forked from Minki/linux
bea3348eef
Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
7005 lines
168 KiB
C
7005 lines
168 KiB
C
/* bnx2.c: Broadcom NX2 network driver.
|
|
*
|
|
* Copyright (c) 2004-2007 Broadcom Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* Written by: Michael Chan (mchan@broadcom.com)
|
|
*/
|
|
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <asm/bitops.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/page.h>
|
|
#include <linux/time.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/mii.h>
|
|
#ifdef NETIF_F_HW_VLAN_TX
|
|
#include <linux/if_vlan.h>
|
|
#define BCM_VLAN 1
|
|
#endif
|
|
#include <net/ip.h>
|
|
#include <net/tcp.h>
|
|
#include <net/checksum.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/zlib.h>
|
|
|
|
#include "bnx2.h"
|
|
#include "bnx2_fw.h"
|
|
#include "bnx2_fw2.h"
|
|
|
|
#define DRV_MODULE_NAME "bnx2"
|
|
#define PFX DRV_MODULE_NAME ": "
|
|
#define DRV_MODULE_VERSION "1.6.5"
|
|
#define DRV_MODULE_RELDATE "September 20, 2007"
|
|
|
|
#define RUN_AT(x) (jiffies + (x))
|
|
|
|
/* Time in jiffies before concluding the transmitter is hung. */
|
|
#define TX_TIMEOUT (5*HZ)
|
|
|
|
static const char version[] __devinitdata =
|
|
"Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
|
|
|
|
MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
|
|
MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_MODULE_VERSION);
|
|
|
|
static int disable_msi = 0;
|
|
|
|
module_param(disable_msi, int, 0);
|
|
MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
|
|
|
|
typedef enum {
|
|
BCM5706 = 0,
|
|
NC370T,
|
|
NC370I,
|
|
BCM5706S,
|
|
NC370F,
|
|
BCM5708,
|
|
BCM5708S,
|
|
BCM5709,
|
|
BCM5709S,
|
|
} board_t;
|
|
|
|
/* indexed by board_t, above */
|
|
static const struct {
|
|
char *name;
|
|
} board_info[] __devinitdata = {
|
|
{ "Broadcom NetXtreme II BCM5706 1000Base-T" },
|
|
{ "HP NC370T Multifunction Gigabit Server Adapter" },
|
|
{ "HP NC370i Multifunction Gigabit Server Adapter" },
|
|
{ "Broadcom NetXtreme II BCM5706 1000Base-SX" },
|
|
{ "HP NC370F Multifunction Gigabit Server Adapter" },
|
|
{ "Broadcom NetXtreme II BCM5708 1000Base-T" },
|
|
{ "Broadcom NetXtreme II BCM5708 1000Base-SX" },
|
|
{ "Broadcom NetXtreme II BCM5709 1000Base-T" },
|
|
{ "Broadcom NetXtreme II BCM5709 1000Base-SX" },
|
|
};
|
|
|
|
static struct pci_device_id bnx2_pci_tbl[] = {
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
|
|
PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
|
|
PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
|
|
PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
|
|
{ 0, }
|
|
};
|
|
|
|
static struct flash_spec flash_table[] =
|
|
{
|
|
#define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
|
|
#define NONBUFFERED_FLAGS (BNX2_NV_WREN)
|
|
/* Slow EEPROM */
|
|
{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
|
|
BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
|
|
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
|
|
"EEPROM - slow"},
|
|
/* Expansion entry 0001 */
|
|
{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 0001"},
|
|
/* Saifun SA25F010 (non-buffered flash) */
|
|
/* strap, cfg1, & write1 need updates */
|
|
{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
|
|
"Non-buffered flash (128kB)"},
|
|
/* Saifun SA25F020 (non-buffered flash) */
|
|
/* strap, cfg1, & write1 need updates */
|
|
{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
|
|
"Non-buffered flash (256kB)"},
|
|
/* Expansion entry 0100 */
|
|
{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 0100"},
|
|
/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
|
|
{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
|
|
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
|
|
"Entry 0101: ST M45PE10 (128kB non-bufferred)"},
|
|
/* Entry 0110: ST M45PE20 (non-buffered flash)*/
|
|
{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
|
|
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
|
|
"Entry 0110: ST M45PE20 (256kB non-bufferred)"},
|
|
/* Saifun SA25F005 (non-buffered flash) */
|
|
/* strap, cfg1, & write1 need updates */
|
|
{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
|
|
"Non-buffered flash (64kB)"},
|
|
/* Fast EEPROM */
|
|
{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
|
|
BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
|
|
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
|
|
"EEPROM - fast"},
|
|
/* Expansion entry 1001 */
|
|
{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1001"},
|
|
/* Expansion entry 1010 */
|
|
{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1010"},
|
|
/* ATMEL AT45DB011B (buffered flash) */
|
|
{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
|
|
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
|
|
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
|
|
"Buffered flash (128kB)"},
|
|
/* Expansion entry 1100 */
|
|
{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1100"},
|
|
/* Expansion entry 1101 */
|
|
{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1101"},
|
|
/* Ateml Expansion entry 1110 */
|
|
{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
|
|
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
|
|
BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1110 (Atmel)"},
|
|
/* ATMEL AT45DB021B (buffered flash) */
|
|
{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
|
|
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
|
|
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
|
|
"Buffered flash (256kB)"},
|
|
};
|
|
|
|
static struct flash_spec flash_5709 = {
|
|
.flags = BNX2_NV_BUFFERED,
|
|
.page_bits = BCM5709_FLASH_PAGE_BITS,
|
|
.page_size = BCM5709_FLASH_PAGE_SIZE,
|
|
.addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
|
|
.total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
|
|
.name = "5709 Buffered flash (256kB)",
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
|
|
|
|
static inline u32 bnx2_tx_avail(struct bnx2 *bp)
|
|
{
|
|
u32 diff;
|
|
|
|
smp_mb();
|
|
|
|
/* The ring uses 256 indices for 255 entries, one of them
|
|
* needs to be skipped.
|
|
*/
|
|
diff = bp->tx_prod - bp->tx_cons;
|
|
if (unlikely(diff >= TX_DESC_CNT)) {
|
|
diff &= 0xffff;
|
|
if (diff == TX_DESC_CNT)
|
|
diff = MAX_TX_DESC_CNT;
|
|
}
|
|
return (bp->tx_ring_size - diff);
|
|
}
|
|
|
|
static u32
|
|
bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
|
|
{
|
|
u32 val;
|
|
|
|
spin_lock_bh(&bp->indirect_lock);
|
|
REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
|
|
val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
|
|
spin_unlock_bh(&bp->indirect_lock);
|
|
return val;
|
|
}
|
|
|
|
static void
|
|
bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
|
|
{
|
|
spin_lock_bh(&bp->indirect_lock);
|
|
REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
|
|
REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
|
|
spin_unlock_bh(&bp->indirect_lock);
|
|
}
|
|
|
|
static void
|
|
bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
|
|
{
|
|
offset += cid_addr;
|
|
spin_lock_bh(&bp->indirect_lock);
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
int i;
|
|
|
|
REG_WR(bp, BNX2_CTX_CTX_DATA, val);
|
|
REG_WR(bp, BNX2_CTX_CTX_CTRL,
|
|
offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
|
|
for (i = 0; i < 5; i++) {
|
|
u32 val;
|
|
val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
|
|
if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
|
|
break;
|
|
udelay(5);
|
|
}
|
|
} else {
|
|
REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
|
|
REG_WR(bp, BNX2_CTX_DATA, val);
|
|
}
|
|
spin_unlock_bh(&bp->indirect_lock);
|
|
}
|
|
|
|
static int
|
|
bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
|
|
{
|
|
u32 val1;
|
|
int i, ret;
|
|
|
|
if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
|
|
|
|
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
|
|
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
|
|
udelay(40);
|
|
}
|
|
|
|
val1 = (bp->phy_addr << 21) | (reg << 16) |
|
|
BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
|
|
BNX2_EMAC_MDIO_COMM_START_BUSY;
|
|
REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
|
|
|
|
for (i = 0; i < 50; i++) {
|
|
udelay(10);
|
|
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
|
|
if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
|
|
udelay(5);
|
|
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
|
|
val1 &= BNX2_EMAC_MDIO_COMM_DATA;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
|
|
*val = 0x0;
|
|
ret = -EBUSY;
|
|
}
|
|
else {
|
|
*val = val1;
|
|
ret = 0;
|
|
}
|
|
|
|
if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
|
|
|
|
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
|
|
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
|
|
udelay(40);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
|
|
{
|
|
u32 val1;
|
|
int i, ret;
|
|
|
|
if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
|
|
|
|
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
|
|
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
|
|
udelay(40);
|
|
}
|
|
|
|
val1 = (bp->phy_addr << 21) | (reg << 16) | val |
|
|
BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
|
|
BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
|
|
REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
|
|
|
|
for (i = 0; i < 50; i++) {
|
|
udelay(10);
|
|
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
|
|
if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
|
|
udelay(5);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
|
|
ret = -EBUSY;
|
|
else
|
|
ret = 0;
|
|
|
|
if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
|
|
|
|
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
|
|
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
|
|
udelay(40);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
bnx2_disable_int(struct bnx2 *bp)
|
|
{
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
|
|
REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
|
|
}
|
|
|
|
static void
|
|
bnx2_enable_int(struct bnx2 *bp)
|
|
{
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
|
|
BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
|
|
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
|
|
|
|
REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
|
|
}
|
|
|
|
static void
|
|
bnx2_disable_int_sync(struct bnx2 *bp)
|
|
{
|
|
atomic_inc(&bp->intr_sem);
|
|
bnx2_disable_int(bp);
|
|
synchronize_irq(bp->pdev->irq);
|
|
}
|
|
|
|
static void
|
|
bnx2_netif_stop(struct bnx2 *bp)
|
|
{
|
|
bnx2_disable_int_sync(bp);
|
|
if (netif_running(bp->dev)) {
|
|
napi_disable(&bp->napi);
|
|
netif_tx_disable(bp->dev);
|
|
bp->dev->trans_start = jiffies; /* prevent tx timeout */
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_netif_start(struct bnx2 *bp)
|
|
{
|
|
if (atomic_dec_and_test(&bp->intr_sem)) {
|
|
if (netif_running(bp->dev)) {
|
|
netif_wake_queue(bp->dev);
|
|
napi_enable(&bp->napi);
|
|
bnx2_enable_int(bp);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_free_mem(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->ctx_pages; i++) {
|
|
if (bp->ctx_blk[i]) {
|
|
pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
|
|
bp->ctx_blk[i],
|
|
bp->ctx_blk_mapping[i]);
|
|
bp->ctx_blk[i] = NULL;
|
|
}
|
|
}
|
|
if (bp->status_blk) {
|
|
pci_free_consistent(bp->pdev, bp->status_stats_size,
|
|
bp->status_blk, bp->status_blk_mapping);
|
|
bp->status_blk = NULL;
|
|
bp->stats_blk = NULL;
|
|
}
|
|
if (bp->tx_desc_ring) {
|
|
pci_free_consistent(bp->pdev,
|
|
sizeof(struct tx_bd) * TX_DESC_CNT,
|
|
bp->tx_desc_ring, bp->tx_desc_mapping);
|
|
bp->tx_desc_ring = NULL;
|
|
}
|
|
kfree(bp->tx_buf_ring);
|
|
bp->tx_buf_ring = NULL;
|
|
for (i = 0; i < bp->rx_max_ring; i++) {
|
|
if (bp->rx_desc_ring[i])
|
|
pci_free_consistent(bp->pdev,
|
|
sizeof(struct rx_bd) * RX_DESC_CNT,
|
|
bp->rx_desc_ring[i],
|
|
bp->rx_desc_mapping[i]);
|
|
bp->rx_desc_ring[i] = NULL;
|
|
}
|
|
vfree(bp->rx_buf_ring);
|
|
bp->rx_buf_ring = NULL;
|
|
}
|
|
|
|
static int
|
|
bnx2_alloc_mem(struct bnx2 *bp)
|
|
{
|
|
int i, status_blk_size;
|
|
|
|
bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
|
|
GFP_KERNEL);
|
|
if (bp->tx_buf_ring == NULL)
|
|
return -ENOMEM;
|
|
|
|
bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
|
|
sizeof(struct tx_bd) *
|
|
TX_DESC_CNT,
|
|
&bp->tx_desc_mapping);
|
|
if (bp->tx_desc_ring == NULL)
|
|
goto alloc_mem_err;
|
|
|
|
bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT *
|
|
bp->rx_max_ring);
|
|
if (bp->rx_buf_ring == NULL)
|
|
goto alloc_mem_err;
|
|
|
|
memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT *
|
|
bp->rx_max_ring);
|
|
|
|
for (i = 0; i < bp->rx_max_ring; i++) {
|
|
bp->rx_desc_ring[i] =
|
|
pci_alloc_consistent(bp->pdev,
|
|
sizeof(struct rx_bd) * RX_DESC_CNT,
|
|
&bp->rx_desc_mapping[i]);
|
|
if (bp->rx_desc_ring[i] == NULL)
|
|
goto alloc_mem_err;
|
|
|
|
}
|
|
|
|
/* Combine status and statistics blocks into one allocation. */
|
|
status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
|
|
bp->status_stats_size = status_blk_size +
|
|
sizeof(struct statistics_block);
|
|
|
|
bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
|
|
&bp->status_blk_mapping);
|
|
if (bp->status_blk == NULL)
|
|
goto alloc_mem_err;
|
|
|
|
memset(bp->status_blk, 0, bp->status_stats_size);
|
|
|
|
bp->stats_blk = (void *) ((unsigned long) bp->status_blk +
|
|
status_blk_size);
|
|
|
|
bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
|
|
if (bp->ctx_pages == 0)
|
|
bp->ctx_pages = 1;
|
|
for (i = 0; i < bp->ctx_pages; i++) {
|
|
bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
|
|
BCM_PAGE_SIZE,
|
|
&bp->ctx_blk_mapping[i]);
|
|
if (bp->ctx_blk[i] == NULL)
|
|
goto alloc_mem_err;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
alloc_mem_err:
|
|
bnx2_free_mem(bp);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void
|
|
bnx2_report_fw_link(struct bnx2 *bp)
|
|
{
|
|
u32 fw_link_status = 0;
|
|
|
|
if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
|
|
return;
|
|
|
|
if (bp->link_up) {
|
|
u32 bmsr;
|
|
|
|
switch (bp->line_speed) {
|
|
case SPEED_10:
|
|
if (bp->duplex == DUPLEX_HALF)
|
|
fw_link_status = BNX2_LINK_STATUS_10HALF;
|
|
else
|
|
fw_link_status = BNX2_LINK_STATUS_10FULL;
|
|
break;
|
|
case SPEED_100:
|
|
if (bp->duplex == DUPLEX_HALF)
|
|
fw_link_status = BNX2_LINK_STATUS_100HALF;
|
|
else
|
|
fw_link_status = BNX2_LINK_STATUS_100FULL;
|
|
break;
|
|
case SPEED_1000:
|
|
if (bp->duplex == DUPLEX_HALF)
|
|
fw_link_status = BNX2_LINK_STATUS_1000HALF;
|
|
else
|
|
fw_link_status = BNX2_LINK_STATUS_1000FULL;
|
|
break;
|
|
case SPEED_2500:
|
|
if (bp->duplex == DUPLEX_HALF)
|
|
fw_link_status = BNX2_LINK_STATUS_2500HALF;
|
|
else
|
|
fw_link_status = BNX2_LINK_STATUS_2500FULL;
|
|
break;
|
|
}
|
|
|
|
fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
|
|
|
|
if (bp->autoneg) {
|
|
fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
|
|
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
|
|
|
|
if (!(bmsr & BMSR_ANEGCOMPLETE) ||
|
|
bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
|
|
fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
|
|
else
|
|
fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
|
|
}
|
|
}
|
|
else
|
|
fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
|
|
|
|
REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
|
|
}
|
|
|
|
static char *
|
|
bnx2_xceiver_str(struct bnx2 *bp)
|
|
{
|
|
return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
|
|
((bp->phy_flags & PHY_SERDES_FLAG) ? "Remote Copper" :
|
|
"Copper"));
|
|
}
|
|
|
|
static void
|
|
bnx2_report_link(struct bnx2 *bp)
|
|
{
|
|
if (bp->link_up) {
|
|
netif_carrier_on(bp->dev);
|
|
printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
|
|
bnx2_xceiver_str(bp));
|
|
|
|
printk("%d Mbps ", bp->line_speed);
|
|
|
|
if (bp->duplex == DUPLEX_FULL)
|
|
printk("full duplex");
|
|
else
|
|
printk("half duplex");
|
|
|
|
if (bp->flow_ctrl) {
|
|
if (bp->flow_ctrl & FLOW_CTRL_RX) {
|
|
printk(", receive ");
|
|
if (bp->flow_ctrl & FLOW_CTRL_TX)
|
|
printk("& transmit ");
|
|
}
|
|
else {
|
|
printk(", transmit ");
|
|
}
|
|
printk("flow control ON");
|
|
}
|
|
printk("\n");
|
|
}
|
|
else {
|
|
netif_carrier_off(bp->dev);
|
|
printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
|
|
bnx2_xceiver_str(bp));
|
|
}
|
|
|
|
bnx2_report_fw_link(bp);
|
|
}
|
|
|
|
static void
|
|
bnx2_resolve_flow_ctrl(struct bnx2 *bp)
|
|
{
|
|
u32 local_adv, remote_adv;
|
|
|
|
bp->flow_ctrl = 0;
|
|
if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
|
|
(AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
|
|
|
|
if (bp->duplex == DUPLEX_FULL) {
|
|
bp->flow_ctrl = bp->req_flow_ctrl;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (bp->duplex != DUPLEX_FULL) {
|
|
return;
|
|
}
|
|
|
|
if ((bp->phy_flags & PHY_SERDES_FLAG) &&
|
|
(CHIP_NUM(bp) == CHIP_NUM_5708)) {
|
|
u32 val;
|
|
|
|
bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
|
|
if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
|
|
bp->flow_ctrl |= FLOW_CTRL_TX;
|
|
if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
|
|
bp->flow_ctrl |= FLOW_CTRL_RX;
|
|
return;
|
|
}
|
|
|
|
bnx2_read_phy(bp, bp->mii_adv, &local_adv);
|
|
bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
|
|
|
|
if (bp->phy_flags & PHY_SERDES_FLAG) {
|
|
u32 new_local_adv = 0;
|
|
u32 new_remote_adv = 0;
|
|
|
|
if (local_adv & ADVERTISE_1000XPAUSE)
|
|
new_local_adv |= ADVERTISE_PAUSE_CAP;
|
|
if (local_adv & ADVERTISE_1000XPSE_ASYM)
|
|
new_local_adv |= ADVERTISE_PAUSE_ASYM;
|
|
if (remote_adv & ADVERTISE_1000XPAUSE)
|
|
new_remote_adv |= ADVERTISE_PAUSE_CAP;
|
|
if (remote_adv & ADVERTISE_1000XPSE_ASYM)
|
|
new_remote_adv |= ADVERTISE_PAUSE_ASYM;
|
|
|
|
local_adv = new_local_adv;
|
|
remote_adv = new_remote_adv;
|
|
}
|
|
|
|
/* See Table 28B-3 of 802.3ab-1999 spec. */
|
|
if (local_adv & ADVERTISE_PAUSE_CAP) {
|
|
if(local_adv & ADVERTISE_PAUSE_ASYM) {
|
|
if (remote_adv & ADVERTISE_PAUSE_CAP) {
|
|
bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
|
|
}
|
|
else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
|
|
bp->flow_ctrl = FLOW_CTRL_RX;
|
|
}
|
|
}
|
|
else {
|
|
if (remote_adv & ADVERTISE_PAUSE_CAP) {
|
|
bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
|
|
}
|
|
}
|
|
}
|
|
else if (local_adv & ADVERTISE_PAUSE_ASYM) {
|
|
if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
|
|
(remote_adv & ADVERTISE_PAUSE_ASYM)) {
|
|
|
|
bp->flow_ctrl = FLOW_CTRL_TX;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_5709s_linkup(struct bnx2 *bp)
|
|
{
|
|
u32 val, speed;
|
|
|
|
bp->link_up = 1;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
|
|
bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
|
|
if ((bp->autoneg & AUTONEG_SPEED) == 0) {
|
|
bp->line_speed = bp->req_line_speed;
|
|
bp->duplex = bp->req_duplex;
|
|
return 0;
|
|
}
|
|
speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
|
|
switch (speed) {
|
|
case MII_BNX2_GP_TOP_AN_SPEED_10:
|
|
bp->line_speed = SPEED_10;
|
|
break;
|
|
case MII_BNX2_GP_TOP_AN_SPEED_100:
|
|
bp->line_speed = SPEED_100;
|
|
break;
|
|
case MII_BNX2_GP_TOP_AN_SPEED_1G:
|
|
case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
|
|
bp->line_speed = SPEED_1000;
|
|
break;
|
|
case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
|
|
bp->line_speed = SPEED_2500;
|
|
break;
|
|
}
|
|
if (val & MII_BNX2_GP_TOP_AN_FD)
|
|
bp->duplex = DUPLEX_FULL;
|
|
else
|
|
bp->duplex = DUPLEX_HALF;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_5708s_linkup(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
bp->link_up = 1;
|
|
bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
|
|
switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
|
|
case BCM5708S_1000X_STAT1_SPEED_10:
|
|
bp->line_speed = SPEED_10;
|
|
break;
|
|
case BCM5708S_1000X_STAT1_SPEED_100:
|
|
bp->line_speed = SPEED_100;
|
|
break;
|
|
case BCM5708S_1000X_STAT1_SPEED_1G:
|
|
bp->line_speed = SPEED_1000;
|
|
break;
|
|
case BCM5708S_1000X_STAT1_SPEED_2G5:
|
|
bp->line_speed = SPEED_2500;
|
|
break;
|
|
}
|
|
if (val & BCM5708S_1000X_STAT1_FD)
|
|
bp->duplex = DUPLEX_FULL;
|
|
else
|
|
bp->duplex = DUPLEX_HALF;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_5706s_linkup(struct bnx2 *bp)
|
|
{
|
|
u32 bmcr, local_adv, remote_adv, common;
|
|
|
|
bp->link_up = 1;
|
|
bp->line_speed = SPEED_1000;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
if (bmcr & BMCR_FULLDPLX) {
|
|
bp->duplex = DUPLEX_FULL;
|
|
}
|
|
else {
|
|
bp->duplex = DUPLEX_HALF;
|
|
}
|
|
|
|
if (!(bmcr & BMCR_ANENABLE)) {
|
|
return 0;
|
|
}
|
|
|
|
bnx2_read_phy(bp, bp->mii_adv, &local_adv);
|
|
bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
|
|
|
|
common = local_adv & remote_adv;
|
|
if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
|
|
|
|
if (common & ADVERTISE_1000XFULL) {
|
|
bp->duplex = DUPLEX_FULL;
|
|
}
|
|
else {
|
|
bp->duplex = DUPLEX_HALF;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_copper_linkup(struct bnx2 *bp)
|
|
{
|
|
u32 bmcr;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
if (bmcr & BMCR_ANENABLE) {
|
|
u32 local_adv, remote_adv, common;
|
|
|
|
bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
|
|
bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
|
|
|
|
common = local_adv & (remote_adv >> 2);
|
|
if (common & ADVERTISE_1000FULL) {
|
|
bp->line_speed = SPEED_1000;
|
|
bp->duplex = DUPLEX_FULL;
|
|
}
|
|
else if (common & ADVERTISE_1000HALF) {
|
|
bp->line_speed = SPEED_1000;
|
|
bp->duplex = DUPLEX_HALF;
|
|
}
|
|
else {
|
|
bnx2_read_phy(bp, bp->mii_adv, &local_adv);
|
|
bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
|
|
|
|
common = local_adv & remote_adv;
|
|
if (common & ADVERTISE_100FULL) {
|
|
bp->line_speed = SPEED_100;
|
|
bp->duplex = DUPLEX_FULL;
|
|
}
|
|
