p->u.qpsk.symbol_rate / 1000ULL) * (1ULL<<24);
if (p->u.qpsk.symbol_rate <= 21000000) {
val *= 2;
}
do_div(val, (state->fclk / 1000));
s5h1420_writereg(state, 0x09, s5h1420_readreg(state, 0x09) & 0x7f);
s5h1420_writereg(state, 0x11, val >> 16);
s5h1420_writereg(state, 0x12, val >> 8);
s5h1420_writereg(state, 0x13, val & 0xff);
s5h1420_writereg(state, 0x09, s5h1420_readreg(state, 0x09) | 0x80);
}
static u32 s5h1420_getsymbolrate(struct s5h1420_state* state)
{
u64 val = 0;
int sampling = 2;
if (s5h1420_readreg(state, 0x05) & 0x2)
sampling = 1;
s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08);
val = s5h1420_readreg(state, 0x11) << 16;
val |= s5h1420_readreg(state, 0x12) << 8;
val |= s5h1420_readreg(state, 0x13);
s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7);
val *= (state->fclk / 1000ULL);
do_div(val, ((1<<24) * sampling));
return (u32) (val * 1000ULL);
}
static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset)
{
int val;
/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
* divide fclk by 1000000 to get the correct value. */
val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000));
s5h1420_writereg(state, 0x09, s5h1420_readreg(state, 0x09) & 0xbf);
s5h1420_writereg(state, 0x0e, val >> 16);
s5h1420_writereg(state, 0x0f, val >> 8);
s5h1420_writereg(state, 0x10, val & 0xff);
s5h1420_writereg(state, 0x09, s5h1420_readreg(state, 0x09) | 0x40);
}
static int s5h1420_getfreqoffset(struct s5h1420_state* state)
{
int val;
s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08);
val = s5h1420_readreg(state, 0x0e) << 16;
val |= s5h1420_readreg(state, 0x0f) << 8;
val |= s5h1420_readreg(state, 0x10);
s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7);
if (val & 0x800000)
val |= 0xff000000;
/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
* divide fclk by 1000000 to get the correct value. */
val = (((-val) * (state->fclk/1000000)) / (1<<24));
return val;
}
static void s5h1420_setfec_inversion(struct s5h1420_state* state,
struct dvb_frontend_parameters *p)
{
u8 inversion = 0;
if (p->inversion == INVERSION_OFF) {
inversion = state->config->invert ? 0x08 : 0;
} else if (p->inversion == INVERSION_ON) {
inversion = state->config->invert ? 0 : 0x08;
}
if ((p->u.qpsk.fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) {
s5h1420_writereg(state, 0x30, 0x3f);
s5h1420_writereg(state, 0x31, 0x00 | inversion);
} else {
switch(p->u.qpsk.fec_inner) {
case FEC_1_2:
s5h1420_writereg(state, 0x30, 0x01);
s5h1420_writereg(state, 0x31, 0x10 | inversion);
break;
case FEC_2_3:
s5h1420_writereg(state, 0x30, 0x02);
s5h1420_writereg(state, 0x31, 0x11 | inversion);
break;
case FEC_3_4:
s5h1420_writereg(state, 0x30, 0x04);
s5h1420_writereg(state, 0x31, 0x12 | inversion);
break;
case FEC_5_6:
s5h1420_writereg(state, 0x30, 0x08);
s5h1420_writereg(state, 0x31, 0x13 | inversion);
break;
case FEC_6_7:
s5h1420_writereg(state, 0x30, 0x10);
s5h1420_writereg(state, 0x31, 0x14 | inversion);
break;
case FEC_7_8:
s5h1420_writereg(state, 0x30, 0x20);
s5h1420_writereg(state, 0x31, 0x15 | inversion);
break;
default:
return;
}
}
}
static fe_code_rate_t s5h1420_getfec(struct s5h1420_state* state)
{
switch(s5h1420_readreg(state, 0x32) & 0x07) {
case 0:
return FEC_1_2;
case 1:
return FEC_2_3;
case 2:
return FEC_3_4;
case 3:
return FEC_5_6;
case 4:
return FEC_6_7;
case 5:
return FEC_7_8;
}
return FEC_NONE;
}
static fe_spectral_inversion_t s5h1420_getinversion(struct s5h1420_state* state)