else if (common & ADVERTISE_100HALF) {
|
|
bp->line_speed = SPEED_100;
|
|
bp->duplex = DUPLEX_HALF;
|
|
}
|
|
else if (common & ADVERTISE_10FULL) {
|
|
bp->line_speed = SPEED_10;
|
|
bp->duplex = DUPLEX_FULL;
|
|
}
|
|
else if (common & ADVERTISE_10HALF) {
|
|
bp->line_speed = SPEED_10;
|
|
bp->duplex = DUPLEX_HALF;
|
|
}
|
|
else {
|
|
bp->line_speed = 0;
|
|
bp->link_up = 0;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (bmcr & BMCR_SPEED100) {
|
|
bp->line_speed = SPEED_100;
|
|
}
|
|
else {
|
|
bp->line_speed = SPEED_10;
|
|
}
|
|
if (bmcr & BMCR_FULLDPLX) {
|
|
bp->duplex = DUPLEX_FULL;
|
|
}
|
|
else {
|
|
bp->duplex = DUPLEX_HALF;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_mac_link(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
|
|
if (bp->link_up && (bp->line_speed == SPEED_1000) &&
|
|
(bp->duplex == DUPLEX_HALF)) {
|
|
REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
|
|
}
|
|
|
|
/* Configure the EMAC mode register. */
|
|
val = REG_RD(bp, BNX2_EMAC_MODE);
|
|
|
|
val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
|
|
BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
|
|
BNX2_EMAC_MODE_25G_MODE);
|
|
|
|
if (bp->link_up) {
|
|
switch (bp->line_speed) {
|
|
case SPEED_10:
|
|
if (CHIP_NUM(bp) != CHIP_NUM_5706) {
|
|
val |= BNX2_EMAC_MODE_PORT_MII_10M;
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case SPEED_100:
|
|
val |= BNX2_EMAC_MODE_PORT_MII;
|
|
break;
|
|
case SPEED_2500:
|
|
val |= BNX2_EMAC_MODE_25G_MODE;
|
|
/* fall through */
|
|
case SPEED_1000:
|
|
val |= BNX2_EMAC_MODE_PORT_GMII;
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
val |= BNX2_EMAC_MODE_PORT_GMII;
|
|
}
|
|
|
|
/* Set the MAC to operate in the appropriate duplex mode. */
|
|
if (bp->duplex == DUPLEX_HALF)
|
|
val |= BNX2_EMAC_MODE_HALF_DUPLEX;
|
|
REG_WR(bp, BNX2_EMAC_MODE, val);
|
|
|
|
/* Enable/disable rx PAUSE. */
|
|
bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
|
|
|
|
if (bp->flow_ctrl & FLOW_CTRL_RX)
|
|
bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
|
|
REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
|
|
|
|
/* Enable/disable tx PAUSE. */
|
|
val = REG_RD(bp, BNX2_EMAC_TX_MODE);
|
|
val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
|
|
|
|
if (bp->flow_ctrl & FLOW_CTRL_TX)
|
|
val |= BNX2_EMAC_TX_MODE_FLOW_EN;
|
|
REG_WR(bp, BNX2_EMAC_TX_MODE, val);
|
|
|
|
/* Acknowledge the interrupt. */
|
|
REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_enable_bmsr1(struct bnx2 *bp)
|
|
{
|
|
if ((bp->phy_flags & PHY_SERDES_FLAG) &&
|
|
(CHIP_NUM(bp) == CHIP_NUM_5709))
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_GP_STATUS);
|
|
}
|
|
|
|
static void
|
|
bnx2_disable_bmsr1(struct bnx2 *bp)
|
|
{
|
|
if ((bp->phy_flags & PHY_SERDES_FLAG) &&
|
|
(CHIP_NUM(bp) == CHIP_NUM_5709))
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
}
|
|
|
|
static int
|
|
bnx2_test_and_enable_2g5(struct bnx2 *bp)
|
|
{
|
|
u32 up1;
|
|
int ret = 1;
|
|
|
|
if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
|
|
return 0;
|
|
|
|
if (bp->autoneg & AUTONEG_SPEED)
|
|
bp->advertising |= ADVERTISED_2500baseX_Full;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
|
|
|
|
bnx2_read_phy(bp, bp->mii_up1, &up1);
|
|
if (!(up1 & BCM5708S_UP1_2G5)) {
|
|
up1 |= BCM5708S_UP1_2G5;
|
|
bnx2_write_phy(bp, bp->mii_up1, up1);
|
|
ret = 0;
|
|
}
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
bnx2_test_and_disable_2g5(struct bnx2 *bp)
|
|
{
|
|
u32 up1;
|
|
int ret = 0;
|
|
|
|
if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
|
|
return 0;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
|
|
|
|
bnx2_read_phy(bp, bp->mii_up1, &up1);
|
|
if (up1 & BCM5708S_UP1_2G5) {
|
|
up1 &= ~BCM5708S_UP1_2G5;
|
|
bnx2_write_phy(bp, bp->mii_up1, up1);
|
|
ret = 1;
|
|
}
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
bnx2_enable_forced_2g5(struct bnx2 *bp)
|
|
{
|
|
u32 bmcr;
|
|
|
|
if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
|
|
return;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
u32 val;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_SERDES_DIG);
|
|
bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
|
|
val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
|
|
val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
|
|
bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
|
|
} else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
bmcr |= BCM5708S_BMCR_FORCE_2500;
|
|
}
|
|
|
|
if (bp->autoneg & AUTONEG_SPEED) {
|
|
bmcr &= ~BMCR_ANENABLE;
|
|
if (bp->req_duplex == DUPLEX_FULL)
|
|
bmcr |= BMCR_FULLDPLX;
|
|
}
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
|
|
}
|
|
|
|
static void
|
|
bnx2_disable_forced_2g5(struct bnx2 *bp)
|
|
{
|
|
u32 bmcr;
|
|
|
|
if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
|
|
return;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
u32 val;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_SERDES_DIG);
|
|
bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
|
|
val &= ~MII_BNX2_SD_MISC1_FORCE;
|
|
bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
|
|
} else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
bmcr &= ~BCM5708S_BMCR_FORCE_2500;
|
|
}
|
|
|
|
if (bp->autoneg & AUTONEG_SPEED)
|
|
bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
|
|
}
|
|
|
|
static int
|
|
bnx2_set_link(struct bnx2 *bp)
|
|
{
|
|
u32 bmsr;
|
|
u8 link_up;
|
|
|
|
if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
|
|
bp->link_up = 1;
|
|
return 0;
|
|
}
|
|
|
|
if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
|
|
return 0;
|
|
|
|
link_up = bp->link_up;
|
|
|
|
bnx2_enable_bmsr1(bp);
|
|
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
|
|
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
|
|
bnx2_disable_bmsr1(bp);
|
|
|
|
if ((bp->phy_flags & PHY_SERDES_FLAG) &&
|
|
(CHIP_NUM(bp) == CHIP_NUM_5706)) {
|
|
u32 val;
|
|
|
|
val = REG_RD(bp, BNX2_EMAC_STATUS);
|
|
if (val & BNX2_EMAC_STATUS_LINK)
|
|
bmsr |= BMSR_LSTATUS;
|
|
else
|
|
bmsr &= ~BMSR_LSTATUS;
|
|
}
|
|
|
|
if (bmsr & BMSR_LSTATUS) {
|
|
bp->link_up = 1;
|
|
|
|
if (bp->phy_flags & PHY_SERDES_FLAG) {
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5706)
|
|
bnx2_5706s_linkup(bp);
|
|
else if (CHIP_NUM(bp) == CHIP_NUM_5708)
|
|
bnx2_5708s_linkup(bp);
|
|
else if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_5709s_linkup(bp);
|
|
}
|
|
else {
|
|
bnx2_copper_linkup(bp);
|
|
}
|
|
bnx2_resolve_flow_ctrl(bp);
|
|
}
|
|
else {
|
|
if ((bp->phy_flags & PHY_SERDES_FLAG) &&
|
|
(bp->autoneg & AUTONEG_SPEED))
|
|
bnx2_disable_forced_2g5(bp);
|
|
|
|
bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
|
|
bp->link_up = 0;
|
|
}
|
|
|
|
if (bp->link_up != link_up) {
|
|
bnx2_report_link(bp);
|
|
}
|
|
|
|
bnx2_set_mac_link(bp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_reset_phy(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
u32 reg;
|
|
|
|
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
|
|
|
|
#define PHY_RESET_MAX_WAIT 100
|
|
for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
|
|
udelay(10);
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, ®);
|
|
if (!(reg & BMCR_RESET)) {
|
|
udelay(20);
|
|
break;
|
|
}
|
|
}
|
|
if (i == PHY_RESET_MAX_WAIT) {
|
|
return -EBUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u32
|
|
bnx2_phy_get_pause_adv(struct bnx2 *bp)
|
|
{
|
|
u32 adv = 0;
|
|
|
|
if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
|
|
(FLOW_CTRL_RX | FLOW_CTRL_TX)) {
|
|
|
|
if (bp->phy_flags & PHY_SERDES_FLAG) {
|
|
adv = ADVERTISE_1000XPAUSE;
|
|
}
|
|
else {
|
|
adv = ADVERTISE_PAUSE_CAP;
|
|
}
|
|
}
|
|
else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
|
|
if (bp->phy_flags & PHY_SERDES_FLAG) {
|
|
adv = ADVERTISE_1000XPSE_ASYM;
|
|
}
|
|
else {
|
|
adv = ADVERTISE_PAUSE_ASYM;
|
|
}
|
|
}
|
|
else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
|
|
if (bp->phy_flags & PHY_SERDES_FLAG) {
|
|
adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
|
|
}
|
|
else {
|
|
adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
|
|
}
|
|
}
|
|
return adv;
|
|
}
|
|
|
|
static int bnx2_fw_sync(struct bnx2 *, u32, int);
|
|
|
|
static int
|
|
bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
|
|
{
|
|
u32 speed_arg = 0, pause_adv;
|
|
|
|
pause_adv = bnx2_phy_get_pause_adv(bp);
|
|
|
|
if (bp->autoneg & AUTONEG_SPEED) {
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
|
|
if (bp->advertising & ADVERTISED_10baseT_Half)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
|
|
if (bp->advertising & ADVERTISED_10baseT_Full)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
|
|
if (bp->advertising & ADVERTISED_100baseT_Half)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
|
|
if (bp->advertising & ADVERTISED_100baseT_Full)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
|
|
if (bp->advertising & ADVERTISED_1000baseT_Full)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
|
|
if (bp->advertising & ADVERTISED_2500baseX_Full)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
|
|
} else {
|
|
if (bp->req_line_speed == SPEED_2500)
|
|
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
|
|
else if (bp->req_line_speed == SPEED_1000)
|
|
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
|
|
else if (bp->req_line_speed == SPEED_100) {
|
|
if (bp->req_duplex == DUPLEX_FULL)
|
|
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
|
|
else
|
|
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
|
|
} else if (bp->req_line_speed == SPEED_10) {
|
|
if (bp->req_duplex == DUPLEX_FULL)
|
|
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
|
|
else
|
|
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
|
|
}
|
|
}
|
|
|
|
if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
|
|
if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_1000XPSE_ASYM))
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
|
|
|
|
if (port == PORT_TP)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
|
|
BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
|
|
|
|
REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB_ARG0, speed_arg);
|
|
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 0);
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
|
|
{
|
|
u32 adv, bmcr;
|
|
u32 new_adv = 0;
|
|
|
|
if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
|
|
return (bnx2_setup_remote_phy(bp, port));
|
|
|
|
if (!(bp->autoneg & AUTONEG_SPEED)) {
|
|
u32 new_bmcr;
|
|
int force_link_down = 0;
|
|
|
|
if (bp->req_line_speed == SPEED_2500) {
|
|
if (!bnx2_test_and_enable_2g5(bp))
|
|
force_link_down = 1;
|
|
} else if (bp->req_line_speed == SPEED_1000) {
|
|
if (bnx2_test_and_disable_2g5(bp))
|
|
force_link_down = 1;
|
|
}
|
|
bnx2_read_phy(bp, bp->mii_adv, &adv);
|
|
adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
new_bmcr = bmcr & ~BMCR_ANENABLE;
|
|
new_bmcr |= BMCR_SPEED1000;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
if (bp->req_line_speed == SPEED_2500)
|
|
bnx2_enable_forced_2g5(bp);
|
|
else if (bp->req_line_speed == SPEED_1000) {
|
|
bnx2_disable_forced_2g5(bp);
|
|
new_bmcr &= ~0x2000;
|
|
}
|
|
|
|
} else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
|
|
if (bp->req_line_speed == SPEED_2500)
|
|
new_bmcr |= BCM5708S_BMCR_FORCE_2500;
|
|
else
|
|
new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
|
|
}
|
|
|
|
if (bp->req_duplex == DUPLEX_FULL) {
|
|
adv |= ADVERTISE_1000XFULL;
|
|
new_bmcr |= BMCR_FULLDPLX;
|
|
}
|
|
else {
|
|
adv |= ADVERTISE_1000XHALF;
|
|
new_bmcr &= ~BMCR_FULLDPLX;
|
|
}
|
|
if ((new_bmcr != bmcr) || (force_link_down)) {
|
|
/* Force a link down visible on the other side */
|
|
if (bp->link_up) {
|
|
bnx2_write_phy(bp, bp->mii_adv, adv &
|
|
~(ADVERTISE_1000XFULL |
|
|
ADVERTISE_1000XHALF));
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
|
|
BMCR_ANRESTART | BMCR_ANENABLE);
|
|
|
|
bp->link_up = 0;
|
|
netif_carrier_off(bp->dev);
|
|
bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
|
|
bnx2_report_link(bp);
|
|
}
|
|
bnx2_write_phy(bp, bp->mii_adv, adv);
|
|
bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
|
|
} else {
|
|
bnx2_resolve_flow_ctrl(bp);
|
|
bnx2_set_mac_link(bp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bnx2_test_and_enable_2g5(bp);
|
|
|
|
if (bp->advertising & ADVERTISED_1000baseT_Full)
|
|
new_adv |= ADVERTISE_1000XFULL;
|
|
|
|
new_adv |= bnx2_phy_get_pause_adv(bp);
|
|
|
|
bnx2_read_phy(bp, bp->mii_adv, &adv);
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
|
|
bp->serdes_an_pending = 0;
|
|
if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
|
|
/* Force a link down visible on the other side */
|
|
if (bp->link_up) {
|
|
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
msleep(20);
|
|
spin_lock_bh(&bp->phy_lock);
|
|
}
|
|
|
|
bnx2_write_phy(bp, bp->mii_adv, new_adv);
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
|
|
BMCR_ANENABLE);
|
|
/* Speed up link-up time when the link partner
|
|
* does not autonegotiate which is very common
|
|
* in blade servers. Some blade servers use
|
|
* IPMI for kerboard input and it's important
|
|
* to minimize link disruptions. Autoneg. involves
|
|
* exchanging base pages plus 3 next pages and
|
|
* normally completes in about 120 msec.
|
|
*/
|
|
bp->current_interval = SERDES_AN_TIMEOUT;
|
|
bp->serdes_an_pending = 1;
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
} else {
|
|
bnx2_resolve_flow_ctrl(bp);
|
|
bnx2_set_mac_link(bp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define ETHTOOL_ALL_FIBRE_SPEED \
|
|
(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) ? \
|
|
(ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
|
|
(ADVERTISED_1000baseT_Full)
|
|
|
|
#define ETHTOOL_ALL_COPPER_SPEED \
|
|
(ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
|
|
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
|
|
ADVERTISED_1000baseT_Full)
|
|
|
|
#define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
|
|
ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
|
|
|
|
#define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
|
|
|
|
static void
|
|
bnx2_set_default_remote_link(struct bnx2 *bp)
|
|
{
|
|
u32 link;
|
|
|
|
if (bp->phy_port == PORT_TP)
|
|
link = REG_RD_IND(bp, bp->shmem_base + BNX2_RPHY_COPPER_LINK);
|
|
else
|
|
link = REG_RD_IND(bp, bp->shmem_base + BNX2_RPHY_SERDES_LINK);
|
|
|
|
if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
|
|
bp->req_line_speed = 0;
|
|
bp->autoneg |= AUTONEG_SPEED;
|
|
bp->advertising = ADVERTISED_Autoneg;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
|
|
bp->advertising |= ADVERTISED_10baseT_Half;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
|
|
bp->advertising |= ADVERTISED_10baseT_Full;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
|
|
bp->advertising |= ADVERTISED_100baseT_Half;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
|
|
bp->advertising |= ADVERTISED_100baseT_Full;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
|
|
bp->advertising |= ADVERTISED_1000baseT_Full;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
|
|
bp->advertising |= ADVERTISED_2500baseX_Full;
|
|
} else {
|
|
bp->autoneg = 0;
|
|
bp->advertising = 0;
|
|
bp->req_duplex = DUPLEX_FULL;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
|
|
bp->req_line_speed = SPEED_10;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
|
|
bp->req_duplex = DUPLEX_HALF;
|
|
}
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
|
|
bp->req_line_speed = SPEED_100;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
|
|
bp->req_duplex = DUPLEX_HALF;
|
|
}
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
|
|
bp->req_line_speed = SPEED_1000;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
|
|
bp->req_line_speed = SPEED_2500;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_set_default_link(struct bnx2 *bp)
|
|
{
|
|
if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
|
|
return bnx2_set_default_remote_link(bp);
|
|
|
|
bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
|
|
bp->req_line_speed = 0;
|
|
if (bp->phy_flags & PHY_SERDES_FLAG) {
|
|
u32 reg;
|
|
|
|
bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
|
|
|
|
reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
|
|
reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
|
|
if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
|
|
bp->autoneg = 0;
|
|
bp->req_line_speed = bp->line_speed = SPEED_1000;
|
|
bp->req_duplex = DUPLEX_FULL;
|
|
}
|
|
} else
|
|
bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
|
|
}
|
|
|
|
static void
|
|
bnx2_send_heart_beat(struct bnx2 *bp)
|
|
{
|
|
u32 msg;
|
|
u32 addr;
|
|
|
|
spin_lock(&bp->indirect_lock);
|
|
msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
|
|
addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
|
|
REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
|
|
REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
|
|
spin_unlock(&bp->indirect_lock);
|
|
}
|
|
|
|
static void
|
|
bnx2_remote_phy_event(struct bnx2 *bp)
|
|
{
|
|
u32 msg;
|
|
u8 link_up = bp->link_up;
|
|
u8 old_port;
|
|
|
|
msg = REG_RD_IND(bp, bp->shmem_base + BNX2_LINK_STATUS);
|
|
|
|
if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
|
|
bnx2_send_heart_beat(bp);
|
|
|
|
msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
|
|
|
|
if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
|
|
bp->link_up = 0;
|
|
else {
|
|
u32 speed;
|
|
|
|
bp->link_up = 1;
|
|
speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
|
|
bp->duplex = DUPLEX_FULL;
|
|
switch (speed) {
|
|
case BNX2_LINK_STATUS_10HALF:
|
|
bp->duplex = DUPLEX_HALF;
|
|
case BNX2_LINK_STATUS_10FULL:
|
|
bp->line_speed = SPEED_10;
|
|
break;
|
|
case BNX2_LINK_STATUS_100HALF:
|
|
bp->duplex = DUPLEX_HALF;
|
|
case BNX2_LINK_STATUS_100BASE_T4:
|
|
case BNX2_LINK_STATUS_100FULL:
|
|
bp->line_speed = SPEED_100;
|
|
break;
|
|
case BNX2_LINK_STATUS_1000HALF:
|
|
bp->duplex = DUPLEX_HALF;
|
|
case BNX2_LINK_STATUS_1000FULL:
|
|
bp->line_speed = SPEED_1000;
|
|
break;
|
|
case BNX2_LINK_STATUS_2500HALF:
|
|
bp->duplex = DUPLEX_HALF;
|
|
case BNX2_LINK_STATUS_2500FULL:
|
|
bp->line_speed = SPEED_2500;
|
|
break;
|
|
default:
|
|
bp->line_speed = 0;
|
|
break;
|
|
}
|
|
|
|
spin_lock(&bp->phy_lock);
|
|
bp->flow_ctrl = 0;
|
|
if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
|
|
(AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
|
|
if (bp->duplex == DUPLEX_FULL)
|
|
bp->flow_ctrl = bp->req_flow_ctrl;
|
|
} else {
|
|
if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
|
|
bp->flow_ctrl |= FLOW_CTRL_TX;
|
|
if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
|
|
bp->flow_ctrl |= FLOW_CTRL_RX;
|
|
}
|
|
|
|
old_port = bp->phy_port;
|
|
if (msg & BNX2_LINK_STATUS_SERDES_LINK)
|
|
bp->phy_port = PORT_FIBRE;
|
|
else
|
|
bp->phy_port = PORT_TP;
|
|
|
|
if (old_port != bp->phy_port)
|
|
bnx2_set_default_link(bp);
|
|
|
|
spin_unlock(&bp->phy_lock);
|
|
}
|
|
if (bp->link_up != link_up)
|
|
bnx2_report_link(bp);
|
|
|
|
bnx2_set_mac_link(bp);
|
|
}
|
|
|
|
static int
|
|
bnx2_set_remote_link(struct bnx2 *bp)
|
|
{
|
|
u32 evt_code;
|
|
|
|
evt_code = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_EVT_CODE_MB);
|
|
switch (evt_code) {
|
|
case BNX2_FW_EVT_CODE_LINK_EVENT:
|
|
bnx2_remote_phy_event(bp);
|
|
break;
|
|
case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
|
|
default:
|
|
bnx2_send_heart_beat(bp);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_setup_copper_phy(struct bnx2 *bp)
|
|
{
|
|
u32 bmcr;
|
|
u32 new_bmcr;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
|
|
if (bp->autoneg & AUTONEG_SPEED) {
|
|
u32 adv_reg, adv1000_reg;
|
|
u32 new_adv_reg = 0;
|
|
u32 new_adv1000_reg = 0;
|
|
|
|
bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
|
|
adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
|
|
ADVERTISE_PAUSE_ASYM);
|
|
|
|
bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
|
|
adv1000_reg &= PHY_ALL_1000_SPEED;
|
|
|
|
if (bp->advertising & ADVERTISED_10baseT_Half)
|
|
new_adv_reg |= ADVERTISE_10HALF;
|
|
if (bp->advertising & ADVERTISED_10baseT_Full)
|
|
new_adv_reg |= ADVERTISE_10FULL;
|
|
if (bp->advertising & ADVERTISED_100baseT_Half)
|
|
new_adv_reg |= ADVERTISE_100HALF;
|
|
if (bp->advertising & ADVERTISED_100baseT_Full)
|
|
new_adv_reg |= ADVERTISE_100FULL;
|
|
if (bp->advertising & ADVERTISED_1000baseT_Full)
|
|
new_adv1000_reg |= ADVERTISE_1000FULL;
|
|
|
|
new_adv_reg |= ADVERTISE_CSMA;
|
|
|
|
new_adv_reg |= bnx2_phy_get_pause_adv(bp);
|
|
|
|
if ((adv1000_reg != new_adv1000_reg) ||
|
|
(adv_reg != new_adv_reg) ||
|
|
((bmcr & BMCR_ANENABLE) == 0)) {
|
|
|
|
bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
|
|
bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
|
|
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
|
|
BMCR_ANENABLE);
|
|
}
|
|
else if (bp->link_up) {
|
|
/* Flow ctrl may have changed from auto to forced */
|
|
/* or vice-versa. */
|
|
|
|
bnx2_resolve_flow_ctrl(bp);
|
|
bnx2_set_mac_link(bp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
new_bmcr = 0;
|
|
if (bp->req_line_speed == SPEED_100) {
|
|
new_bmcr |= BMCR_SPEED100;
|
|
}
|
|
if (bp->req_duplex == DUPLEX_FULL) {
|
|
new_bmcr |= BMCR_FULLDPLX;
|
|
}
|
|
if (new_bmcr != bmcr) {
|
|
u32 bmsr;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
|
|
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
|
|
|
|
if (bmsr & BMSR_LSTATUS) {
|
|
/* Force link down */
|
|
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
msleep(50);
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
|
|
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
|
|
}
|
|
|
|
bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
|
|
|
|
/* Normally, the new speed is setup after the link has
|
|
* gone down and up again. In some cases, link will not go
|
|
* down so we need to set up the new speed here.
|
|
*/
|
|
if (bmsr & BMSR_LSTATUS) {
|
|
bp->line_speed = bp->req_line_speed;
|
|
bp->duplex = bp->req_duplex;
|
|
bnx2_resolve_flow_ctrl(bp);
|
|
bnx2_set_mac_link(bp);
|
|
}
|
|
} else {
|
|
bnx2_resolve_flow_ctrl(bp);
|
|
bnx2_set_mac_link(bp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_setup_phy(struct bnx2 *bp, u8 port)
|
|
{
|
|
if (bp->loopback == MAC_LOOPBACK)
|
|
return 0;
|
|
|
|
if (bp->phy_flags & PHY_SERDES_FLAG) {
|
|
return (bnx2_setup_serdes_phy(bp, port));
|
|
}
|
|
else {
|
|
return (bnx2_setup_copper_phy(bp));
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_init_5709s_phy(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
bp->mii_bmcr = MII_BMCR + 0x10;
|
|
bp->mii_bmsr = MII_BMSR + 0x10;
|
|
bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
|
|
bp->mii_adv = MII_ADVERTISE + 0x10;
|
|
bp->mii_lpa = MII_LPA + 0x10;
|
|
bp->mii_up1 = MII_BNX2_OVER1G_UP1;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
|
|
bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
bnx2_reset_phy(bp);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
|
|
|
|
bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
|
|
val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
|
|
val |= MII_BNX2_SD_1000XCTL1_FIBER;
|
|
bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
|
|
bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
|
|
if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG)
|
|
val |= BCM5708S_UP1_2G5;
|
|
else
|
|
val &= ~BCM5708S_UP1_2G5;
|
|
bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
|
|
bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
|
|
val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
|
|
bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
|
|
|
|
val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
|
|
MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
|
|
bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_5708s_phy(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
bnx2_reset_phy(bp);
|
|
|
|
bp->mii_up1 = BCM5708S_UP1;
|
|
|
|
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
|
|
bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
|
|
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
|
|
|
|
bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
|
|
val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
|
|
bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
|
|
|
|
bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
|
|
val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
|
|
bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
|
|
|
|
if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
|
|
bnx2_read_phy(bp, BCM5708S_UP1, &val);
|
|
val |= BCM5708S_UP1_2G5;
|
|
bnx2_write_phy(bp, BCM5708S_UP1, val);
|
|
}
|
|
|
|
if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5708_B0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5708_B1)) {
|
|
/* increase tx signal amplitude */
|
|
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
|
|
BCM5708S_BLK_ADDR_TX_MISC);
|
|
bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
|
|
val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
|
|
bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
|
|
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
|
|
}
|
|
|
|
val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
|
|
BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
|
|
|
|
if (val) {
|
|
u32 is_backplane;
|
|
|
|
is_backplane = REG_RD_IND(bp, bp->shmem_base +
|
|
BNX2_SHARED_HW_CFG_CONFIG);
|
|
if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
|
|
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
|
|
BCM5708S_BLK_ADDR_TX_MISC);
|
|
bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
|
|
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
|
|
BCM5708S_BLK_ADDR_DIG);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_5706s_phy(struct bnx2 *bp)
|
|
{
|
|
bnx2_reset_phy(bp);
|
|
|
|
bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5706)
|
|
REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
|
|
|
|
if (bp->dev->mtu > 1500) {
|
|
u32 val;
|
|
|
|
/* Set extended packet length bit */
|
|
bnx2_write_phy(bp, 0x18, 0x7);
|
|
bnx2_read_phy(bp, 0x18, &val);
|
|
bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
|
|
|
|
bnx2_write_phy(bp, 0x1c, 0x6c00);
|
|
bnx2_read_phy(bp, 0x1c, &val);
|
|
bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
|
|
}
|
|
else {
|
|
u32 val;
|
|
|
|
bnx2_write_phy(bp, 0x18, 0x7);
|
|
bnx2_read_phy(bp, 0x18, &val);
|
|
bnx2_write_phy(bp, 0x18, val & ~0x4007);
|
|
|
|
bnx2_write_phy(bp, 0x1c, 0x6c00);
|
|
bnx2_read_phy(bp, 0x1c, &val);
|
|
bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_copper_phy(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
bnx2_reset_phy(bp);
|
|
|
|
if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
|
|
bnx2_write_phy(bp, 0x18, 0x0c00);
|
|
bnx2_write_phy(bp, 0x17, 0x000a);
|
|
bnx2_write_phy(bp, 0x15, 0x310b);
|
|
bnx2_write_phy(bp, 0x17, 0x201f);
|
|
bnx2_write_phy(bp, 0x15, 0x9506);
|
|
bnx2_write_phy(bp, 0x17, 0x401f);
|
|
bnx2_write_phy(bp, 0x15, 0x14e2);
|
|
bnx2_write_phy(bp, 0x18, 0x0400);
|
|
}
|
|
|
|
if (bp->phy_flags & PHY_DIS_EARLY_DAC_FLAG) {
|
|
bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
|
|
MII_BNX2_DSP_EXPAND_REG | 0x8);
|
|
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
|
|
val &= ~(1 << 8);
|
|
bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
|
|
}
|
|
|
|
if (bp->dev->mtu > 1500) {
|
|
/* Set extended packet length bit */
|
|
bnx2_write_phy(bp, 0x18, 0x7);
|
|
bnx2_read_phy(bp, 0x18, &val);
|
|
bnx2_write_phy(bp, 0x18, val | 0x4000);
|
|
|
|
bnx2_read_phy(bp, 0x10, &val);
|
|
bnx2_write_phy(bp, 0x10, val | 0x1);
|
|
}
|
|
else {
|
|
bnx2_write_phy(bp, 0x18, 0x7);
|
|
bnx2_read_phy(bp, 0x18, &val);
|
|
bnx2_write_phy(bp, 0x18, val & ~0x4007);
|
|
|
|
bnx2_read_phy(bp, 0x10, &val);
|
|
bnx2_write_phy(bp, 0x10, val & ~0x1);
|
|
}
|
|
|
|
/* ethernet@wirespeed */
|
|
bnx2_write_phy(bp, 0x18, 0x7007);
|
|
bnx2_read_phy(bp, 0x18, &val);
|
|
bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
bnx2_init_phy(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
int rc = 0;
|
|
|
|
bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
|
|
bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
|
|
|
|
bp->mii_bmcr = MII_BMCR;
|
|
bp->mii_bmsr = MII_BMSR;
|
|
bp->mii_bmsr1 = MII_BMSR;
|
|
bp->mii_adv = MII_ADVERTISE;
|
|
bp->mii_lpa = MII_LPA;
|
|
|
|
REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
|
|
|
|
if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
|
|
goto setup_phy;
|
|
|
|
bnx2_read_phy(bp, MII_PHYSID1, &val);
|
|
bp->phy_id = val << 16;
|
|
bnx2_read_phy(bp, MII_PHYSID2, &val);
|
|
bp->phy_id |= val & 0xffff;
|
|
|
|
if (bp->phy_flags & PHY_SERDES_FLAG) {
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5706)
|
|
rc = bnx2_init_5706s_phy(bp);
|
|
else if (CHIP_NUM(bp) == CHIP_NUM_5708)
|
|
rc = bnx2_init_5708s_phy(bp);
|
|
else if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
rc = bnx2_init_5709s_phy(bp);
|
|
}
|
|
else {
|
|
rc = bnx2_init_copper_phy(bp);
|
|
}
|
|
|
|
setup_phy:
|
|
if (!rc)
|
|
rc = bnx2_setup_phy(bp, bp->phy_port);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_mac_loopback(struct bnx2 *bp)
|
|
{
|
|
u32 mac_mode;
|
|
|
|
mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
|
|
mac_mode &= ~BNX2_EMAC_MODE_PORT;
|
|
mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
|
|
REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
|
|
bp->link_up = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int bnx2_test_link(struct bnx2 *);
|
|
|
|
static int
|
|
bnx2_set_phy_loopback(struct bnx2 *bp)
|
|
{
|
|
u32 mac_mode;
|
|
int rc, i;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
|
|
BMCR_SPEED1000);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
if (bnx2_test_link(bp) == 0)
|
|
break;
|
|
msleep(100);
|
|
}
|
|
|
|
mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
|
|
mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
|
|
BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
|
|
BNX2_EMAC_MODE_25G_MODE);
|
|
|
|
mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
|
|
REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
|
|
bp->link_up = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
|
|
{
|
|
int i;
|
|
u32 val;
|
|
|
|
bp->fw_wr_seq++;
|
|
msg_data |= bp->fw_wr_seq;
|
|
|
|
REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
|
|
|
|
/* wait for an acknowledgement. */
|
|
for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
|
|
msleep(10);
|
|
|
|
val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
|
|
|
|
if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
|
|
break;
|
|
}
|
|
if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
|
|
return 0;
|
|
|
|
/* If we timed out, inform the firmware that this is the case. */
|
|
if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
|
|
if (!silent)
|
|
printk(KERN_ERR PFX "fw sync timeout, reset code = "
|
|
"%x\n", msg_data);
|
|
|
|
msg_data &= ~BNX2_DRV_MSG_CODE;
|
|
msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
|
|
|
|
REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_5709_context(struct bnx2 *bp)
|
|
{
|
|
int i, ret = 0;
|
|
u32 val;
|
|
|
|
val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
|
|
val |= (BCM_PAGE_BITS - 8) << 16;
|
|
REG_WR(bp, BNX2_CTX_COMMAND, val);
|
|
for (i = 0; i < 10; i++) {
|
|
val = REG_RD(bp, BNX2_CTX_COMMAND);
|
|
if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
|
|
break;
|
|
udelay(2);
|
|
}
|
|
if (val & BNX2_CTX_COMMAND_MEM_INIT)
|
|
return -EBUSY;
|
|
|
|
for (i = 0; i < bp->ctx_pages; i++) {
|
|
int j;
|
|
|
|
REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
|
|
(bp->ctx_blk_mapping[i] & 0xffffffff) |
|
|
BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
|
|
REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
|
|
(u64) bp->ctx_blk_mapping[i] >> 32);
|
|
REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
|
|
BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
|
|
for (j = 0; j < 10; j++) {
|
|
|
|
val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
|
|
if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
|
|
break;
|
|
udelay(5);
|
|
}
|
|
if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
bnx2_init_context(struct bnx2 *bp)
|
|
{
|
|
u32 vcid;
|
|
|
|
vcid = 96;
|
|
while (vcid) {
|
|
u32 vcid_addr, pcid_addr, offset;
|
|
int i;
|
|
|
|
vcid--;
|
|
|
|
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
|
|
u32 new_vcid;
|
|
|
|
vcid_addr = GET_PCID_ADDR(vcid);
|
|
if (vcid & 0x8) {
|
|
new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
|
|
}
|
|
else {
|
|
new_vcid = vcid;
|
|
}
|
|
pcid_addr = GET_PCID_ADDR(new_vcid);
|
|
}
|
|
else {
|
|
vcid_addr = GET_CID_ADDR(vcid);
|
|
pcid_addr = vcid_addr;
|
|
}
|
|
|
|
for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
|
|
vcid_addr += (i << PHY_CTX_SHIFT);
|
|
pcid_addr += (i << PHY_CTX_SHIFT);
|
|
|
|
REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
|
|
REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
|
|
|
|
/* Zero out the context. */
|
|
for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
|
|
CTX_WR(bp, 0x00, offset, 0);
|
|
|
|
REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
|
|
REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_alloc_bad_rbuf(struct bnx2 *bp)
|
|
{
|
|
u16 *good_mbuf;
|
|
u32 good_mbuf_cnt;
|
|
u32 val;
|
|
|
|
good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
|
|
if (good_mbuf == NULL) {
|
|
printk(KERN_ERR PFX "Failed to allocate memory in "
|
|
"bnx2_alloc_bad_rbuf\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
|
|
BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
|
|
|
|
good_mbuf_cnt = 0;
|
|
|
|
/* Allocate a bunch of mbufs and save the good ones in an array. */
|
|
val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
|
|
while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
|
|
REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
|
|
|
|
val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
|
|
|
|
val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
|
|
|
|
/* The addresses with Bit 9 set are bad memory blocks. */
|
|
if (!(val & (1 << 9))) {
|
|
good_mbuf[good_mbuf_cnt] = (u16) val;
|
|
good_mbuf_cnt++;
|
|
}
|
|
|
|
val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
|
|
}
|
|
|
|
/* Free the good ones back to the mbuf pool thus discarding
|
|
* all the bad ones. */
|
|
while (good_mbuf_cnt) {
|
|
good_mbuf_cnt--;
|
|
|
|
val = good_mbuf[good_mbuf_cnt];
|
|
val = (val << 9) | val | 1;
|
|
|
|
REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
|
|
}
|
|
kfree(good_mbuf);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_set_mac_addr(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
u8 *mac_addr = bp->dev->dev_addr;
|
|
|
|
val = (mac_addr[0] << 8) | mac_addr[1];
|
|
|
|
REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
|
|
|
|
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
|
|
(mac_addr[4] << 8) | mac_addr[5];
|
|
|
|
REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
|
|
}
|
|
|
|
static inline int
|
|
bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
|
|
dma_addr_t mapping;
|
|
struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
|
|
unsigned long align;
|
|
|
|
skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
|
|
if (skb == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
|
|
skb_reserve(skb, BNX2_RX_ALIGN - align);
|
|
|
|
mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
rx_buf->skb = skb;
|
|
pci_unmap_addr_set(rx_buf, mapping, mapping);
|
|
|
|
rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
|
|
rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
|
|
|
|
bp->rx_prod_bseq += bp->rx_buf_use_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_phy_event_is_set(struct bnx2 *bp, u32 event)
|
|
{
|
|
struct status_block *sblk = bp->status_blk;
|
|
u32 new_link_state, old_link_state;
|
|
int is_set = 1;
|
|
|
|
new_link_state = sblk->status_attn_bits & event;
|
|
old_link_state = sblk->status_attn_bits_ack & event;
|
|
if (new_link_state != old_link_state) {
|
|
if (new_link_state)
|
|
REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
|
|
else
|
|
REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
|
|
} else
|
|
is_set = 0;
|
|
|
|
return is_set;
|
|
}
|
|
|
|
static void
|
|
bnx2_phy_int(struct bnx2 *bp)
|
|
{
|
|
if (bnx2_phy_event_is_set(bp, STATUS_ATTN_BITS_LINK_STATE)) {
|
|
spin_lock(&bp->phy_lock);
|
|
bnx2_set_link(bp);
|
|
spin_unlock(&bp->phy_lock);
|
|
}
|
|
if (bnx2_phy_event_is_set(bp, STATUS_ATTN_BITS_TIMER_ABORT))
|
|
bnx2_set_remote_link(bp);
|
|
|
|
}
|
|
|
|
static void
|
|
bnx2_tx_int(struct bnx2 *bp)
|
|
{
|
|
struct status_block *sblk = bp->status_blk;
|
|
u16 hw_cons, sw_cons, sw_ring_cons;
|
|
int tx_free_bd = 0;
|
|
|
|
hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
|
|
if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
|
|
hw_cons++;
|
|
}
|
|
sw_cons = bp->tx_cons;
|
|
|
|
while (sw_cons != hw_cons) {
|
|
struct sw_bd *tx_buf;
|
|
struct sk_buff *skb;
|
|
int i, last;
|
|
|
|
sw_ring_cons = TX_RING_IDX(sw_cons);
|
|
|
|
tx_buf = &bp->tx_buf_ring[sw_ring_cons];
|
|
skb = tx_buf->skb;
|
|
|
|
/* partial BD completions possible with TSO packets */
|
|
if (skb_is_gso(skb)) {
|
|
u16 last_idx, last_ring_idx;
|
|
|
|
last_idx = sw_cons +
|
|
skb_shinfo(skb)->nr_frags + 1;
|
|
last_ring_idx = sw_ring_cons +
|
|
skb_shinfo(skb)->nr_frags + 1;
|
|
if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
|
|
last_idx++;
|
|
}
|
|
if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
|
|
skb_headlen(skb), PCI_DMA_TODEVICE);
|
|
|
|
tx_buf->skb = NULL;
|
|
last = skb_shinfo(skb)->nr_frags;
|
|
|
|
for (i = 0; i < last; i++) {
|
|
sw_cons = NEXT_TX_BD(sw_cons);
|
|
|
|
pci_unmap_page(bp->pdev,
|
|
pci_unmap_addr(
|
|
&bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
|
|
mapping),
|
|
skb_shinfo(skb)->frags[i].size,
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
sw_cons = NEXT_TX_BD(sw_cons);
|
|
|
|
tx_free_bd += last + 1;
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
hw_cons = bp->hw_tx_cons =
|
|
sblk->status_tx_quick_consumer_index0;
|
|
|
|
if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
|
|
hw_cons++;
|
|
}
|
|
}
|
|
|
|
bp->tx_cons = sw_cons;
|
|
/* Need to make the tx_cons update visible to bnx2_start_xmit()
|
|
* before checking for netif_queue_stopped(). Without the
|
|
* memory barrier, there is a small possibility that bnx2_start_xmit()
|
|
* will miss it and cause the queue to be stopped forever.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (unlikely(netif_queue_stopped(bp->dev)) &&
|
|
(bnx2_tx_avail(bp) > bp->tx_wake_thresh)) {
|
|
netif_tx_lock(bp->dev);
|
|
if ((netif_queue_stopped(bp->dev)) &&
|
|
(bnx2_tx_avail(bp) > bp->tx_wake_thresh))
|
|
netif_wake_queue(bp->dev);
|
|
netif_tx_unlock(bp->dev);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
|
|
u16 cons, u16 prod)
|
|
{
|
|
struct sw_bd *cons_rx_buf, *prod_rx_buf;
|
|
struct rx_bd *cons_bd, *prod_bd;
|
|
|
|
cons_rx_buf = &bp->rx_buf_ring[cons];
|
|
prod_rx_buf = &bp->rx_buf_ring[prod];
|
|
|
|
pci_dma_sync_single_for_device(bp->pdev,
|
|
pci_unmap_addr(cons_rx_buf, mapping),
|
|
bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
|
|
|
|
bp->rx_prod_bseq += bp->rx_buf_use_size;
|
|
|
|
prod_rx_buf->skb = skb;
|
|
|
|
if (cons == prod)
|
|
return;
|
|
|
|
pci_unmap_addr_set(prod_rx_buf, mapping,
|
|
pci_unmap_addr(cons_rx_buf, mapping));
|
|
|
|
cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
|
|
prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
|
|
prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
|
|
}
|
|
|
|
static int
|
|
bnx2_rx_int(struct bnx2 *bp, int budget)
|
|
{
|
|
struct status_block *sblk = bp->status_blk;
|
|
u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
|
|
struct l2_fhdr *rx_hdr;
|
|
int rx_pkt = 0;
|
|
|
|
hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
|
|
if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
|
|
hw_cons++;
|
|
}
|
|
sw_cons = bp->rx_cons;
|
|
sw_prod = bp->rx_prod;
|
|
|
|
/* Memory barrier necessary as speculative reads of the rx
|
|
* buffer can be ahead of the index in the status block
|
|
*/
|
|
rmb();
|
|
while (sw_cons != hw_cons) {
|
|
unsigned int len;
|
|
u32 status;
|
|
struct sw_bd *rx_buf;
|
|
struct sk_buff *skb;
|
|
dma_addr_t dma_addr;
|
|
|
|
sw_ring_cons = RX_RING_IDX(sw_cons);
|
|
sw_ring_prod = RX_RING_IDX(sw_prod);
|
|
|
|
rx_buf = &bp->rx_buf_ring[sw_ring_cons];
|
|
skb = rx_buf->skb;
|
|
|
|
rx_buf->skb = NULL;
|
|
|
|
dma_addr = pci_unmap_addr(rx_buf, mapping);
|
|
|
|
pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
|
|
bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
|
|
|
|
rx_hdr = (struct l2_fhdr *) skb->data;
|
|
len = rx_hdr->l2_fhdr_pkt_len - 4;
|
|
|
|
if ((status = rx_hdr->l2_fhdr_status) &
|
|
(L2_FHDR_ERRORS_BAD_CRC |
|
|
L2_FHDR_ERRORS_PHY_DECODE |
|
|
L2_FHDR_ERRORS_ALIGNMENT |
|
|
L2_FHDR_ERRORS_TOO_SHORT |
|
|
L2_FHDR_ERRORS_GIANT_FRAME)) {
|
|
|
|
goto reuse_rx;
|
|
}
|
|
|
|
/* Since we don't have a jumbo ring, copy small packets
|
|
* if mtu > 1500
|
|
*/
|
|
if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
|
|
struct sk_buff *new_skb;
|
|
|
|
new_skb = netdev_alloc_skb(bp->dev, len + 2);
|
|
if (new_skb == NULL)
|
|
goto reuse_rx;
|
|
|
|
/* aligned copy */
|
|
skb_copy_from_linear_data_offset(skb, bp->rx_offset - 2,
|
|
new_skb->data, len + 2);
|
|
skb_reserve(new_skb, 2);
|
|
skb_put(new_skb, len);
|
|
|
|
bnx2_reuse_rx_skb(bp, skb,
|
|
sw_ring_cons, sw_ring_prod);
|
|
|
|
skb = new_skb;
|
|
}
|
|
else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
|
|
pci_unmap_single(bp->pdev, dma_addr,
|
|
bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
|
|
|
|
skb_reserve(skb, bp->rx_offset);
|
|
skb_put(skb, len);
|
|
}
|
|
else {
|
|
reuse_rx:
|
|
bnx2_reuse_rx_skb(bp, skb,
|
|
sw_ring_cons, sw_ring_prod);
|
|
goto next_rx;
|
|
}
|
|
|
|
skb->protocol = eth_type_trans(skb, bp->dev);
|
|
|
|
if ((len > (bp->dev->mtu + ETH_HLEN)) &&
|
|
(ntohs(skb->protocol) != 0x8100)) {
|
|
|
|
dev_kfree_skb(skb);
|
|
goto next_rx;
|
|
|
|
}
|
|
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
if (bp->rx_csum &&
|
|
(status & (L2_FHDR_STATUS_TCP_SEGMENT |
|
|
L2_FHDR_STATUS_UDP_DATAGRAM))) {
|
|
|
|
if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
|
|
L2_FHDR_ERRORS_UDP_XSUM)) == 0))
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
|
|
#ifdef BCM_VLAN
|
|
if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
|
|
vlan_hwaccel_receive_skb(skb, bp->vlgrp,
|
|
rx_hdr->l2_fhdr_vlan_tag);
|
|
}
|
|
else
|
|
#endif
|
|
netif_receive_skb(skb);
|
|
|
|
bp->dev->last_rx = jiffies;
|
|
rx_pkt++;
|
|
|
|
next_rx:
|
|
sw_cons = NEXT_RX_BD(sw_cons);
|
|
sw_prod = NEXT_RX_BD(sw_prod);
|
|
|
|
if ((rx_pkt == budget))
|
|
break;
|
|
|
|
/* Refresh hw_cons to see if there is new work */
|
|
if (sw_cons == hw_cons) {
|
|
hw_cons = bp->hw_rx_cons =
|
|
sblk->status_rx_quick_consumer_index0;
|
|
if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
|
|
hw_cons++;
|
|
rmb();
|
|
}
|
|
}
|
|
bp->rx_cons = sw_cons;
|
|
bp->rx_prod = sw_prod;
|
|
|
|
REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
|
|
|
|
REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
|
|
|
|
mmiowb();
|
|
|
|
return rx_pkt;
|
|
|
|
}
|
|
|
|
/* MSI ISR - The only difference between this and the INTx ISR
|
|
* is that the MSI interrupt is always serviced.