{
if (s5h1420_readreg(state, 0x32) & 0x08)
return INVERSION_ON;
return INVERSION_OFF;
}
static int s5h1420_set_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *p)
{
struct s5h1420_state* state = fe->demodulator_priv;
int frequency_delta;
struct dvb_frontend_tune_settings fesettings;
/* check if we should do a fast-tune */
memcpy(&fesettings.parameters, p, sizeof(struct dvb_frontend_parameters));
s5h1420_get_tune_settings(fe, &fesettings);
frequency_delta = p->frequency - state->tunedfreq;
if ((frequency_delta > -fesettings.max_drift) &&
(frequency_delta < fesettings.max_drift) &&
(frequency_delta != 0) &&
(state->fec_inner == p->u.qpsk.fec_inner) &&
(state->symbol_rate == p->u.qpsk.symbol_rate)) {
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe, p);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
}
if (fe->ops.tuner_ops.get_frequency) {
u32 tmp;
fe->ops.tuner_ops.get_frequency(fe, &tmp);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
s5h1420_setfreqoffset(state, p->frequency - tmp);
} else {
s5h1420_setfreqoffset(state, 0);
}
return 0;
}
/* first of all, software reset */
s5h1420_reset(state);
/* set s5h1420 fclk PLL according to desired symbol rate */
if (p->u.qpsk.symbol_rate > 28000000) {
state->fclk = 88000000;
s5h1420_writereg(state, 0x03, 0x50);
s5h1420_writereg(state, 0x04, 0x40);
s5h1420_writereg(state, 0x05, 0xae);
} else if (p->u.qpsk.symbol_rate > 21000000) {
state->fclk = 59000000;
s5h1420_writereg(state, 0x03, 0x33);
s5h1420_writereg(state, 0x04, 0x40);
s5h1420_writereg(state, 0x05, 0xae);
} else {
state->fclk = 88000000;
s5h1420_writereg(state, 0x03, 0x50);
s5h1420_writereg(state, 0x04, 0x40);
s5h1420_writereg(state, 0x05, 0xac);
}
/* set misc registers */
s5h1420_writereg(state, 0x02, 0x00);
s5h1420_writereg(state, 0x06, 0x00);
s5h1420_writereg(state, 0x07, 0xb0);
s5h1420_writereg(state, 0x0a, 0xe7);
s5h1420_writereg(state, 0x0b, 0x78);
s5h1420_writereg(state, 0x0c, 0x48);
s5h1420_writereg(state, 0x0d, 0x6b);
s5h1420_writereg(state, 0x2e, 0x8e);
s5h1420_writereg(state, 0x35, 0x33);
s5h1420_writereg(state, 0x38, 0x01);
s5h1420_writereg(state, 0x39, 0x7d);
s5h1420_writereg(state, 0x3a, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
s5h1420_writereg(state, 0x3c, 0x00);
s5h1420_writereg(state, 0x45, 0x61);
s5h1420_writereg(state, 0x46, 0x1d);
/* start QPSK */
s5h1420_writereg(state, 0x05, s5h1420_readreg(state, 0x05) | 1);
/* set tuner PLL */
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe, p);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
s5h1420_setfreqoffset(state, 0);
}
/* set the reset of the parameters */
s5h1420_setsymbolrate(state, p);
s5h1420_setfec_inversion(state, p);
state->fec_inner = p->u.qpsk.fec_inner;
state->symbol_rate = p->u.qpsk.symbol_rate;
state->postlocked = 0;
state->tunedfreq = p->frequency;
return 0;
}
static int s5h1420_get_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *p)
{
struct s5h1420_state* state = fe->demodulator_priv;
p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state);
p->inversion = s5h1420_getinversion(state);
p->u.qpsk.symbol_rate = s5h1420_getsymbolrate(state);
p->u.qpsk.fec_inner = s5h1420_getfec(state);
return 0;
}
static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
struct dvb_frontend_tune_settings* fesettings)
{
if (fesettings->parameters.u.qpsk.symbol_rate > 20000000) {
fesettings->min_delay_ms = 50;
fesettings->step_size = 2000;