|
|
*/
|
|
static irqreturn_t
|
|
bnx2_msi(int irq, void *dev_instance)
|
|
{
|
|
struct net_device *dev = dev_instance;
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
prefetch(bp->status_blk);
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
|
|
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
|
|
|
|
/* Return here if interrupt is disabled. */
|
|
if (unlikely(atomic_read(&bp->intr_sem) != 0))
|
|
return IRQ_HANDLED;
|
|
|
|
netif_rx_schedule(dev, &bp->napi);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t
|
|
bnx2_msi_1shot(int irq, void *dev_instance)
|
|
{
|
|
struct net_device *dev = dev_instance;
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
prefetch(bp->status_blk);
|
|
|
|
/* Return here if interrupt is disabled. */
|
|
if (unlikely(atomic_read(&bp->intr_sem) != 0))
|
|
return IRQ_HANDLED;
|
|
|
|
netif_rx_schedule(dev, &bp->napi);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t
|
|
bnx2_interrupt(int irq, void *dev_instance)
|
|
{
|
|
struct net_device *dev = dev_instance;
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
struct status_block *sblk = bp->status_blk;
|
|
|
|
/* When using INTx, it is possible for the interrupt to arrive
|
|
* at the CPU before the status block posted prior to the
|
|
* interrupt. Reading a register will flush the status block.
|
|
* When using MSI, the MSI message will always complete after
|
|
* the status block write.
|
|
*/
|
|
if ((sblk->status_idx == bp->last_status_idx) &&
|
|
(REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
|
|
BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
|
|
return IRQ_NONE;
|
|
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
|
|
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
|
|
|
|
/* Read back to deassert IRQ immediately to avoid too many
|
|
* spurious interrupts.
|
|
*/
|
|
REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
|
|
|
|
/* Return here if interrupt is shared and is disabled. */
|
|
if (unlikely(atomic_read(&bp->intr_sem) != 0))
|
|
return IRQ_HANDLED;
|
|
|
|
if (netif_rx_schedule_prep(dev, &bp->napi)) {
|
|
bp->last_status_idx = sblk->status_idx;
|
|
__netif_rx_schedule(dev, &bp->napi);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
|
|
STATUS_ATTN_BITS_TIMER_ABORT)
|
|
|
|
static inline int
|
|
bnx2_has_work(struct bnx2 *bp)
|
|
{
|
|
struct status_block *sblk = bp->status_blk;
|
|
|
|
if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
|
|
(sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
|
|
return 1;
|
|
|
|
if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
|
|
(sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct bnx2 *bp = container_of(napi, struct bnx2, napi);
|
|
struct net_device *dev = bp->dev;
|
|
struct status_block *sblk = bp->status_blk;
|
|
u32 status_attn_bits = sblk->status_attn_bits;
|
|
u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
|
|
int work_done = 0;
|
|
|
|
if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
|
|
(status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
|
|
|
|
bnx2_phy_int(bp);
|
|
|
|
/* This is needed to take care of transient status
|
|
* during link changes.
|
|
*/
|
|
REG_WR(bp, BNX2_HC_COMMAND,
|
|
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
|
|
REG_RD(bp, BNX2_HC_COMMAND);
|
|
}
|
|
|
|
if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
|
|
bnx2_tx_int(bp);
|
|
|
|
if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons)
|
|
work_done = bnx2_rx_int(bp, budget);
|
|
|
|
bp->last_status_idx = bp->status_blk->status_idx;
|
|
rmb();
|
|
|
|
if (!bnx2_has_work(bp)) {
|
|
netif_rx_complete(dev, napi);
|
|
if (likely(bp->flags & USING_MSI_FLAG)) {
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
|
|
bp->last_status_idx);
|
|
return 0;
|
|
}
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
|
|
BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
|
|
bp->last_status_idx);
|
|
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
|
|
bp->last_status_idx);
|
|
}
|
|
|
|
return work_done;
|
|
}
|
|
|
|
/* Called with rtnl_lock from vlan functions and also netif_tx_lock
|
|
* from set_multicast.
|
|
*/
|
|
static void
|
|
bnx2_set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
u32 rx_mode, sort_mode;
|
|
int i;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
|
|
BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
|
|
sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
|
|
#ifdef BCM_VLAN
|
|
if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
|
|
rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
|
|
#else
|
|
if (!(bp->flags & ASF_ENABLE_FLAG))
|
|
rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
|
|
#endif
|
|
if (dev->flags & IFF_PROMISC) {
|
|
/* Promiscuous mode. */
|
|
rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
|
|
sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
|
|
BNX2_RPM_SORT_USER0_PROM_VLAN;
|
|
}
|
|
else if (dev->flags & IFF_ALLMULTI) {
|
|
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
|
|
REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
|
|
0xffffffff);
|
|
}
|
|
sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
|
|
}
|
|
else {
|
|
/* Accept one or more multicast(s). */
|
|
struct dev_mc_list *mclist;
|
|
u32 mc_filter[NUM_MC_HASH_REGISTERS];
|
|
u32 regidx;
|
|
u32 bit;
|
|
u32 crc;
|
|
|
|
memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
|
|
|
|
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
|
|
i++, mclist = mclist->next) {
|
|
|
|
crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
|
|
bit = crc & 0xff;
|
|
regidx = (bit & 0xe0) >> 5;
|
|
bit &= 0x1f;
|
|
mc_filter[regidx] |= (1 << bit);
|
|
}
|
|
|
|
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
|
|
REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
|
|
mc_filter[i]);
|
|
}
|
|
|
|
sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
|
|
}
|
|
|
|
if (rx_mode != bp->rx_mode) {
|
|
bp->rx_mode = rx_mode;
|
|
REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
|
|
}
|
|
|
|
REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
|
|
REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
|
|
REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
|
|
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
}
|
|
|
|
#define FW_BUF_SIZE 0x8000
|
|
|
|
static int
|
|
bnx2_gunzip_init(struct bnx2 *bp)
|
|
{
|
|
if ((bp->gunzip_buf = vmalloc(FW_BUF_SIZE)) == NULL)
|
|
goto gunzip_nomem1;
|
|
|
|
if ((bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL)) == NULL)
|
|
goto gunzip_nomem2;
|
|
|
|
bp->strm->workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
|
|
if (bp->strm->workspace == NULL)
|
|
goto gunzip_nomem3;
|
|
|
|
return 0;
|
|
|
|
gunzip_nomem3:
|
|
kfree(bp->strm);
|
|
bp->strm = NULL;
|
|
|
|
gunzip_nomem2:
|
|
vfree(bp->gunzip_buf);
|
|
bp->gunzip_buf = NULL;
|
|
|
|
gunzip_nomem1:
|
|
printk(KERN_ERR PFX "%s: Cannot allocate firmware buffer for "
|
|
"uncompression.\n", bp->dev->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void
|
|
bnx2_gunzip_end(struct bnx2 *bp)
|
|
{
|
|
kfree(bp->strm->workspace);
|
|
|
|
kfree(bp->strm);
|
|
bp->strm = NULL;
|
|
|
|
if (bp->gunzip_buf) {
|
|
vfree(bp->gunzip_buf);
|
|
bp->gunzip_buf = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_gunzip(struct bnx2 *bp, u8 *zbuf, int len, void **outbuf, int *outlen)
|
|
{
|
|
int n, rc;
|
|
|
|
/* check gzip header */
|
|
if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED))
|
|
return -EINVAL;
|
|
|
|
n = 10;
|
|
|
|
#define FNAME 0x8
|
|
if (zbuf[3] & FNAME)
|
|
while ((zbuf[n++] != 0) && (n < len));
|
|
|
|
bp->strm->next_in = zbuf + n;
|
|
bp->strm->avail_in = len - n;
|
|
bp->strm->next_out = bp->gunzip_buf;
|
|
bp->strm->avail_out = FW_BUF_SIZE;
|
|
|
|
rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
|
|
if (rc != Z_OK)
|
|
return rc;
|
|
|
|
rc = zlib_inflate(bp->strm, Z_FINISH);
|
|
|
|
*outlen = FW_BUF_SIZE - bp->strm->avail_out;
|
|
*outbuf = bp->gunzip_buf;
|
|
|
|
if ((rc != Z_OK) && (rc != Z_STREAM_END))
|
|
printk(KERN_ERR PFX "%s: Firmware decompression error: %s\n",
|
|
bp->dev->name, bp->strm->msg);
|
|
|
|
zlib_inflateEnd(bp->strm);
|
|
|
|
if (rc == Z_STREAM_END)
|
|
return 0;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
|
|
u32 rv2p_proc)
|
|
{
|
|
int i;
|
|
u32 val;
|
|
|
|
|
|
for (i = 0; i < rv2p_code_len; i += 8) {
|
|
REG_WR(bp, BNX2_RV2P_INSTR_HIGH, cpu_to_le32(*rv2p_code));
|
|
rv2p_code++;
|
|
REG_WR(bp, BNX2_RV2P_INSTR_LOW, cpu_to_le32(*rv2p_code));
|
|
rv2p_code++;
|
|
|
|
if (rv2p_proc == RV2P_PROC1) {
|
|
val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
|
|
REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
|
|
}
|
|
else {
|
|
val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
|
|
REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
|
|
}
|
|
}
|
|
|
|
/* Reset the processor, un-stall is done later. */
|
|
if (rv2p_proc == RV2P_PROC1) {
|
|
REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
|
|
}
|
|
else {
|
|
REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
|
|
}
|
|
}
|
|
|
|
static int
|
|
load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
|
|
{
|
|
u32 offset;
|
|
u32 val;
|
|
int rc;
|
|
|
|
/* Halt the CPU. */
|
|
val = REG_RD_IND(bp, cpu_reg->mode);
|
|
val |= cpu_reg->mode_value_halt;
|
|
REG_WR_IND(bp, cpu_reg->mode, val);
|
|
REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
|
|
|
|
/* Load the Text area. */
|
|
offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
|
|
if (fw->gz_text) {
|
|
u32 text_len;
|
|
void *text;
|
|
|
|
rc = bnx2_gunzip(bp, fw->gz_text, fw->gz_text_len, &text,
|
|
&text_len);
|
|
if (rc)
|
|
return rc;
|
|
|
|
fw->text = text;
|
|
}
|
|
if (fw->gz_text) {
|
|
int j;
|
|
|
|
for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
|
|
REG_WR_IND(bp, offset, cpu_to_le32(fw->text[j]));
|
|
}
|
|
}
|
|
|
|
/* Load the Data area. */
|
|
offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
|
|
if (fw->data) {
|
|
int j;
|
|
|
|
for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
|
|
REG_WR_IND(bp, offset, fw->data[j]);
|
|
}
|
|
}
|
|
|
|
/* Load the SBSS area. */
|
|
offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
|
|
if (fw->sbss) {
|
|
int j;
|
|
|
|
for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
|
|
REG_WR_IND(bp, offset, fw->sbss[j]);
|
|
}
|
|
}
|
|
|
|
/* Load the BSS area. */
|
|
offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
|
|
if (fw->bss) {
|
|
int j;
|
|
|
|
for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
|
|
REG_WR_IND(bp, offset, fw->bss[j]);
|
|
}
|
|
}
|
|
|
|
/* Load the Read-Only area. */
|
|
offset = cpu_reg->spad_base +
|
|
(fw->rodata_addr - cpu_reg->mips_view_base);
|
|
if (fw->rodata) {
|
|
int j;
|
|
|
|
for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
|
|
REG_WR_IND(bp, offset, fw->rodata[j]);
|
|
}
|
|
}
|
|
|
|
/* Clear the pre-fetch instruction. */
|
|
REG_WR_IND(bp, cpu_reg->inst, 0);
|
|
REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
|
|
|
|
/* Start the CPU. */
|
|
val = REG_RD_IND(bp, cpu_reg->mode);
|
|
val &= ~cpu_reg->mode_value_halt;
|
|
REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
|
|
REG_WR_IND(bp, cpu_reg->mode, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_cpus(struct bnx2 *bp)
|
|
{
|
|
struct cpu_reg cpu_reg;
|
|
struct fw_info *fw;
|
|
int rc = 0;
|
|
void *text;
|
|
u32 text_len;
|
|
|
|
if ((rc = bnx2_gunzip_init(bp)) != 0)
|
|
return rc;
|
|
|
|
/* Initialize the RV2P processor. */
|
|
rc = bnx2_gunzip(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), &text,
|
|
&text_len);
|
|
if (rc)
|
|
goto init_cpu_err;
|
|
|
|
load_rv2p_fw(bp, text, text_len, RV2P_PROC1);
|
|
|
|
rc = bnx2_gunzip(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), &text,
|
|
&text_len);
|
|
if (rc)
|
|
goto init_cpu_err;
|
|
|
|
load_rv2p_fw(bp, text, text_len, RV2P_PROC2);
|
|
|
|
/* Initialize the RX Processor. */
|
|
cpu_reg.mode = BNX2_RXP_CPU_MODE;
|
|
cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
|
|
cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
|
|
cpu_reg.state = BNX2_RXP_CPU_STATE;
|
|
cpu_reg.state_value_clear = 0xffffff;
|
|
cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
|
|
cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
|
|
cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
|
|
cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
|
|
cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
|
|
cpu_reg.spad_base = BNX2_RXP_SCRATCH;
|
|
cpu_reg.mips_view_base = 0x8000000;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
fw = &bnx2_rxp_fw_09;
|
|
else
|
|
fw = &bnx2_rxp_fw_06;
|
|
|
|
rc = load_cpu_fw(bp, &cpu_reg, fw);
|
|
if (rc)
|
|
goto init_cpu_err;
|
|
|
|
/* Initialize the TX Processor. */
|
|
cpu_reg.mode = BNX2_TXP_CPU_MODE;
|
|
cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
|
|
cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
|
|
cpu_reg.state = BNX2_TXP_CPU_STATE;
|
|
cpu_reg.state_value_clear = 0xffffff;
|
|
cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
|
|
cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
|
|
cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
|
|
cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
|
|
cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
|
|
cpu_reg.spad_base = BNX2_TXP_SCRATCH;
|
|
cpu_reg.mips_view_base = 0x8000000;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
fw = &bnx2_txp_fw_09;
|
|
else
|
|
fw = &bnx2_txp_fw_06;
|
|
|
|
rc = load_cpu_fw(bp, &cpu_reg, fw);
|
|
if (rc)
|
|
goto init_cpu_err;
|
|
|
|
/* Initialize the TX Patch-up Processor. */
|
|
cpu_reg.mode = BNX2_TPAT_CPU_MODE;
|
|
cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
|
|
cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
|
|
cpu_reg.state = BNX2_TPAT_CPU_STATE;
|
|
cpu_reg.state_value_clear = 0xffffff;
|
|
cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
|
|
cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
|
|
cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
|
|
cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
|
|
cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
|
|
cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
|
|
cpu_reg.mips_view_base = 0x8000000;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
fw = &bnx2_tpat_fw_09;
|
|
else
|
|
fw = &bnx2_tpat_fw_06;
|
|
|
|
rc = load_cpu_fw(bp, &cpu_reg, fw);
|
|
if (rc)
|
|
goto init_cpu_err;
|
|
|
|
/* Initialize the Completion Processor. */
|
|
cpu_reg.mode = BNX2_COM_CPU_MODE;
|
|
cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
|
|
cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
|
|
cpu_reg.state = BNX2_COM_CPU_STATE;
|
|
cpu_reg.state_value_clear = 0xffffff;
|
|
cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
|
|
cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
|
|
cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
|
|
cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
|
|
cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
|
|
cpu_reg.spad_base = BNX2_COM_SCRATCH;
|
|
cpu_reg.mips_view_base = 0x8000000;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
fw = &bnx2_com_fw_09;
|
|
else
|
|
fw = &bnx2_com_fw_06;
|
|
|
|
rc = load_cpu_fw(bp, &cpu_reg, fw);
|
|
if (rc)
|
|
goto init_cpu_err;
|
|
|
|
/* Initialize the Command Processor. */
|
|
cpu_reg.mode = BNX2_CP_CPU_MODE;
|
|
cpu_reg.mode_value_halt = BNX2_CP_CPU_MODE_SOFT_HALT;
|
|
cpu_reg.mode_value_sstep = BNX2_CP_CPU_MODE_STEP_ENA;
|
|
cpu_reg.state = BNX2_CP_CPU_STATE;
|
|
cpu_reg.state_value_clear = 0xffffff;
|
|
cpu_reg.gpr0 = BNX2_CP_CPU_REG_FILE;
|
|
cpu_reg.evmask = BNX2_CP_CPU_EVENT_MASK;
|
|
cpu_reg.pc = BNX2_CP_CPU_PROGRAM_COUNTER;
|
|
cpu_reg.inst = BNX2_CP_CPU_INSTRUCTION;
|
|
cpu_reg.bp = BNX2_CP_CPU_HW_BREAKPOINT;
|
|
cpu_reg.spad_base = BNX2_CP_SCRATCH;
|
|
cpu_reg.mips_view_base = 0x8000000;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
fw = &bnx2_cp_fw_09;
|
|
|
|
rc = load_cpu_fw(bp, &cpu_reg, fw);
|
|
if (rc)
|
|
goto init_cpu_err;
|
|
}
|
|
init_cpu_err:
|
|
bnx2_gunzip_end(bp);
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
|
|
{
|
|
u16 pmcsr;
|
|
|
|
pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
|
|
switch (state) {
|
|
case PCI_D0: {
|
|
u32 val;
|
|
|
|
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
|
|
(pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
|
|
PCI_PM_CTRL_PME_STATUS);
|
|
|
|
if (pmcsr & PCI_PM_CTRL_STATE_MASK)
|
|
/* delay required during transition out of D3hot */
|
|
msleep(20);
|
|
|
|
val = REG_RD(bp, BNX2_EMAC_MODE);
|
|
val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
|
|
val &= ~BNX2_EMAC_MODE_MPKT;
|
|
REG_WR(bp, BNX2_EMAC_MODE, val);
|
|
|
|
val = REG_RD(bp, BNX2_RPM_CONFIG);
|
|
val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
|
|
REG_WR(bp, BNX2_RPM_CONFIG, val);
|
|
break;
|
|
}
|
|
case PCI_D3hot: {
|
|
int i;
|
|
u32 val, wol_msg;
|
|
|
|
if (bp->wol) {
|
|
u32 advertising;
|
|
u8 autoneg;
|
|
|
|
autoneg = bp->autoneg;
|
|
advertising = bp->advertising;
|
|
|
|
bp->autoneg = AUTONEG_SPEED;
|
|
bp->advertising = ADVERTISED_10baseT_Half |
|
|
ADVERTISED_10baseT_Full |
|
|
ADVERTISED_100baseT_Half |
|
|
ADVERTISED_100baseT_Full |
|
|
ADVERTISED_Autoneg;
|
|
|
|
bnx2_setup_copper_phy(bp);
|
|
|
|
bp->autoneg = autoneg;
|
|
bp->advertising = advertising;
|
|
|
|
bnx2_set_mac_addr(bp);
|
|
|
|
val = REG_RD(bp, BNX2_EMAC_MODE);
|
|
|
|
/* Enable port mode. */
|
|
val &= ~BNX2_EMAC_MODE_PORT;
|
|
val |= BNX2_EMAC_MODE_PORT_MII |
|
|
BNX2_EMAC_MODE_MPKT_RCVD |
|
|
BNX2_EMAC_MODE_ACPI_RCVD |
|
|
BNX2_EMAC_MODE_MPKT;
|
|
|
|
REG_WR(bp, BNX2_EMAC_MODE, val);
|
|
|
|
/* receive all multicast */
|
|
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
|
|
REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
|
|
0xffffffff);
|
|
}
|
|
REG_WR(bp, BNX2_EMAC_RX_MODE,
|
|
BNX2_EMAC_RX_MODE_SORT_MODE);
|
|
|
|
val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
|
|
BNX2_RPM_SORT_USER0_MC_EN;
|
|
REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
|
|
REG_WR(bp, BNX2_RPM_SORT_USER0, val);
|
|
REG_WR(bp, BNX2_RPM_SORT_USER0, val |
|
|
BNX2_RPM_SORT_USER0_ENA);
|
|
|
|
/* Need to enable EMAC and RPM for WOL. */
|
|
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
|
|
BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
|
|
BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
|
|
BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
|
|
|
|
val = REG_RD(bp, BNX2_RPM_CONFIG);
|
|
val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
|
|
REG_WR(bp, BNX2_RPM_CONFIG, val);
|
|
|
|
wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
|
|
}
|
|
else {
|
|
wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
|
|
}
|
|
|
|
if (!(bp->flags & NO_WOL_FLAG))
|
|
bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
|
|
|
|
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
|
|
if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5706_A1)) {
|
|
|
|
if (bp->wol)
|
|
pmcsr |= 3;
|
|
}
|
|
else {
|
|
pmcsr |= 3;
|
|
}
|
|
if (bp->wol) {
|
|
pmcsr |= PCI_PM_CTRL_PME_ENABLE;
|
|
}
|
|
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
|
|
pmcsr);
|
|
|
|
/* No more memory access after this point until
|
|
* device is brought back to D0.
|
|
*/
|
|
udelay(50);
|
|
break;
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_acquire_nvram_lock(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
int j;
|
|
|
|
/* Request access to the flash interface. */
|
|
REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
val = REG_RD(bp, BNX2_NVM_SW_ARB);
|
|
if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
|
|
break;
|
|
|
|
udelay(5);
|
|
}
|
|
|
|
if (j >= NVRAM_TIMEOUT_COUNT)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_release_nvram_lock(struct bnx2 *bp)
|
|
{
|
|
int j;
|
|
u32 val;
|
|
|
|
/* Relinquish nvram interface. */
|
|
REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
|
|
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
val = REG_RD(bp, BNX2_NVM_SW_ARB);
|
|
if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
|
|
break;
|
|
|
|
udelay(5);
|
|
}
|
|
|
|
if (j >= NVRAM_TIMEOUT_COUNT)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
bnx2_enable_nvram_write(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
val = REG_RD(bp, BNX2_MISC_CFG);
|
|
REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
|
|
|
|
if (bp->flash_info->flags & BNX2_NV_WREN) {
|
|
int j;
|
|
|
|
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
|
|
REG_WR(bp, BNX2_NVM_COMMAND,
|
|
BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
|
|
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
udelay(5);
|
|
|
|
val = REG_RD(bp, BNX2_NVM_COMMAND);
|
|
if (val & BNX2_NVM_COMMAND_DONE)
|
|
break;
|
|
}
|
|
|
|
if (j >= NVRAM_TIMEOUT_COUNT)
|
|
return -EBUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_disable_nvram_write(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
val = REG_RD(bp, BNX2_MISC_CFG);
|
|
REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
|
|
}
|
|
|
|
|
|
static void
|
|
bnx2_enable_nvram_access(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
|
|
/* Enable both bits, even on read. */
|
|
REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
|
|
val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
|
|
}
|
|
|
|
static void
|
|
bnx2_disable_nvram_access(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
|
|
/* Disable both bits, even after read. */
|
|
REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
|
|
val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
|
|
BNX2_NVM_ACCESS_ENABLE_WR_EN));
|
|
}
|
|
|
|
static int
|
|
bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
|
|
{
|
|
u32 cmd;
|
|
int j;
|
|
|
|
if (bp->flash_info->flags & BNX2_NV_BUFFERED)
|
|
/* Buffered flash, no erase needed */
|
|
return 0;
|
|
|
|
/* Build an erase command */
|
|
cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
|
|
BNX2_NVM_COMMAND_DOIT;
|
|
|
|
/* Need to clear DONE bit separately. */
|
|
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
|
|
|
|
/* Address of the NVRAM to read from. */
|
|
REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
|
|
|
|
/* Issue an erase command. */
|
|
REG_WR(bp, BNX2_NVM_COMMAND, cmd);
|
|
|
|
/* Wait for completion. */
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
u32 val;
|
|
|
|
udelay(5);
|
|
|
|
val = REG_RD(bp, BNX2_NVM_COMMAND);
|
|
if (val & BNX2_NVM_COMMAND_DONE)
|
|
break;
|
|
}
|
|
|
|
if (j >= NVRAM_TIMEOUT_COUNT)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
|
|
{
|
|
u32 cmd;
|
|
int j;
|
|
|
|
/* Build the command word. */
|
|
cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
|
|
|
|
/* Calculate an offset of a buffered flash, not needed for 5709. */
|
|
if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
|
|
offset = ((offset / bp->flash_info->page_size) <<
|
|
bp->flash_info->page_bits) +
|
|
(offset % bp->flash_info->page_size);
|
|
}
|
|
|
|
/* Need to clear DONE bit separately. */
|
|
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
|
|
|
|
/* Address of the NVRAM to read from. */
|
|
REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
|
|
|
|
/* Issue a read command. */
|
|
REG_WR(bp, BNX2_NVM_COMMAND, cmd);
|
|
|
|
/* Wait for completion. */
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
u32 val;
|
|
|
|
udelay(5);
|
|
|
|
val = REG_RD(bp, BNX2_NVM_COMMAND);
|
|
if (val & BNX2_NVM_COMMAND_DONE) {
|
|
val = REG_RD(bp, BNX2_NVM_READ);
|
|
|
|
val = be32_to_cpu(val);
|
|
memcpy(ret_val, &val, 4);
|
|
break;
|
|
}
|
|
}
|
|
if (j >= NVRAM_TIMEOUT_COUNT)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
|
|
{
|
|
u32 cmd, val32;
|
|
int j;
|
|
|
|
/* Build the command word. */
|
|
cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
|
|
|
|
/* Calculate an offset of a buffered flash, not needed for 5709. */
|
|
if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
|
|
offset = ((offset / bp->flash_info->page_size) <<
|
|
bp->flash_info->page_bits) +
|
|
(offset % bp->flash_info->page_size);
|
|
}
|
|
|
|
/* Need to clear DONE bit separately. */
|
|
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
|
|
|
|
memcpy(&val32, val, 4);
|
|
val32 = cpu_to_be32(val32);
|
|
|
|
/* Write the data. */
|
|
REG_WR(bp, BNX2_NVM_WRITE, val32);
|
|
|
|
/* Address of the NVRAM to write to. */
|
|
REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
|
|
|
|
/* Issue the write command. */
|
|
REG_WR(bp, BNX2_NVM_COMMAND, cmd);
|
|
|
|
/* Wait for completion. */
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
udelay(5);
|
|
|
|
if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
|
|
break;
|
|
}
|
|
if (j >= NVRAM_TIMEOUT_COUNT)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_nvram(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
int j, entry_count, rc = 0;
|
|
struct flash_spec *flash;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
bp->flash_info = &flash_5709;
|
|
goto get_flash_size;
|
|
}
|
|
|
|
/* Determine the selected interface. */
|
|
val = REG_RD(bp, BNX2_NVM_CFG1);
|
|
|
|
entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
|
|
|
|
if (val & 0x40000000) {
|
|
|
|
/* Flash interface has been reconfigured */
|
|
for (j = 0, flash = &flash_table[0]; j < entry_count;
|
|
j++, flash++) {
|
|
if ((val & FLASH_BACKUP_STRAP_MASK) ==
|
|
(flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
|
|
bp->flash_info = flash;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
u32 mask;
|
|
/* Not yet been reconfigured */
|
|
|
|
if (val & (1 << 23))
|
|
mask = FLASH_BACKUP_STRAP_MASK;
|
|
else
|
|
mask = FLASH_STRAP_MASK;
|
|
|
|
for (j = 0, flash = &flash_table[0]; j < entry_count;
|
|
j++, flash++) {
|
|
|
|
if ((val & mask) == (flash->strapping & mask)) {
|
|
bp->flash_info = flash;
|
|
|
|
/* Request access to the flash interface. */
|
|
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
|
|
return rc;
|
|
|
|
/* Enable access to flash interface */
|
|
bnx2_enable_nvram_access(bp);
|
|
|
|
/* Reconfigure the flash interface */
|
|
REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
|
|
REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
|
|
REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
|
|
REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
|
|
|
|
/* Disable access to flash interface */
|
|
bnx2_disable_nvram_access(bp);
|
|
bnx2_release_nvram_lock(bp);
|
|
|
|
break;
|
|
}
|
|
}
|
|
} /* if (val & 0x40000000) */
|
|
|
|
if (j == entry_count) {
|
|
bp->flash_info = NULL;
|
|
printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
get_flash_size:
|
|
val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
|
|
val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
|
|
if (val)
|
|
bp->flash_size = val;
|
|
else
|
|
bp->flash_size = bp->flash_info->total_size;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
|
|
int buf_size)
|
|
{
|
|
int rc = 0;
|
|
u32 cmd_flags, offset32, len32, extra;
|
|
|
|
if (buf_size == 0)
|
|
return 0;
|
|
|
|
/* Request access to the flash interface. */
|
|
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
|
|
return rc;
|
|
|
|
/* Enable access to flash interface */
|
|
bnx2_enable_nvram_access(bp);
|
|
|
|
len32 = buf_size;
|
|
offset32 = offset;
|
|
extra = 0;
|
|
|
|
cmd_flags = 0;
|
|
|
|
if (offset32 & 3) {
|
|
u8 buf[4];
|
|
u32 pre_len;
|
|
|
|
offset32 &= ~3;
|
|
pre_len = 4 - (offset & 3);
|
|
|
|
if (pre_len >= len32) {
|
|
pre_len = len32;
|
|
cmd_flags = BNX2_NVM_COMMAND_FIRST |
|
|
BNX2_NVM_COMMAND_LAST;
|
|
}
|
|
else {
|
|
cmd_flags = BNX2_NVM_COMMAND_FIRST;
|
|
}
|
|
|
|
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
memcpy(ret_buf, buf + (offset & 3), pre_len);
|
|
|
|
offset32 += 4;
|
|
ret_buf += pre_len;
|
|
len32 -= pre_len;
|
|
}
|
|
if (len32 & 3) {
|
|
extra = 4 - (len32 & 3);
|
|
len32 = (len32 + 4) & ~3;
|
|
}
|
|
|
|
if (len32 == 4) {
|
|
u8 buf[4];
|
|
|
|
if (cmd_flags)
|
|
cmd_flags = BNX2_NVM_COMMAND_LAST;
|
|
else
|
|
cmd_flags = BNX2_NVM_COMMAND_FIRST |
|
|
BNX2_NVM_COMMAND_LAST;
|
|
|
|
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
|
|
|
|
memcpy(ret_buf, buf, 4 - extra);
|
|
}
|
|
else if (len32 > 0) {
|
|
u8 buf[4];
|
|
|
|
/* Read the first word. */
|
|
if (cmd_flags)
|
|
cmd_flags = 0;
|
|
else
|
|
cmd_flags = BNX2_NVM_COMMAND_FIRST;
|
|
|
|
rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
|
|
|
|
/* Advance to the next dword. */
|
|
offset32 += 4;
|
|
ret_buf += 4;
|
|
len32 -= 4;
|
|
|
|
while (len32 > 4 && rc == 0) {
|
|
rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
|
|
|
|
/* Advance to the next dword. */
|
|
offset32 += 4;
|
|
ret_buf += 4;
|
|
len32 -= 4;
|
|
}
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
cmd_flags = BNX2_NVM_COMMAND_LAST;
|
|
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
|
|
|
|
memcpy(ret_buf, buf, 4 - extra);
|
|
}
|
|
|
|
/* Disable access to flash interface */
|
|
bnx2_disable_nvram_access(bp);
|
|
|
|
bnx2_release_nvram_lock(bp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
|
|
int buf_size)
|
|
{
|
|
u32 written, offset32, len32;
|
|
u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
|
|
int rc = 0;
|
|
int align_start, align_end;
|
|
|
|
buf = data_buf;
|
|
offset32 = offset;
|
|
len32 = buf_size;
|
|
align_start = align_end = 0;
|
|
|
|
if ((align_start = (offset32 & 3))) {
|
|
offset32 &= ~3;
|
|
len32 += align_start;
|
|
if (len32 < 4)
|
|
len32 = 4;
|
|
if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
|
|
return rc;
|
|
}
|
|
|
|
if (len32 & 3) {
|
|
align_end = 4 - (len32 & 3);
|
|
len32 += align_end;
|
|
if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
|
|
return rc;
|
|
}
|
|
|
|
if (align_start || align_end) {
|
|
align_buf = kmalloc(len32, GFP_KERNEL);
|
|
if (align_buf == NULL)
|
|
return -ENOMEM;
|
|
if (align_start) {
|
|
memcpy(align_buf, start, 4);
|
|
}
|
|
if (align_end) {
|
|
memcpy(align_buf + len32 - 4, end, 4);
|
|
}
|
|
memcpy(align_buf + align_start, data_buf, buf_size);
|
|
buf = align_buf;
|
|
}
|
|
|
|
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
|
|
flash_buffer = kmalloc(264, GFP_KERNEL);
|
|
if (flash_buffer == NULL) {
|
|
rc = -ENOMEM;
|
|
goto nvram_write_end;
|
|
}
|
|
}
|
|
|
|
written = 0;
|
|
while ((written < len32) && (rc == 0)) {
|
|
u32 page_start, page_end, data_start, data_end;
|
|
u32 addr, cmd_flags;
|
|
int i;
|
|
|
|
/* Find the page_start addr */
|
|
page_start = offset32 + written;
|
|
page_start -= (page_start % bp->flash_info->page_size);
|
|
/* Find the page_end addr */
|
|
page_end = page_start + bp->flash_info->page_size;
|
|
/* Find the data_start addr */
|
|
data_start = (written == 0) ? offset32 : page_start;
|
|
/* Find the data_end addr */
|
|
data_end = (page_end > offset32 + len32) ?
|
|
(offset32 + len32) : page_end;
|
|
|
|
/* Request access to the flash interface. */
|
|
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
|
|
goto nvram_write_end;
|
|
|
|
/* Enable access to flash interface */
|
|
bnx2_enable_nvram_access(bp);
|
|
|
|
cmd_flags = BNX2_NVM_COMMAND_FIRST;
|
|
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
|
|
int j;
|
|
|
|
/* Read the whole page into the buffer
|
|
* (non-buffer flash only) */
|
|
for (j = 0; j < bp->flash_info->page_size; j += 4) {
|
|
if (j == (bp->flash_info->page_size - 4)) {
|
|
cmd_flags |= BNX2_NVM_COMMAND_LAST;
|
|
}
|
|
rc = bnx2_nvram_read_dword(bp,
|
|
page_start + j,
|
|
&flash_buffer[j],
|
|
cmd_flags);
|
|
|
|
if (rc)
|
|
goto nvram_write_end;
|
|
|
|
cmd_flags = 0;
|
|
}
|
|
}
|
|
|
|
/* Enable writes to flash interface (unlock write-protect) */
|
|
if ((rc = bnx2_enable_nvram_write(bp)) != 0)
|
|
goto nvram_write_end;
|
|
|
|
/* Loop to write back the buffer data from page_start to
|
|
* data_start */
|
|
i = 0;
|
|
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
|
|
/* Erase the page */
|
|
if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
|
|
goto nvram_write_end;
|
|
|
|
/* Re-enable the write again for the actual write */
|
|
bnx2_enable_nvram_write(bp);
|
|
|
|
for (addr = page_start; addr < data_start;
|
|
addr += 4, i += 4) {
|
|
|
|
rc = bnx2_nvram_write_dword(bp, addr,
|
|
&flash_buffer[i], cmd_flags);
|
|
|
|
if (rc != 0)
|
|
goto nvram_write_end;
|
|
|
|
cmd_flags = 0;
|
|
}
|
|
}
|
|
|
|
/* Loop to write the new data from data_start to data_end */
|
|
for (addr = data_start; addr < data_end; addr += 4, i += 4) {
|
|
if ((addr == page_end - 4) ||
|
|
((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
|
|
(addr == data_end - 4))) {
|
|
|
|
cmd_flags |= BNX2_NVM_COMMAND_LAST;
|
|
}
|
|
rc = bnx2_nvram_write_dword(bp, addr, buf,
|
|
cmd_flags);
|
|
|
|
if (rc != 0)
|
|
goto nvram_write_end;
|
|
|
|
cmd_flags = 0;
|
|
buf += 4;
|
|
}
|
|
|
|
/* Loop to write back the buffer data from data_end
|
|
* to page_end */
|
|
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
|
|
for (addr = data_end; addr < page_end;
|
|
addr += 4, i += 4) {
|
|
|
|
if (addr == page_end-4) {
|
|
cmd_flags = BNX2_NVM_COMMAND_LAST;
|
|
}
|
|
rc = bnx2_nvram_write_dword(bp, addr,
|
|
&flash_buffer[i], cmd_flags);
|
|
|
|
if (rc != 0)
|
|
goto nvram_write_end;
|
|
|
|
cmd_flags = 0;
|
|
}
|
|
}
|
|
|
|
/* Disable writes to flash interface (lock write-protect) */
|
|
bnx2_disable_nvram_write(bp);
|
|
|
|
/* Disable access to flash interface */
|
|
bnx2_disable_nvram_access(bp);
|
|
bnx2_release_nvram_lock(bp);
|
|
|
|
/* Increment written */
|
|
written += data_end - data_start;
|
|
}
|
|
|
|
nvram_write_end:
|
|
kfree(flash_buffer);
|
|
kfree(align_buf);
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
bnx2_init_remote_phy(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
bp->phy_flags &= ~REMOTE_PHY_CAP_FLAG;
|
|
if (!(bp->phy_flags & PHY_SERDES_FLAG))
|
|
return;
|
|
|
|
val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_CAP_MB);
|
|
if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
|
|
return;
|
|
|
|
if (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE) {
|
|
if (netif_running(bp->dev)) {
|
|
val = BNX2_DRV_ACK_CAP_SIGNATURE |
|
|
BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
|
|
REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_ACK_CAP_MB,
|
|
val);
|
|
}
|
|
bp->phy_flags |= REMOTE_PHY_CAP_FLAG;
|
|
|
|
val = REG_RD_IND(bp, bp->shmem_base + BNX2_LINK_STATUS);
|
|
if (val & BNX2_LINK_STATUS_SERDES_LINK)
|
|
bp->phy_port = PORT_FIBRE;
|
|
else
|
|
bp->phy_port = PORT_TP;
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
|
|
{
|
|
u32 val;
|
|
int i, rc = 0;
|
|
|
|
/* Wait for the current PCI transaction to complete before
|
|
* issuing a reset. */
|
|
REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
|
|
BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
|
|
BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
|
|
BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
|
|
BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
|
|
val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
|
|
udelay(5);
|
|
|
|
/* Wait for the firmware to tell us it is ok to issue a reset. */
|
|
bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
|
|
|
|
/* Deposit a driver reset signature so the firmware knows that
|
|
* this is a soft reset. */
|
|
REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
|
|
BNX2_DRV_RESET_SIGNATURE_MAGIC);
|
|
|
|
/* Do a dummy read to force the chip to complete all current transaction
|
|
* before we issue a reset. */
|
|
val = REG_RD(bp, BNX2_MISC_ID);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
|
|
REG_RD(bp, BNX2_MISC_COMMAND);
|
|
udelay(5);
|
|
|
|
val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
|
|
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
|
|
|
|
pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
|
|
|
|
} else {
|
|
val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
|
|
BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
|
|
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
|
|
|
|
/* Chip reset. */
|
|
REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
|
|
|
|
/* Reading back any register after chip reset will hang the
|
|
* bus on 5706 A0 and A1. The msleep below provides plenty
|
|
* of margin for write posting.