fesettings->max_drift = 8000;
} else if (fesettings->parameters.u.qpsk.symbol_rate > 12000000) {
fesettings->min_delay_ms = 100;
fesettings->step_size = 1500;
fesettings->max_drift = 9000;
} else if (fesettings->parameters.u.qpsk.symbol_rate > 8000000) {
fesettings->min_delay_ms = 100;
fesettings->step_size = 1000;
fesettings->max_drift = 8000;
} else if (fesettings->parameters.u.qpsk.symbol_rate > 4000000) {
fesettings->min_delay_ms = 100;
fesettings->step_size = 500;
fesettings->max_drift = 7000;
} else if (fesettings->parameters.u.qpsk.symbol_rate > 2000000) {
fesettings->min_delay_ms = 200;
fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
fesettings->max_drift = 14 * fesettings->step_size;
} else {
fesettings->min_delay_ms = 200;
fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
fesettings->max_drift = 18 * fesettings->step_size;
}
return 0;
}
static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
struct s5h1420_state* state = fe->demodulator_priv;
if (enable) {
return s5h1420_writereg (state, 0x02, s5h1420_readreg(state,0x02) | 1);
} else {
return s5h1420_writereg (state, 0x02, s5h1420_readreg(state,0x02) & 0xfe);
}
}
static int s5h1420_init (struct dvb_frontend* fe)
{
struct s5h1420_state* state = fe->demodulator_priv;
/* disable power down and do reset */
s5h1420_writereg(state, 0x02, 0x10);
msleep(10);
s5h1420_reset(state);
return 0;
}
static int s5h1420_sleep(struct dvb_frontend* fe)
{
struct s5h1420_state* state = fe->demodulator_priv;
return s5h1420_writereg(state, 0x02, 0x12);
}
static void s5h1420_release(struct dvb_frontend* fe)
{
struct s5h1420_state* state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops s5h1420_ops;
struct dvb_frontend* s5h1420_attach(const struct s5h1420_config* config,
struct i2c_adapter* i2c)
{
struct s5h1420_state* state = NULL;
u8 identity;
/* allocate memory for the internal state */
state = kmalloc(sizeof(struct s5h1420_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
state->postlocked = 0;
state->fclk = 88000000;
state->tunedfreq = 0;
state->fec_inner = FEC_NONE;
state->symbol_rate = 0;
/* check if the demod is there + identify it */
identity = s5h1420_readreg(state, 0x00);
if (identity != 0x03)
goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops s5h1420_ops = {
.info = {
.name = "Samsung S5H1420 DVB-S",
.type = FE_QPSK,
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_stepsize = 125, /* kHz for QPSK frontends */
.frequency_tolerance = 29500,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
/* .symbol_rate_tolerance = ???,*/
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK
},
.release = s5h1420_release,
.init = s5h1420_init,
.sleep = s5h1420_sleep,
.i2c_gate_ctrl = s5h1420_i2c_gate_ctrl,
.set_frontend = s5h1420_set_frontend,
.get_frontend = s5h1420_get_frontend,
.get_tune_settings = s5h1420_get_tune_settings,
.read_status = s5h1420_read_status,
.read_ber = s5h1420_read_ber,
.read_signal_strength = s5h1420_read_signal_strength,
.read_ucblocks = s5h1420_read_ucblocks,
.diseqc_send_master_cmd = s5h1420_send_master_cmd,
.diseqc_recv_slave_reply = s5h1420_recv_slave_reply,
.diseqc_send_burst = s5h1420_send_burst,
.set_tone = s5h1420_set_tone,
.set_voltage = s5h1420_set_voltage,
};
module_param(debug, int, 0644);
MODULE_DESCRIPTION("Samsung S5H1420 DVB-S Demodulator driver");
MODULE_AUTHOR("Andrew de Quincey");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(s5h1420_attach);