|
|
*/
|
|
if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5706_A1))
|
|
msleep(20);
|
|
|
|
/* Reset takes approximate 30 usec */
|
|
for (i = 0; i < 10; i++) {
|
|
val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
|
|
if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
|
|
BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
|
|
break;
|
|
udelay(10);
|
|
}
|
|
|
|
if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
|
|
BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
|
|
printk(KERN_ERR PFX "Chip reset did not complete\n");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
/* Make sure byte swapping is properly configured. */
|
|
val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
|
|
if (val != 0x01020304) {
|
|
printk(KERN_ERR PFX "Chip not in correct endian mode\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Wait for the firmware to finish its initialization. */
|
|
rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
|
|
if (rc)
|
|
return rc;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
bnx2_init_remote_phy(bp);
|
|
if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
|
|
bnx2_set_default_remote_link(bp);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
|
|
/* Adjust the voltage regular to two steps lower. The default
|
|
* of this register is 0x0000000e. */
|
|
REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
|
|
|
|
/* Remove bad rbuf memory from the free pool. */
|
|
rc = bnx2_alloc_bad_rbuf(bp);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_chip(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
int rc;
|
|
|
|
/* Make sure the interrupt is not active. */
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
|
|
|
|
val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
|
|
BNX2_DMA_CONFIG_DATA_WORD_SWAP |
|
|
#ifdef __BIG_ENDIAN
|
|
BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
|
|
#endif
|
|
BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
|
|
DMA_READ_CHANS << 12 |
|
|
DMA_WRITE_CHANS << 16;
|
|
|
|
val |= (0x2 << 20) | (1 << 11);
|
|
|
|
if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
|
|
val |= (1 << 23);
|
|
|
|
if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
|
|
(CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
|
|
val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
|
|
|
|
REG_WR(bp, BNX2_DMA_CONFIG, val);
|
|
|
|
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
|
|
val = REG_RD(bp, BNX2_TDMA_CONFIG);
|
|
val |= BNX2_TDMA_CONFIG_ONE_DMA;
|
|
REG_WR(bp, BNX2_TDMA_CONFIG, val);
|
|
}
|
|
|
|
if (bp->flags & PCIX_FLAG) {
|
|
u16 val16;
|
|
|
|
pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
|
|
&val16);
|
|
pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
|
|
val16 & ~PCI_X_CMD_ERO);
|
|
}
|
|
|
|
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
|
|
BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
|
|
BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
|
|
BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
|
|
|
|
/* Initialize context mapping and zero out the quick contexts. The
|
|
* context block must have already been enabled. */
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
rc = bnx2_init_5709_context(bp);
|
|
if (rc)
|
|
return rc;
|
|
} else
|
|
bnx2_init_context(bp);
|
|
|
|
if ((rc = bnx2_init_cpus(bp)) != 0)
|
|
return rc;
|
|
|
|
bnx2_init_nvram(bp);
|
|
|
|
bnx2_set_mac_addr(bp);
|
|
|
|
val = REG_RD(bp, BNX2_MQ_CONFIG);
|
|
val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
|
|
val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
|
|
if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
|
|
val |= BNX2_MQ_CONFIG_HALT_DIS;
|
|
|
|
REG_WR(bp, BNX2_MQ_CONFIG, val);
|
|
|
|
val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
|
|
REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
|
|
REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
|
|
|
|
val = (BCM_PAGE_BITS - 8) << 24;
|
|
REG_WR(bp, BNX2_RV2P_CONFIG, val);
|
|
|
|
/* Configure page size. */
|
|
val = REG_RD(bp, BNX2_TBDR_CONFIG);
|
|
val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
|
|
val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
|
|
REG_WR(bp, BNX2_TBDR_CONFIG, val);
|
|
|
|
val = bp->mac_addr[0] +
|
|
(bp->mac_addr[1] << 8) +
|
|
(bp->mac_addr[2] << 16) +
|
|
bp->mac_addr[3] +
|
|
(bp->mac_addr[4] << 8) +
|
|
(bp->mac_addr[5] << 16);
|
|
REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
|
|
|
|
/* Program the MTU. Also include 4 bytes for CRC32. */
|
|
val = bp->dev->mtu + ETH_HLEN + 4;
|
|
if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
|
|
val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
|
|
REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
|
|
|
|
bp->last_status_idx = 0;
|
|
bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
|
|
|
|
/* Set up how to generate a link change interrupt. */
|
|
REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
|
|
|
|
REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
|
|
(u64) bp->status_blk_mapping & 0xffffffff);
|
|
REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
|
|
|
|
REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
|
|
(u64) bp->stats_blk_mapping & 0xffffffff);
|
|
REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
|
|
(u64) bp->stats_blk_mapping >> 32);
|
|
|
|
REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
|
|
(bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
|
|
|
|
REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
|
|
(bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
|
|
|
|
REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
|
|
(bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
|
|
|
|
REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
|
|
|
|
REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
|
|
|
|
REG_WR(bp, BNX2_HC_COM_TICKS,
|
|
(bp->com_ticks_int << 16) | bp->com_ticks);
|
|
|
|
REG_WR(bp, BNX2_HC_CMD_TICKS,
|
|
(bp->cmd_ticks_int << 16) | bp->cmd_ticks);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5708)
|
|
REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
|
|
else
|
|
REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
|
|
REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
|
|
|
|
if (CHIP_ID(bp) == CHIP_ID_5706_A1)
|
|
val = BNX2_HC_CONFIG_COLLECT_STATS;
|
|
else {
|
|
val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
|
|
BNX2_HC_CONFIG_COLLECT_STATS;
|
|
}
|
|
|
|
if (bp->flags & ONE_SHOT_MSI_FLAG)
|
|
val |= BNX2_HC_CONFIG_ONE_SHOT;
|
|
|
|
REG_WR(bp, BNX2_HC_CONFIG, val);
|
|
|
|
/* Clear internal stats counters. */
|
|
REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
|
|
|
|
REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
|
|
|
|
/* Initialize the receive filter. */
|
|
bnx2_set_rx_mode(bp->dev);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
|
|
val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
|
|
REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
|
|
}
|
|
rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
|
|
0);
|
|
|
|
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
|
|
REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
|
|
|
|
udelay(20);
|
|
|
|
bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
bnx2_init_tx_context(struct bnx2 *bp, u32 cid)
|
|
{
|
|
u32 val, offset0, offset1, offset2, offset3;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
offset0 = BNX2_L2CTX_TYPE_XI;
|
|
offset1 = BNX2_L2CTX_CMD_TYPE_XI;
|
|
offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
|
|
offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
|
|
} else {
|
|
offset0 = BNX2_L2CTX_TYPE;
|
|
offset1 = BNX2_L2CTX_CMD_TYPE;
|
|
offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
|
|
offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
|
|
}
|
|
val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
|
|
CTX_WR(bp, GET_CID_ADDR(cid), offset0, val);
|
|
|
|
val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
|
|
CTX_WR(bp, GET_CID_ADDR(cid), offset1, val);
|
|
|
|
val = (u64) bp->tx_desc_mapping >> 32;
|
|
CTX_WR(bp, GET_CID_ADDR(cid), offset2, val);
|
|
|
|
val = (u64) bp->tx_desc_mapping & 0xffffffff;
|
|
CTX_WR(bp, GET_CID_ADDR(cid), offset3, val);
|
|
}
|
|
|
|
static void
|
|
bnx2_init_tx_ring(struct bnx2 *bp)
|
|
{
|
|
struct tx_bd *txbd;
|
|
u32 cid;
|
|
|
|
bp->tx_wake_thresh = bp->tx_ring_size / 2;
|
|
|
|
txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
|
|
|
|
txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
|
|
txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
|
|
|
|
bp->tx_prod = 0;
|
|
bp->tx_cons = 0;
|
|
bp->hw_tx_cons = 0;
|
|
bp->tx_prod_bseq = 0;
|
|
|
|
cid = TX_CID;
|
|
bp->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
|
|
bp->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
|
|
|
|
bnx2_init_tx_context(bp, cid);
|
|
}
|
|
|
|
static void
|
|
bnx2_init_rx_ring(struct bnx2 *bp)
|
|
{
|
|
struct rx_bd *rxbd;
|
|
int i;
|
|
u16 prod, ring_prod;
|
|
u32 val;
|
|
|
|
/* 8 for CRC and VLAN */
|
|
bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
|
|
/* hw alignment */
|
|
bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
|
|
|
|
ring_prod = prod = bp->rx_prod = 0;
|
|
bp->rx_cons = 0;
|
|
bp->hw_rx_cons = 0;
|
|
bp->rx_prod_bseq = 0;
|
|
|
|
for (i = 0; i < bp->rx_max_ring; i++) {
|
|
int j;
|
|
|
|
rxbd = &bp->rx_desc_ring[i][0];
|
|
for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
|
|
rxbd->rx_bd_len = bp->rx_buf_use_size;
|
|
rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
|
|
}
|
|
if (i == (bp->rx_max_ring - 1))
|
|
j = 0;
|
|
else
|
|
j = i + 1;
|
|
rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32;
|
|
rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] &
|
|
0xffffffff;
|
|
}
|
|
|
|
val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
|
|
val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
|
|
val |= 0x02 << 8;
|
|
CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
|
|
|
|
val = (u64) bp->rx_desc_mapping[0] >> 32;
|
|
CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
|
|
|
|
val = (u64) bp->rx_desc_mapping[0] & 0xffffffff;
|
|
CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
|
|
|
|
for (i = 0; i < bp->rx_ring_size; i++) {
|
|
if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
|
|
break;
|
|
}
|
|
prod = NEXT_RX_BD(prod);
|
|
ring_prod = RX_RING_IDX(prod);
|
|
}
|
|
bp->rx_prod = prod;
|
|
|
|
REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
|
|
|
|
REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
|
|
}
|
|
|
|
static void
|
|
bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
|
|
{
|
|
u32 num_rings, max;
|
|
|
|
bp->rx_ring_size = size;
|
|
num_rings = 1;
|
|
while (size > MAX_RX_DESC_CNT) {
|
|
size -= MAX_RX_DESC_CNT;
|
|
num_rings++;
|
|
}
|
|
/* round to next power of 2 */
|
|
max = MAX_RX_RINGS;
|
|
while ((max & num_rings) == 0)
|
|
max >>= 1;
|
|
|
|
if (num_rings != max)
|
|
max <<= 1;
|
|
|
|
bp->rx_max_ring = max;
|
|
bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
|
|
}
|
|
|
|
static void
|
|
bnx2_free_tx_skbs(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
if (bp->tx_buf_ring == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < TX_DESC_CNT; ) {
|
|
struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
|
|
struct sk_buff *skb = tx_buf->skb;
|
|
int j, last;
|
|
|
|
if (skb == NULL) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
|
|
skb_headlen(skb), PCI_DMA_TODEVICE);
|
|
|
|
tx_buf->skb = NULL;
|
|
|
|
last = skb_shinfo(skb)->nr_frags;
|
|
for (j = 0; j < last; j++) {
|
|
tx_buf = &bp->tx_buf_ring[i + j + 1];
|
|
pci_unmap_page(bp->pdev,
|
|
pci_unmap_addr(tx_buf, mapping),
|
|
skb_shinfo(skb)->frags[j].size,
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
dev_kfree_skb(skb);
|
|
i += j + 1;
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
bnx2_free_rx_skbs(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
if (bp->rx_buf_ring == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < bp->rx_max_ring_idx; i++) {
|
|
struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
|
|
struct sk_buff *skb = rx_buf->skb;
|
|
|
|
if (skb == NULL)
|
|
continue;
|
|
|
|
pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
|
|
bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
|
|
|
|
rx_buf->skb = NULL;
|
|
|
|
dev_kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_free_skbs(struct bnx2 *bp)
|
|
{
|
|
bnx2_free_tx_skbs(bp);
|
|
bnx2_free_rx_skbs(bp);
|
|
}
|
|
|
|
static int
|
|
bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
|
|
{
|
|
int rc;
|
|
|
|
rc = bnx2_reset_chip(bp, reset_code);
|
|
bnx2_free_skbs(bp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if ((rc = bnx2_init_chip(bp)) != 0)
|
|
return rc;
|
|
|
|
bnx2_init_tx_ring(bp);
|
|
bnx2_init_rx_ring(bp);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_nic(struct bnx2 *bp)
|
|
{
|
|
int rc;
|
|
|
|
if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
|
|
return rc;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
bnx2_init_phy(bp);
|
|
bnx2_set_link(bp);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_test_registers(struct bnx2 *bp)
|
|
{
|
|
int ret;
|
|
int i, is_5709;
|
|
static const struct {
|
|
u16 offset;
|
|
u16 flags;
|
|
#define BNX2_FL_NOT_5709 1
|
|
u32 rw_mask;
|
|
u32 ro_mask;
|
|
} reg_tbl[] = {
|
|
{ 0x006c, 0, 0x00000000, 0x0000003f },
|
|
{ 0x0090, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x0094, 0, 0x00000000, 0x00000000 },
|
|
|
|
{ 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
|
|
{ 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
|
|
{ 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
|
|
{ 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
|
|
{ 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
|
|
{ 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
|
|
{ 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
|
|
{ 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
|
|
{ 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
|
|
|
|
{ 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
|
|
{ 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
|
|
{ 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
|
|
{ 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
|
|
{ 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
|
|
{ 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
|
|
|
|
{ 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
|
|
{ 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
|
|
{ 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
|
|
|
|
{ 0x1000, 0, 0x00000000, 0x00000001 },
|
|
{ 0x1004, 0, 0x00000000, 0x000f0001 },
|
|
|
|
{ 0x1408, 0, 0x01c00800, 0x00000000 },
|
|
{ 0x149c, 0, 0x8000ffff, 0x00000000 },
|
|
{ 0x14a8, 0, 0x00000000, 0x000001ff },
|
|
{ 0x14ac, 0, 0x0fffffff, 0x10000000 },
|
|
{ 0x14b0, 0, 0x00000002, 0x00000001 },
|
|
{ 0x14b8, 0, 0x00000000, 0x00000000 },
|
|
{ 0x14c0, 0, 0x00000000, 0x00000009 },
|
|
{ 0x14c4, 0, 0x00003fff, 0x00000000 },
|
|
{ 0x14cc, 0, 0x00000000, 0x00000001 },
|
|
{ 0x14d0, 0, 0xffffffff, 0x00000000 },
|
|
|
|
{ 0x1800, 0, 0x00000000, 0x00000001 },
|
|
{ 0x1804, 0, 0x00000000, 0x00000003 },
|
|
|
|
{ 0x2800, 0, 0x00000000, 0x00000001 },
|
|
{ 0x2804, 0, 0x00000000, 0x00003f01 },
|
|
{ 0x2808, 0, 0x0f3f3f03, 0x00000000 },
|
|
{ 0x2810, 0, 0xffff0000, 0x00000000 },
|
|
{ 0x2814, 0, 0xffff0000, 0x00000000 },
|
|
{ 0x2818, 0, 0xffff0000, 0x00000000 },
|
|
{ 0x281c, 0, 0xffff0000, 0x00000000 },
|
|
{ 0x2834, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x2840, 0, 0x00000000, 0xffffffff },
|
|
{ 0x2844, 0, 0x00000000, 0xffffffff },
|
|
{ 0x2848, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x284c, 0, 0xf800f800, 0x07ff07ff },
|
|
|
|
{ 0x2c00, 0, 0x00000000, 0x00000011 },
|
|
{ 0x2c04, 0, 0x00000000, 0x00030007 },
|
|
|
|
{ 0x3c00, 0, 0x00000000, 0x00000001 },
|
|
{ 0x3c04, 0, 0x00000000, 0x00070000 },
|
|
{ 0x3c08, 0, 0x00007f71, 0x07f00000 },
|
|
{ 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
|
|
{ 0x3c10, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x3c14, 0, 0x00000000, 0xffffffff },
|
|
{ 0x3c18, 0, 0x00000000, 0xffffffff },
|
|
{ 0x3c1c, 0, 0xfffff000, 0x00000000 },
|
|
{ 0x3c20, 0, 0xffffff00, 0x00000000 },
|
|
|
|
{ 0x5004, 0, 0x00000000, 0x0000007f },
|
|
{ 0x5008, 0, 0x0f0007ff, 0x00000000 },
|
|
|
|
{ 0x5c00, 0, 0x00000000, 0x00000001 },
|
|
{ 0x5c04, 0, 0x00000000, 0x0003000f },
|
|
{ 0x5c08, 0, 0x00000003, 0x00000000 },
|
|
{ 0x5c0c, 0, 0x0000fff8, 0x00000000 },
|
|
{ 0x5c10, 0, 0x00000000, 0xffffffff },
|
|
{ 0x5c80, 0, 0x00000000, 0x0f7113f1 },
|
|
{ 0x5c84, 0, 0x00000000, 0x0000f333 },
|
|
{ 0x5c88, 0, 0x00000000, 0x00077373 },
|
|
{ 0x5c8c, 0, 0x00000000, 0x0007f737 },
|
|
|
|
{ 0x6808, 0, 0x0000ff7f, 0x00000000 },
|
|
{ 0x680c, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x6810, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x6814, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x6818, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x681c, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x6820, 0, 0x00ff00ff, 0x00000000 },
|
|
{ 0x6824, 0, 0x00ff00ff, 0x00000000 },
|
|
{ 0x6828, 0, 0x00ff00ff, 0x00000000 },
|
|
{ 0x682c, 0, 0x03ff03ff, 0x00000000 },
|
|
{ 0x6830, 0, 0x03ff03ff, 0x00000000 },
|
|
{ 0x6834, 0, 0x03ff03ff, 0x00000000 },
|
|
{ 0x6838, 0, 0x03ff03ff, 0x00000000 },
|
|
{ 0x683c, 0, 0x0000ffff, 0x00000000 },
|
|
{ 0x6840, 0, 0x00000ff0, 0x00000000 },
|
|
{ 0x6844, 0, 0x00ffff00, 0x00000000 },
|
|
{ 0x684c, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
|
|
{ 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
|
|
{ 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
|
|
{ 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
|
|
{ 0x6908, 0, 0x00000000, 0x0001ff0f },
|
|
{ 0x690c, 0, 0x00000000, 0x0ffe00f0 },
|
|
|
|
{ 0xffff, 0, 0x00000000, 0x00000000 },
|
|
};
|
|
|
|
ret = 0;
|
|
is_5709 = 0;
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
is_5709 = 1;
|
|
|
|
for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
|
|
u32 offset, rw_mask, ro_mask, save_val, val;
|
|
u16 flags = reg_tbl[i].flags;
|
|
|
|
if (is_5709 && (flags & BNX2_FL_NOT_5709))
|
|
continue;
|
|
|
|
offset = (u32) reg_tbl[i].offset;
|
|
rw_mask = reg_tbl[i].rw_mask;
|
|
ro_mask = reg_tbl[i].ro_mask;
|
|
|
|
save_val = readl(bp->regview + offset);
|
|
|
|
writel(0, bp->regview + offset);
|
|
|
|
val = readl(bp->regview + offset);
|
|
if ((val & rw_mask) != 0) {
|
|
goto reg_test_err;
|
|
}
|
|
|
|
if ((val & ro_mask) != (save_val & ro_mask)) {
|
|
goto reg_test_err;
|
|
}
|
|
|
|
writel(0xffffffff, bp->regview + offset);
|
|
|
|
val = readl(bp->regview + offset);
|
|
if ((val & rw_mask) != rw_mask) {
|
|
goto reg_test_err;
|
|
}
|
|
|
|
if ((val & ro_mask) != (save_val & ro_mask)) {
|
|
goto reg_test_err;
|
|
}
|
|
|
|
writel(save_val, bp->regview + offset);
|
|
continue;
|
|
|
|
reg_test_err:
|
|
writel(save_val, bp->regview + offset);
|
|
ret = -ENODEV;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
|
|
{
|
|
static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
|
|
0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
|
|
int i;
|
|
|
|
for (i = 0; i < sizeof(test_pattern) / 4; i++) {
|
|
u32 offset;
|
|
|
|
for (offset = 0; offset < size; offset += 4) {
|
|
|
|
REG_WR_IND(bp, start + offset, test_pattern[i]);
|
|
|
|
if (REG_RD_IND(bp, start + offset) !=
|
|
test_pattern[i]) {
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_test_memory(struct bnx2 *bp)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
static struct mem_entry {
|
|
u32 offset;
|
|
u32 len;
|
|
} mem_tbl_5706[] = {
|
|
{ 0x60000, 0x4000 },
|
|
{ 0xa0000, 0x3000 },
|
|
{ 0xe0000, 0x4000 },
|
|
{ 0x120000, 0x4000 },
|
|
{ 0x1a0000, 0x4000 },
|
|
{ 0x160000, 0x4000 },
|
|
{ 0xffffffff, 0 },
|
|
},
|
|
mem_tbl_5709[] = {
|
|
{ 0x60000, 0x4000 },
|
|
{ 0xa0000, 0x3000 },
|
|
{ 0xe0000, 0x4000 },
|
|
{ 0x120000, 0x4000 },
|
|
{ 0x1a0000, 0x4000 },
|
|
{ 0xffffffff, 0 },
|
|
};
|
|
struct mem_entry *mem_tbl;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
mem_tbl = mem_tbl_5709;
|
|
else
|
|
mem_tbl = mem_tbl_5706;
|
|
|
|
for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
|
|
if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
|
|
mem_tbl[i].len)) != 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define BNX2_MAC_LOOPBACK 0
|
|
#define BNX2_PHY_LOOPBACK 1
|
|
|
|
static int
|
|
bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
|
|
{
|
|
unsigned int pkt_size, num_pkts, i;
|
|
struct sk_buff *skb, *rx_skb;
|
|
unsigned char *packet;
|
|
u16 rx_start_idx, rx_idx;
|
|
dma_addr_t map;
|
|
struct tx_bd *txbd;
|
|
struct sw_bd *rx_buf;
|
|
struct l2_fhdr *rx_hdr;
|
|
int ret = -ENODEV;
|
|
|
|
if (loopback_mode == BNX2_MAC_LOOPBACK) {
|
|
bp->loopback = MAC_LOOPBACK;
|
|
bnx2_set_mac_loopback(bp);
|
|
}
|
|
else if (loopback_mode == BNX2_PHY_LOOPBACK) {
|
|
bp->loopback = PHY_LOOPBACK;
|
|
bnx2_set_phy_loopback(bp);
|
|
}
|
|
else
|
|
return -EINVAL;
|
|
|
|
pkt_size = 1514;
|
|
skb = netdev_alloc_skb(bp->dev, pkt_size);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
packet = skb_put(skb, pkt_size);
|
|
memcpy(packet, bp->dev->dev_addr, 6);
|
|
memset(packet + 6, 0x0, 8);
|
|
for (i = 14; i < pkt_size; i++)
|
|
packet[i] = (unsigned char) (i & 0xff);
|
|
|
|
map = pci_map_single(bp->pdev, skb->data, pkt_size,
|
|
PCI_DMA_TODEVICE);
|
|
|
|
REG_WR(bp, BNX2_HC_COMMAND,
|
|
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
|
|
|
|
REG_RD(bp, BNX2_HC_COMMAND);
|
|
|
|
udelay(5);
|
|
rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
|
|
|
|
num_pkts = 0;
|
|
|
|
txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
|
|
|
|
txbd->tx_bd_haddr_hi = (u64) map >> 32;
|
|
txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
|
|
txbd->tx_bd_mss_nbytes = pkt_size;
|
|
txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
|
|
|
|
num_pkts++;
|
|
bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
|
|
bp->tx_prod_bseq += pkt_size;
|
|
|
|
REG_WR16(bp, bp->tx_bidx_addr, bp->tx_prod);
|
|
REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
|
|
|
|
udelay(100);
|
|
|
|
REG_WR(bp, BNX2_HC_COMMAND,
|
|
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
|
|
|
|
REG_RD(bp, BNX2_HC_COMMAND);
|
|
|
|
udelay(5);
|
|
|
|
pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
|
|
dev_kfree_skb(skb);
|
|
|
|
if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) {
|
|
goto loopback_test_done;
|
|
}
|
|
|
|
rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
|
|
if (rx_idx != rx_start_idx + num_pkts) {
|
|
goto loopback_test_done;
|
|
}
|
|
|
|
rx_buf = &bp->rx_buf_ring[rx_start_idx];
|
|
rx_skb = rx_buf->skb;
|
|
|
|
rx_hdr = (struct l2_fhdr *) rx_skb->data;
|
|
skb_reserve(rx_skb, bp->rx_offset);
|
|
|
|
pci_dma_sync_single_for_cpu(bp->pdev,
|
|
pci_unmap_addr(rx_buf, mapping),
|
|
bp->rx_buf_size, PCI_DMA_FROMDEVICE);
|
|
|
|
if (rx_hdr->l2_fhdr_status &
|
|
(L2_FHDR_ERRORS_BAD_CRC |
|
|
L2_FHDR_ERRORS_PHY_DECODE |
|
|
L2_FHDR_ERRORS_ALIGNMENT |
|
|
L2_FHDR_ERRORS_TOO_SHORT |
|
|
L2_FHDR_ERRORS_GIANT_FRAME)) {
|
|
|
|
goto loopback_test_done;
|
|
}
|
|
|
|
if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
|
|
goto loopback_test_done;
|
|
}
|
|
|
|
for (i = 14; i < pkt_size; i++) {
|
|
if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
|
|
goto loopback_test_done;
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
loopback_test_done:
|
|
bp->loopback = 0;
|
|
return ret;
|
|
}
|
|
|
|
#define BNX2_MAC_LOOPBACK_FAILED 1
|
|
#define BNX2_PHY_LOOPBACK_FAILED 2
|
|
#define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
|
|
BNX2_PHY_LOOPBACK_FAILED)
|
|
|
|
static int
|
|
bnx2_test_loopback(struct bnx2 *bp)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (!netif_running(bp->dev))
|
|
return BNX2_LOOPBACK_FAILED;
|
|
|
|
bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
|
|
spin_lock_bh(&bp->phy_lock);
|
|
bnx2_init_phy(bp);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
|
|
rc |= BNX2_MAC_LOOPBACK_FAILED;
|
|
if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
|
|
rc |= BNX2_PHY_LOOPBACK_FAILED;
|
|
return rc;
|
|
}
|
|
|
|
#define NVRAM_SIZE 0x200
|
|
#define CRC32_RESIDUAL 0xdebb20e3
|
|
|
|
static int
|
|
bnx2_test_nvram(struct bnx2 *bp)
|
|
{
|
|
u32 buf[NVRAM_SIZE / 4];
|
|
u8 *data = (u8 *) buf;
|
|
int rc = 0;
|
|
u32 magic, csum;
|
|
|
|
if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
|
|
goto test_nvram_done;
|
|
|
|
magic = be32_to_cpu(buf[0]);
|
|
if (magic != 0x669955aa) {
|
|
rc = -ENODEV;
|
|
goto test_nvram_done;
|
|
}
|
|
|
|
if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
|
|
goto test_nvram_done;
|
|
|
|
csum = ether_crc_le(0x100, data);
|
|
if (csum != CRC32_RESIDUAL) {
|
|
rc = -ENODEV;
|
|
goto test_nvram_done;
|
|
}
|
|
|
|
csum = ether_crc_le(0x100, data + 0x100);
|
|
if (csum != CRC32_RESIDUAL) {
|
|
rc = -ENODEV;
|
|
}
|
|
|
|
test_nvram_done:
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_test_link(struct bnx2 *bp)
|
|
{
|
|
u32 bmsr;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
bnx2_enable_bmsr1(bp);
|
|
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
|
|
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
|
|
bnx2_disable_bmsr1(bp);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
if (bmsr & BMSR_LSTATUS) {
|
|
return 0;
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int
|
|
bnx2_test_intr(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
u16 status_idx;
|
|
|
|
if (!netif_running(bp->dev))
|
|
return -ENODEV;
|
|
|
|
status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
|
|
|
|
/* This register is not touched during run-time. */
|
|
REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
|
|
REG_RD(bp, BNX2_HC_COMMAND);
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
|
|
status_idx) {
|
|
|
|
break;
|
|
}
|
|
|
|
msleep_interruptible(10);
|
|
}
|
|
if (i < 10)
|
|
return 0;
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static void
|
|
bnx2_5706_serdes_timer(struct bnx2 *bp)
|
|
{
|
|
spin_lock(&bp->phy_lock);
|
|
if (bp->serdes_an_pending)
|
|
bp->serdes_an_pending--;
|
|
else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
|
|
u32 bmcr;
|
|
|
|
bp->current_interval = bp->timer_interval;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
|
|
if (bmcr & BMCR_ANENABLE) {
|
|
u32 phy1, phy2;
|
|
|
|
bnx2_write_phy(bp, 0x1c, 0x7c00);
|
|
bnx2_read_phy(bp, 0x1c, &phy1);
|
|
|
|
bnx2_write_phy(bp, 0x17, 0x0f01);
|
|
bnx2_read_phy(bp, 0x15, &phy2);
|
|
bnx2_write_phy(bp, 0x17, 0x0f01);
|
|
bnx2_read_phy(bp, 0x15, &phy2);
|
|
|
|
if ((phy1 & 0x10) && /* SIGNAL DETECT */
|
|
!(phy2 & 0x20)) { /* no CONFIG */
|
|
|
|
bmcr &= ~BMCR_ANENABLE;
|
|
bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
|
|
bp->phy_flags |= PHY_PARALLEL_DETECT_FLAG;
|
|
}
|
|
}
|
|
}
|
|
else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
|
|
(bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
|
|
u32 phy2;
|
|
|
|
bnx2_write_phy(bp, 0x17, 0x0f01);
|
|
bnx2_read_phy(bp, 0x15, &phy2);
|
|
if (phy2 & 0x20) {
|
|
u32 bmcr;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
bmcr |= BMCR_ANENABLE;
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
|
|
|
|
bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
|
|
}
|
|
} else
|
|
bp->current_interval = bp->timer_interval;
|
|
|
|
spin_unlock(&bp->phy_lock);
|
|
}
|
|
|
|
static void
|
|
bnx2_5708_serdes_timer(struct bnx2 *bp)
|
|
{
|
|
if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
|
|
return;
|
|
|
|
if ((bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) == 0) {
|
|
bp->serdes_an_pending = 0;
|
|
return;
|
|
}
|
|
|
|
spin_lock(&bp->phy_lock);
|
|
if (bp->serdes_an_pending)
|
|
bp->serdes_an_pending--;
|
|
else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
|
|
u32 bmcr;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
if (bmcr & BMCR_ANENABLE) {
|
|
bnx2_enable_forced_2g5(bp);
|
|
bp->current_interval = SERDES_FORCED_TIMEOUT;
|
|
} else {
|
|
bnx2_disable_forced_2g5(bp);
|
|
bp->serdes_an_pending = 2;
|
|
bp->current_interval = bp->timer_interval;
|
|
}
|
|
|
|
} else
|
|
bp->current_interval = bp->timer_interval;
|
|
|
|
spin_unlock(&bp->phy_lock);
|
|
}
|
|
|
|
static void
|
|
bnx2_timer(unsigned long data)
|
|
{
|
|
struct bnx2 *bp = (struct bnx2 *) data;
|
|
|
|
if (!netif_running(bp->dev))
|
|
return;
|
|
|
|
if (atomic_read(&bp->intr_sem) != 0)
|
|
goto bnx2_restart_timer;
|
|
|
|
bnx2_send_heart_beat(bp);
|
|
|
|
bp->stats_blk->stat_FwRxDrop = REG_RD_IND(bp, BNX2_FW_RX_DROP_COUNT);
|
|
|
|
/* workaround occasional corrupted counters */
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
|
|
REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
|
|
BNX2_HC_COMMAND_STATS_NOW);
|
|
|
|
if (bp->phy_flags & PHY_SERDES_FLAG) {
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5706)
|
|
bnx2_5706_serdes_timer(bp);
|
|
else
|
|
bnx2_5708_serdes_timer(bp);
|
|
}
|
|
|
|
bnx2_restart_timer:
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
}
|
|
|
|
static int
|
|
bnx2_request_irq(struct bnx2 *bp)
|
|
{
|
|
struct net_device *dev = bp->dev;
|
|
int rc = 0;
|
|
|
|
if (bp->flags & USING_MSI_FLAG) {
|
|
irq_handler_t fn = bnx2_msi;
|
|
|
|
if (bp->flags & ONE_SHOT_MSI_FLAG)
|
|
fn = bnx2_msi_1shot;
|
|
|
|
rc = request_irq(bp->pdev->irq, fn, 0, dev->name, dev);
|
|
} else
|
|
rc = request_irq(bp->pdev->irq, bnx2_interrupt,
|
|
IRQF_SHARED, dev->name, dev);
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
bnx2_free_irq(struct bnx2 *bp)
|
|
{
|
|
struct net_device *dev = bp->dev;
|
|
|
|
if (bp->flags & USING_MSI_FLAG) {
|
|
free_irq(bp->pdev->irq, dev);
|
|
pci_disable_msi(bp->pdev);
|
|
bp->flags &= ~(USING_MSI_FLAG | ONE_SHOT_MSI_FLAG);
|
|
} else
|
|
free_irq(bp->pdev->irq, dev);
|
|
}
|
|
|
|
/* Called with rtnl_lock */
|
|
static int
|
|
bnx2_open(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int rc;
|
|
|
|
netif_carrier_off(dev);
|
|
|
|
bnx2_set_power_state(bp, PCI_D0);
|
|
bnx2_disable_int(bp);
|
|
|
|
rc = bnx2_alloc_mem(bp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
napi_enable(&bp->napi);
|
|
|
|
if ((bp->flags & MSI_CAP_FLAG) && !disable_msi) {
|
|
if (pci_enable_msi(bp->pdev) == 0) {
|
|
bp->flags |= USING_MSI_FLAG;
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bp->flags |= ONE_SHOT_MSI_FLAG;
|
|
}
|
|
}
|
|
rc = bnx2_request_irq(bp);
|
|
|
|
if (rc) {
|
|
napi_disable(&bp->napi);
|
|
bnx2_free_mem(bp);
|
|
return rc;
|
|
}
|
|
|
|
rc = bnx2_init_nic(bp);
|
|
|
|
if (rc) {
|
|
napi_disable(&bp->napi);
|
|
bnx2_free_irq(bp);
|
|
bnx2_free_skbs(bp);
|
|
bnx2_free_mem(bp);
|
|
return rc;
|
|
}
|
|
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
|
|
atomic_set(&bp->intr_sem, 0);
|
|
|
|
bnx2_enable_int(bp);
|
|
|
|
if (bp->flags & USING_MSI_FLAG) {
|
|
/* Test MSI to make sure it is working
|
|
* If MSI test fails, go back to INTx mode
|
|
*/
|
|
if (bnx2_test_intr(bp) != 0) {
|
|
printk(KERN_WARNING PFX "%s: No interrupt was generated"
|
|
" using MSI, switching to INTx mode. Please"
|
|
" report this failure to the PCI maintainer"
|
|
" and include system chipset information.\n",
|
|
bp->dev->name);
|
|
|
|
bnx2_disable_int(bp);
|
|
bnx2_free_irq(bp);
|
|
|
|
rc = bnx2_init_nic(bp);
|
|
|
|
if (!rc)
|
|
rc = bnx2_request_irq(bp);
|
|
|
|
if (rc) {
|
|
napi_disable(&bp->napi);
|
|
bnx2_free_skbs(bp);
|
|
bnx2_free_mem(bp);
|
|
del_timer_sync(&bp->timer);
|
|
return rc;
|
|
}
|
|
bnx2_enable_int(bp);
|
|
}
|
|
}
|
|
if (bp->flags & USING_MSI_FLAG) {
|
|
printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
|
|
}
|
|
|
|
netif_start_queue(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_reset_task(struct work_struct *work)
|
|
{
|
|
struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
|
|
|
|
if (!netif_running(bp->dev))
|
|
return;
|
|
|
|
bp->in_reset_task = 1;
|
|
bnx2_netif_stop(bp);
|
|
|
|
bnx2_init_nic(bp);
|
|
|
|
atomic_set(&bp->intr_sem, 1);
|
|
bnx2_netif_start(bp);
|
|
bp->in_reset_task = 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
/* This allows the netif to be shutdown gracefully before resetting */
|
|
schedule_work(&bp->reset_task);
|
|
}
|
|
|
|
#ifdef BCM_VLAN
|
|
/* Called with rtnl_lock */
|
|
static void
|
|
bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
bnx2_netif_stop(bp);
|
|
|
|
bp->vlgrp = vlgrp;
|
|
bnx2_set_rx_mode(dev);
|
|
|
|
bnx2_netif_start(bp);
|
|
}
|
|
#endif
|
|
|
|
/* Called with netif_tx_lock.
|
|
* bnx2_tx_int() runs without netif_tx_lock unless it needs to call
|
|
* netif_wake_queue().
|
|
*/
|
|
static int
|
|
bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
dma_addr_t mapping;
|
|
struct tx_bd *txbd;
|
|
struct sw_bd *tx_buf;
|
|
u32 len, vlan_tag_flags, last_frag, mss;
|
|
u16 prod, ring_prod;
|
|
int i;
|
|
|
|
if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
|
|
netif_stop_queue(dev);
|
|
printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
|
|
dev->name);
|
|
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
len = skb_headlen(skb);
|
|
prod = bp->tx_prod;
|
|
ring_prod = TX_RING_IDX(prod);
|
|
|
|
vlan_tag_flags = 0;
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
|
|
}
|
|
|
|
if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
|
|
vlan_tag_flags |=
|
|
(TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
|
|
}
|
|
if ((mss = skb_shinfo(skb)->gso_size)) {
|
|
u32 tcp_opt_len, ip_tcp_len;
|
|
struct iphdr *iph;
|
|
|
|
vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
|
|
|
|
tcp_opt_len = tcp_optlen(skb);
|
|
|
|
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
|
|
u32 tcp_off = skb_transport_offset(skb) -
|
|
sizeof(struct ipv6hdr) - ETH_HLEN;
|
|
|
|
vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
|
|
TX_BD_FLAGS_SW_FLAGS;
|
|
if (likely(tcp_off == 0))
|
|
vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
|
|
else {
|
|
tcp_off >>= 3;
|
|
vlan_tag_flags |= ((tcp_off & 0x3) <<
|
|
TX_BD_FLAGS_TCP6_OFF0_SHL) |
|
|
((tcp_off & 0x10) <<
|
|
TX_BD_FLAGS_TCP6_OFF4_SHL);
|
|
mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
|
|
}
|
|
} else {
|
|
if (skb_header_cloned(skb) &&
|
|
pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
|
|
dev_kfree_skb(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
ip_tcp_len = ip_hdrlen(skb) + sizeof(struct tcphdr);
|
|
|
|
iph = ip_hdr(skb);
|
|
iph->check = 0;
|
|
iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
|
|
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
|
|
iph->daddr, 0,
|
|
IPPROTO_TCP,
|
|
0);
|
|
if (tcp_opt_len || (iph->ihl > 5)) {
|
|
vlan_tag_flags |= ((iph->ihl - 5) +
|
|
(tcp_opt_len >> 2)) << 8;
|
|
}
|
|
}
|
|
} else
|
|
mss = 0;
|
|
|
|
mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
|
|
|
|
tx_buf = &bp->tx_buf_ring[ring_prod];
|
|
tx_buf->skb = skb;
|
|
pci_unmap_addr_set(tx_buf, mapping, mapping);
|
|
|
|
txbd = &bp->tx_desc_ring[ring_prod];
|
|
|
|
txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
|
|
txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
|
|
txbd->tx_bd_mss_nbytes = len | (mss << 16);
|
|
txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
|
|
|
|
last_frag = skb_shinfo(skb)->nr_frags;
|
|
|
|
for (i = 0; i < last_frag; i++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
prod = NEXT_TX_BD(prod);
|
|
ring_prod = TX_RING_IDX(prod);
|
|
txbd = &bp->tx_desc_ring[ring_prod];
|
|
|
|
len = frag->size;
|
|
mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
|
|
len, PCI_DMA_TODEVICE);
|
|
pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
|
|
mapping, mapping);
|
|
|
|
txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
|
|
txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
|
|
txbd->tx_bd_mss_nbytes = len | (mss << 16);
|
|
txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
|
|
|
|
}
|
|
txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
|
|
|
|
prod = NEXT_TX_BD(prod);
|
|
bp->tx_prod_bseq += skb->len;
|
|
|
|
REG_WR16(bp, bp->tx_bidx_addr, prod);
|
|
REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
|
|
|
|
mmiowb();
|
|
|
|
bp->tx_prod = prod;
|
|
dev->trans_start = jiffies;
|
|
|
|
if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
|
|
netif_stop_queue(dev);
|
|
if (bnx2_tx_avail(bp) > bp->tx_wake_thresh)
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Called with rtnl_lock */
|
|
static int
|
|
bnx2_close(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
u32 reset_code;
|
|
|
|
/* Calling flush_scheduled_work() may deadlock because
|
|
* linkwatch_event() may be on the workqueue and it will try to get
|
|
* the rtnl_lock which we are holding.
|
|
*/
|
|
while (bp->in_reset_task)
|
|
msleep(1);
|
|
|
|
bnx2_disable_int_sync(bp);
|
|
napi_disable(&bp->napi);
|
|
del_timer_sync(&bp->timer);
|
|
if (bp->flags & NO_WOL_FLAG)
|
|
reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
|
|
else if (bp->wol)
|
|
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
|
|
else
|
|
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
|
|
bnx2_reset_chip(bp, reset_code);
|
|
bnx2_free_irq(bp);
|
|
bnx2_free_skbs(bp);
|
|
bnx2_free_mem(bp);
|
|
bp->link_up = 0;
|
|
netif_carrier_off(bp->dev);
|
|
bnx2_set_power_state(bp, PCI_D3hot);
|
|
return 0;
|
|
}
|
|
|
|
#define GET_NET_STATS64(ctr) \
|
|
(unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
|
|
(unsigned long) (ctr##_lo)
|
|
|
|
#define GET_NET_STATS32(ctr) \
|
|
(ctr##_lo)
|
|
|
|
#if (BITS_PER_LONG == 64)
|
|
#define GET_NET_STATS GET_NET_STATS64
|
|
#else
|
|
#define GET_NET_STATS GET_NET_STATS32
|
|
#endif
|
|
|
|
static struct net_device_stats *
|
|
bnx2_get_stats(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
struct statistics_block *stats_blk = bp->stats_blk;
|
|
struct net_device_stats *net_stats = &bp->net_stats;
|
|
|
|
if (bp->stats_blk == NULL) {
|
|
return net_stats;
|
|
}
|
|
net_stats->rx_packets =
|
|
GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
|
|
GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
|
|
GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
|
|
|
|
net_stats->tx_packets =
|
|
GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
|
|
GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
|
|
GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
|
|
|
|
net_stats->rx_bytes =
|
|
GET_NET_STATS(stats_blk->stat_IfHCInOctets);
|
|
|
|
net_stats->tx_bytes =
|
|
GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
|
|
|
|
net_stats->multicast =
|
|
GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
|
|
|
|
net_stats->collisions =
|
|
(unsigned long) stats_blk->stat_EtherStatsCollisions;
|
|
|
|
net_stats->rx_length_errors =
|
|
(unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
|
|
stats_blk->stat_EtherStatsOverrsizePkts);
|
|
|
|
net_stats->rx_over_errors =
|
|
(unsigned long) stats_blk->stat_IfInMBUFDiscards;
|
|
|
|
net_stats->rx_frame_errors =
|
|
(unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
|
|
|
|
net_stats->rx_crc_errors =
|
|
(unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
|
|
|
|
net_stats->rx_errors = net_stats->rx_length_errors +
|
|
net_stats->rx_over_errors + net_stats->rx_frame_errors +
|
|
net_stats->rx_crc_errors;
|
|
|
|
net_stats->tx_aborted_errors =
|
|
(unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
|
|
stats_blk->stat_Dot3StatsLateCollisions);
|
|
|
|
if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5708_A0))
|
|
net_stats->tx_carrier_errors = 0;
|
|
else {
|
|
net_stats->tx_carrier_errors =
|
|
(unsigned long)
|
|
stats_blk->stat_Dot3StatsCarrierSenseErrors;
|
|
}
|
|
|
|
net_stats->tx_errors =
|
|
(unsigned long)
|
|
stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
|
|
+
|
|
net_stats->tx_aborted_errors +
|
|
net_stats->tx_carrier_errors;
|
|
|
|
net_stats->rx_missed_errors =
|
|
(unsigned long) (stats_blk->stat_IfInMBUFDiscards +
|
|
stats_blk->stat_FwRxDrop);
|
|
|
|
return net_stats;
|
|
}
|
|
|
|
/* All ethtool functions called with rtnl_lock */
|
|
|
|
static int
|
|
bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int support_serdes = 0, support_copper = 0;
|
|
|
|
cmd->supported = SUPPORTED_Autoneg;
|
|
if (bp->phy_flags & REMOTE_PHY_CAP_FLAG) {
|
|
support_serdes = 1;
|
|
support_copper = 1;
|
|
} else if (bp->phy_port == PORT_FIBRE)
|
|
support_serdes = 1;
|
|
else
|
|
support_copper = 1;
|
|
|
|
if (support_serdes) {
|
|
cmd->supported |= SUPPORTED_1000baseT_Full |
|
|
SUPPORTED_FIBRE;
|
|
if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG)
|
|
cmd->supported |= SUPPORTED_2500baseX_Full;
|
|
|
|
}
|
|
if (support_copper) {
|
|
cmd->supported |= SUPPORTED_10baseT_Half |
|
|
SUPPORTED_10baseT_Full |
|
|
SUPPORTED_100baseT_Half |
|
|
SUPPORTED_100baseT_Full |
|
|
SUPPORTED_1000baseT_Full |
|
|
SUPPORTED_TP;
|
|
|
|
}
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
cmd->port = bp->phy_port;
|
|
cmd->advertising = bp->advertising;
|
|
|
|
if (bp->autoneg & AUTONEG_SPEED) {
|
|
cmd->autoneg = AUTONEG_ENABLE;
|
|
}
|
|
else {
|
|
cmd->autoneg = AUTONEG_DISABLE;
|
|
}
|
|
|
|
if (netif_carrier_ok(dev)) {
|
|
cmd->speed = bp->line_speed;
|
|
cmd->duplex = bp->duplex;
|
|
}
|
|
else {
|
|
cmd->speed = -1;
|
|
cmd->duplex = -1;
|
|
}
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
cmd->transceiver = XCVR_INTERNAL;
|
|
cmd->phy_address = bp->phy_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
u8 autoneg = bp->autoneg;
|
|
u8 req_duplex = bp->req_duplex;
|
|
u16 req_line_speed = bp->req_line_speed;
|
|
u32 advertising = bp->advertising;
|
|
int err = -EINVAL;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
|
|
goto err_out_unlock;
|
|
|
|
if (cmd->port != bp->phy_port && !(bp->phy_flags & REMOTE_PHY_CAP_FLAG))
|
|
goto err_out_unlock;
|
|
|
|
if (cmd->autoneg == AUTONEG_ENABLE) {
|
|
autoneg |= AUTONEG_SPEED;
|
|
|
|
cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
|
|
|
|
/* allow advertising 1 speed */
|
|
if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
|
|
(cmd->advertising == ADVERTISED_10baseT_Full) ||
|
|
(cmd->advertising == ADVERTISED_100baseT_Half) ||
|
|
(cmd->advertising == ADVERTISED_100baseT_Full)) {
|
|
|
|
if (cmd->port == PORT_FIBRE)
|
|
goto err_out_unlock;
|
|
|
|
advertising = cmd->advertising;
|
|
|
|
} else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
|
|
if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) ||
|
|
(cmd->port == PORT_TP))
|
|
goto err_out_unlock;
|
|
} else if (cmd->advertising == ADVERTISED_1000baseT_Full)
|
|
advertising = cmd->advertising;
|
|
else if (cmd->advertising == ADVERTISED_1000baseT_Half)
|
|
goto err_out_unlock;
|
|
else {
|
|
if (cmd->port == PORT_FIBRE)
|
|
advertising = ETHTOOL_ALL_FIBRE_SPEED;
|
|
else
|
|
advertising = ETHTOOL_ALL_COPPER_SPEED;
|
|
}
|
|
advertising |= ADVERTISED_Autoneg;
|
|
}
|
|
else {
|
|
if (cmd->port == PORT_FIBRE) {
|
|
if ((cmd->speed != SPEED_1000 &&
|
|
cmd->speed != SPEED_2500) ||
|
|
(cmd->duplex != DUPLEX_FULL))
|
|
goto err_out_unlock;
|
|
|
|
if (cmd->speed == SPEED_2500 &&
|
|
!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
|
|
goto err_out_unlock;
|
|
}
|
|
else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
|
|
goto err_out_unlock;
|
|
|
|
autoneg &= ~AUTONEG_SPEED;
|
|
req_line_speed = cmd->speed;
|
|
req_duplex = cmd->duplex;
|
|
advertising = 0;
|
|
}
|
|
|
|
bp->autoneg = autoneg;
|
|
bp->advertising = advertising;
|
|
bp->req_line_speed = req_line_speed;
|
|
bp->req_duplex = req_duplex;
|
|
|
|
err = bnx2_setup_phy(bp, cmd->port);
|
|
|
|
err_out_unlock:
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
strcpy(info->driver, DRV_MODULE_NAME);
|
|
strcpy(info->version, DRV_MODULE_VERSION);
|
|
strcpy(info->bus_info, pci_name(bp->pdev));
|
|
strcpy(info->fw_version, bp->fw_version);
|
|
}
|
|
|
|
#define BNX2_REGDUMP_LEN (32 * 1024)
|
|
|
|
static int
|
|
bnx2_get_regs_len(struct net_device *dev)
|
|
{
|
|
return BNX2_REGDUMP_LEN;
|
|
}
|
|
|
|
static void
|
|
bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
|
|
{
|
|
u32 *p = _p, i, offset;
|
|
u8 *orig_p = _p;
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
|
|
0x0800, 0x0880, 0x0c00, 0x0c10,
|
|
0x0c30, 0x0d08, 0x1000, 0x101c,
|
|
0x1040, 0x1048, 0x1080, 0x10a4,
|
|
0x1400, 0x1490, 0x1498, 0x14f0,
|
|
0x1500, 0x155c, 0x1580, 0x15dc,
|
|
0x1600, 0x1658, 0x1680, 0x16d8,
|
|
0x1800, 0x1820, 0x1840, 0x1854,
|
|
0x1880, 0x1894, 0x1900, 0x1984,
|
|
0x1c00, 0x1c0c, 0x1c40, 0x1c54,
|
|
0x1c80, 0x1c94, 0x1d00, 0x1d84,
|
|
0x2000, 0x2030, 0x23c0, 0x2400,
|
|
0x2800, 0x2820, 0x2830, 0x2850,
|
|
0x2b40, 0x2c10, 0x2fc0, 0x3058,
|
|
0x3c00, 0x3c94, 0x4000, 0x4010,
|
|
0x4080, 0x4090, 0x43c0, 0x4458,
|
|
0x4c00, 0x4c18, 0x4c40, 0x4c54,
|
|
0x4fc0, 0x5010, 0x53c0, 0x5444,
|
|
0x5c00, 0x5c18, 0x5c80, 0x5c90,
|
|
0x5fc0, 0x6000, 0x6400, 0x6428,
|
|
0x6800, 0x6848, 0x684c, 0x6860,
|
|
0x6888, 0x6910, 0x8000 };
|
|
|
|
regs->version = 0;
|
|
|
|
memset(p, 0, BNX2_REGDUMP_LEN);
|
|
|
|
if (!netif_running(bp->dev))
|
|
return;
|
|
|
|
i = 0;
|
|
offset = reg_boundaries[0];
|
|
p += offset;
|
|
while (offset < BNX2_REGDUMP_LEN) {
|
|
*p++ = REG_RD(bp, offset);
|
|
offset += 4;
|
|
if (offset == reg_boundaries[i + 1]) {
|
|
offset = reg_boundaries[i + 2];
|
|
p = (u32 *) (orig_p + offset);
|
|
i += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (bp->flags & NO_WOL_FLAG) {
|
|
wol->supported = 0;
|
|
wol->wolopts = 0;
|
|
}
|
|
else {
|
|
wol->supported = WAKE_MAGIC;
|
|
if (bp->wol)
|
|
wol->wolopts = WAKE_MAGIC;
|
|
else
|
|
wol->wolopts = 0;
|
|
}
|
|
memset(&wol->sopass, 0, sizeof(wol->sopass));
|
|
}
|
|
|
|
static int
|
|
bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (wol->wolopts & ~WAKE_MAGIC)
|
|
return -EINVAL;
|
|
|
|
if (wol->wolopts & WAKE_MAGIC) {
|
|
if (bp->flags & NO_WOL_FLAG)
|
|
return -EINVAL;
|
|
|
|
bp->wol = 1;
|
|
}
|
|
else {
|
|
bp->wol = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_nway_reset(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
u32 bmcr;
|
|
|
|
if (!(bp->autoneg & AUTONEG_SPEED)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
if (bp->phy_flags & REMOTE_PHY_CAP_FLAG) {
|
|
int rc;
|
|
|
|
rc = bnx2_setup_remote_phy(bp, bp->phy_port);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
return rc;
|
|
}
|
|
|
|
/* Force a link down visible on the other side */
|
|
if (bp->phy_flags & PHY_SERDES_FLAG) {
|
|
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
msleep(20);
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
bp->current_interval = SERDES_AN_TIMEOUT;
|
|
bp->serdes_an_pending = 1;
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
}
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
bmcr &= ~BMCR_LOOPBACK;
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
|
|
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_get_eeprom_len(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (bp->flash_info == NULL)
|
|
return 0;
|
|
|
|
return (int) bp->flash_size;
|
|
}
|
|
|
|
static int
|
|
bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
|
|
u8 *eebuf)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int rc;
|
|
|
|
/* parameters already validated in ethtool_get_eeprom */
|
|
|
|
rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
|
|
u8 *eebuf)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int rc;
|
|
|
|
/* parameters already validated in ethtool_set_eeprom */
|
|
|
|
rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
memset(coal, 0, sizeof(struct ethtool_coalesce));
|
|
|
|
coal->rx_coalesce_usecs = bp->rx_ticks;
|
|
coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
|
|
coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
|
|
coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
|
|
|
|
coal->tx_coalesce_usecs = bp->tx_ticks;
|
|
coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
|
|
coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
|
|
coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
|
|
|
|
coal->stats_block_coalesce_usecs = bp->stats_ticks;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
|
|
if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
|
|
|
|
bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
|
|
if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
|
|
|
|
bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
|
|
if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
|
|
|
|
bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
|
|
if (bp->rx_quick_cons_trip_int > 0xff)
|
|
bp->rx_quick_cons_trip_int = 0xff;
|
|
|
|
bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
|
|
if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
|
|
|
|
bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
|
|
if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
|
|
|
|
bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
|
|
if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
|
|
|
|
bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
|
|
if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
|
|
0xff;
|
|
|
|
bp->stats_ticks = coal->stats_block_coalesce_usecs;
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5708) {
|
|
if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
|
|
bp->stats_ticks = USEC_PER_SEC;
|
|
}
|
|
if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
|
|
bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
|
|
bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
|
|
|
|
if (netif_running(bp->dev)) {
|
|
bnx2_netif_stop(bp);
|
|
bnx2_init_nic(bp);
|
|
bnx2_netif_start(bp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
|
|
ering->rx_mini_max_pending = 0;
|
|
ering->rx_jumbo_max_pending = 0;
|
|
|
|
ering->rx_pending = bp->rx_ring_size;
|
|
ering->rx_mini_pending = 0;
|
|
ering->rx_jumbo_pending = 0;
|
|
|
|
ering->tx_max_pending = MAX_TX_DESC_CNT;
|
|
ering->tx_pending = bp->tx_ring_size;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
|
|
(ering->tx_pending > MAX_TX_DESC_CNT) ||
|
|
(ering->tx_pending <= MAX_SKB_FRAGS)) {
|
|
|
|
return -EINVAL;
|
|
}
|
|
if (netif_running(bp->dev)) {
|
|
bnx2_netif_stop(bp);
|
|
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
|
|
bnx2_free_skbs(bp);
|
|
bnx2_free_mem(bp);
|
|
}
|
|
|
|
bnx2_set_rx_ring_size(bp, ering->rx_pending);
|
|
bp->tx_ring_size = ering->tx_pending;
|
|
|
|
if (netif_running(bp->dev)) {
|
|
int rc;
|
|
|
|
rc = bnx2_alloc_mem(bp);
|
|
if (rc)
|
|
return rc;
|
|
bnx2_init_nic(bp);
|
|
bnx2_netif_start(bp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
|
|
epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
|
|
epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
|
|
}
|
|
|
|
static int
|
|
bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
bp->req_flow_ctrl = 0;
|
|
if (epause->rx_pause)
|
|
bp->req_flow_ctrl |= FLOW_CTRL_RX;
|
|
if (epause->tx_pause)
|
|
bp->req_flow_ctrl |= FLOW_CTRL_TX;
|
|
|
|
if (epause->autoneg) {
|
|
bp->autoneg |= AUTONEG_FLOW_CTRL;
|
|
}
|
|
else {
|
|
bp->autoneg &= ~AUTONEG_FLOW_CTRL;
|
|
}
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
bnx2_setup_phy(bp, bp->phy_port);
|
|
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32
|
|
bnx2_get_rx_csum(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
return bp->rx_csum;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_rx_csum(struct net_device *dev, u32 data)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
bp->rx_csum = data;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_tso(struct net_device *dev, u32 data)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (data) {
|
|
dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
dev->features |= NETIF_F_TSO6;
|
|
} else
|
|
dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
|
|
NETIF_F_TSO_ECN);
|
|
return 0;
|
|
}
|
|
|
|
#define BNX2_NUM_STATS 46
|
|
|
|
static struct {
|
|
char string[ETH_GSTRING_LEN];
|
|
} bnx2_stats_str_arr[BNX2_NUM_STATS] = {
|
|
{ "rx_bytes" },
|
|
{ "rx_error_bytes" },
|
|
{ "tx_bytes" },
|
|
{ "tx_error_bytes" },
|
|
{ "rx_ucast_packets" },
|
|
{ "rx_mcast_packets" },
|
|
{ "rx_bcast_packets" },
|
|
{ "tx_ucast_packets" },
|
|
{ "tx_mcast_packets" },
|
|
{ "tx_bcast_packets" },
|
|
{ "tx_mac_errors" },
|
|
{ "tx_carrier_errors" },
|
|
{ "rx_crc_errors" },
|
|
{ "rx_align_errors" },
|
|
{ "tx_single_collisions" },
|
|
{ "tx_multi_collisions" },
|
|
{ "tx_deferred" },
|
|
{ "tx_excess_collisions" },
|
|
{ "tx_late_collisions" },
|
|
{ "tx_total_collisions" },
|
|
{ "rx_fragments" },
|
|
{ "rx_jabbers" },
|
|
{ "rx_undersize_packets" },
|
|
{ "rx_oversize_packets" },
|
|
{ "rx_64_byte_packets" },
|
|
{ "rx_65_to_127_byte_packets" },
|
|
{ "rx_128_to_255_byte_packets" },
|
|
{ "rx_256_to_511_byte_packets" },
|
|
{ "rx_512_to_1023_byte_packets" },
|
|
{ "rx_1024_to_1522_byte_packets" },
|
|
{ "rx_1523_to_9022_byte_packets" },
|
|
{ "tx_64_byte_packets" },
|
|
{ "tx_65_to_127_byte_packets" },
|
|
{ "tx_128_to_255_byte_packets" },
|
|
{ "tx_256_to_511_byte_packets" },
|
|
{ "tx_512_to_1023_byte_packets" },
|
|
{ "tx_1024_to_1522_byte_packets" },
|
|
{ "tx_1523_to_9022_byte_packets" },
|
|
{ "rx_xon_frames" },
|
|
{ "rx_xoff_frames" },
|
|
{ "tx_xon_frames" },
|
|
{ "tx_xoff_frames" },
|
|
{ "rx_mac_ctrl_frames" },
|
|
{ "rx_filtered_packets" },
|
|
{ "rx_discards" },
|
|
{ "rx_fw_discards" },
|
|
};
|
|
|
|
#define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
|
|
|
|
static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
|
|
STATS_OFFSET32(stat_IfHCInOctets_hi),
|
|
STATS_OFFSET32(stat_IfHCInBadOctets_hi),
|
|
STATS_OFFSET32(stat_IfHCOutOctets_hi),
|
|
STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
|
|
STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
|
|
STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
|
|
STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
|
|
STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
|
|
STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
|
|
STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
|
|
STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
|
|
STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
|
|
STATS_OFFSET32(stat_Dot3StatsFCSErrors),
|
|
STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
|
|
STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
|
|
STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
|
|
STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
|
|
STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
|
|
STATS_OFFSET32(stat_Dot3StatsLateCollisions),
|
|
STATS_OFFSET32(stat_EtherStatsCollisions),
|
|
STATS_OFFSET32(stat_EtherStatsFragments),
|
|
STATS_OFFSET32(stat_EtherStatsJabbers),
|
|
STATS_OFFSET32(stat_EtherStatsUndersizePkts),
|
|
STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
|
|
STATS_OFFSET32(stat_XonPauseFramesReceived),
|
|
STATS_OFFSET32(stat_XoffPauseFramesReceived),
|
|
STATS_OFFSET32(stat_OutXonSent),
|
|
STATS_OFFSET32(stat_OutXoffSent),
|
|
STATS_OFFSET32(stat_MacControlFramesReceived),
|
|
STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
|
|
STATS_OFFSET32(stat_IfInMBUFDiscards),
|
|
STATS_OFFSET32(stat_FwRxDrop),
|
|
};
|
|
|
|
/* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
|
|
* skipped because of errata.
|
|
*/
|
|
static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
|
|
8,0,8,8,8,8,8,8,8,8,
|
|
4,0,4,4,4,4,4,4,4,4,
|
|
4,4,4,4,4,4,4,4,4,4,
|
|
4,4,4,4,4,4,4,4,4,4,
|
|
4,4,4,4,4,4,
|
|
};
|
|
|
|
static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
|
|
8,0,8,8,8,8,8,8,8,8,
|
|
4,4,4,4,4,4,4,4,4,4,
|
|
4,4,4,4,4,4,4,4,4,4,
|
|
4,4,4,4,4,4,4,4,4,4,
|
|
4,4,4,4,4,4,
|
|
};
|
|
|
|
#define BNX2_NUM_TESTS 6
|
|
|
|
static struct {
|
|
char string[ETH_GSTRING_LEN];
|
|
} bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
|
|
{ "register_test (offline)" },
|
|
{ "memory_test (offline)" },
|
|
{ "loopback_test (offline)" },
|
|
{ "nvram_test (online)" },
|
|
{ "interrupt_test (online)" },
|
|
{ "link_test (online)" },
|
|
};
|
|
|
|
static int
|
|
bnx2_self_test_count(struct net_device *dev)
|
|
{
|
|
return BNX2_NUM_TESTS;
|
|
}
|
|
|
|
static void
|
|
bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
|
|
if (etest->flags & ETH_TEST_FL_OFFLINE) {
|
|
int i;
|
|
|
|
bnx2_netif_stop(bp);
|
|
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
|
|
bnx2_free_skbs(bp);
|
|
|
|
if (bnx2_test_registers(bp) != 0) {
|
|
buf[0] = 1;
|
|
etest->flags |= ETH_TEST_FL_FAILED;
|
|
}
|
|
if (bnx2_test_memory(bp) != 0) {
|
|
buf[1] = 1;
|
|
etest->flags |= ETH_TEST_FL_FAILED;
|
|
}
|
|
if ((buf[2] = bnx2_test_loopback(bp)) != 0)
|
|
etest->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
if (!netif_running(bp->dev)) {
|
|
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
|
|
}
|
|
else {
|
|
bnx2_init_nic(bp);
|
|
bnx2_netif_start(bp);
|
|
}
|
|
|
|
/* wait for link up */
|
|
for (i = 0; i < 7; i++) {
|
|
if (bp->link_up)
|
|
break;
|
|
msleep_interruptible(1000);
|
|
}
|
|
}
|
|
|
|
if (bnx2_test_nvram(bp) != 0) {
|
|
buf[3] = 1;
|
|
etest->flags |= ETH_TEST_FL_FAILED;
|
|
}
|
|
if (bnx2_test_intr(bp) != 0) {
|
|
buf[4] = 1;
|
|
etest->flags |= ETH_TEST_FL_FAILED;
|
|
}
|
|
|
|
if (bnx2_test_link(bp) != 0) {
|
|
buf[5] = 1;
|
|
etest->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
|
|
{
|
|
switch (stringset) {
|
|
case ETH_SS_STATS:
|
|
memcpy(buf, bnx2_stats_str_arr,
|
|
sizeof(bnx2_stats_str_arr));
|
|
break;
|
|
case ETH_SS_TEST:
|
|
memcpy(buf, bnx2_tests_str_arr,
|
|
sizeof(bnx2_tests_str_arr));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_get_stats_count(struct net_device *dev)
|
|
{
|
|
return BNX2_NUM_STATS;
|
|
}
|
|
|
|
static void
|
|
bnx2_get_ethtool_stats(struct net_device *dev,
|
|
struct ethtool_stats *stats, u64 *buf)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int i;
|
|
u32 *hw_stats = (u32 *) bp->stats_blk;
|
|
u8 *stats_len_arr = NULL;
|
|
|
|
if (hw_stats == NULL) {
|
|
memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
|
|
return;
|
|
}
|
|
|
|
if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5706_A1) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5706_A2) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5708_A0))
|
|
stats_len_arr = bnx2_5706_stats_len_arr;
|
|
else
|
|
stats_len_arr = bnx2_5708_stats_len_arr;
|
|
|
|
for (i = 0; i < BNX2_NUM_STATS; i++) {
|
|
if (stats_len_arr[i] == 0) {
|
|
/* skip this counter */
|
|
buf[i] = 0;
|
|
continue;
|
|
}
|
|
if (stats_len_arr[i] == 4) {
|
|
/* 4-byte counter */
|
|
buf[i] = (u64)
|
|
*(hw_stats + bnx2_stats_offset_arr[i]);
|
|
continue;
|
|
}
|
|
/* 8-byte counter */
|
|
buf[i] = (((u64) *(hw_stats +
|
|
bnx2_stats_offset_arr[i])) << 32) +
|
|
*(hw_stats + bnx2_stats_offset_arr[i] + 1);
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_phys_id(struct net_device *dev, u32 data)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int i;
|
|
u32 save;
|
|
|
|
if (data == 0)
|
|
data = 2;
|
|
|
|
save = REG_RD(bp, BNX2_MISC_CFG);
|
|
REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
|
|
|
|
for (i = 0; i < (data * 2); i++) {
|
|
if ((i % 2) == 0) {
|
|
REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
|
|
}
|
|
else {
|
|
REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
|
|
BNX2_EMAC_LED_1000MB_OVERRIDE |
|
|
BNX2_EMAC_LED_100MB_OVERRIDE |
|
|
BNX2_EMAC_LED_10MB_OVERRIDE |
|
|
BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
|
|
BNX2_EMAC_LED_TRAFFIC);
|
|
}
|
|
msleep_interruptible(500);
|
|
if (signal_pending(current))
|
|
break;
|
|
}
|
|
REG_WR(bp, BNX2_EMAC_LED, 0);
|
|
REG_WR(bp, BNX2_MISC_CFG, save);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_tx_csum(struct net_device *dev, u32 data)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
return (ethtool_op_set_tx_ipv6_csum(dev, data));
|
|
else
|
|
return (ethtool_op_set_tx_csum(dev, data));
|
|
}
|
|
|
|
static const struct ethtool_ops bnx2_ethtool_ops = {
|
|
.get_settings = bnx2_get_settings,
|
|
.set_settings = bnx2_set_settings,
|
|
.get_drvinfo = bnx2_get_drvinfo,
|
|
.get_regs_len = bnx2_get_regs_len,
|
|
.get_regs = bnx2_get_regs,
|
|
.get_wol = bnx2_get_wol,
|
|
.set_wol = bnx2_set_wol,
|
|
.nway_reset = bnx2_nway_reset,
|
|
.get_link = ethtool_op_get_link,
|
|
.get_eeprom_len = bnx2_get_eeprom_len,
|
|
.get_eeprom = bnx2_get_eeprom,
|
|
.set_eeprom = bnx2_set_eeprom,
|
|
.get_coalesce = bnx2_get_coalesce,
|
|
.set_coalesce = bnx2_set_coalesce,
|
|
.get_ringparam = bnx2_get_ringparam,
|
|
.set_ringparam = bnx2_set_ringparam,
|
|
.get_pauseparam = bnx2_get_pauseparam,
|
|
.set_pauseparam = bnx2_set_pauseparam,
|
|
.get_rx_csum = bnx2_get_rx_csum,
|
|
.set_rx_csum = bnx2_set_rx_csum,
|
|
.get_tx_csum = ethtool_op_get_tx_csum,
|
|
.set_tx_csum = bnx2_set_tx_csum,
|
|
.get_sg = ethtool_op_get_sg,
|
|
.set_sg = ethtool_op_set_sg,
|
|
.get_tso = ethtool_op_get_tso,
|
|
.set_tso = bnx2_set_tso,
|
|
.self_test_count = bnx2_self_test_count,
|
|
.self_test = bnx2_self_test,
|
|
.get_strings = bnx2_get_strings,
|
|
.phys_id = bnx2_phys_id,
|
|
.get_stats_count = bnx2_get_stats_count,
|
|
.get_ethtool_stats = bnx2_get_ethtool_stats,
|
|
};
|
|
|
|
/* Called with rtnl_lock */
|
|
static int
|
|
bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct mii_ioctl_data *data = if_mii(ifr);
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int err;
|
|
|
|
switch(cmd) {
|
|
case SIOCGMIIPHY:
|
|
data->phy_id = bp->phy_addr;
|
|
|
|
/* fallthru */
|
|
case SIOCGMIIREG: {
|
|
u32 mii_regval;
|
|
|
|
if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (!netif_running(dev))
|
|
return -EAGAIN;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
data->val_out = mii_regval;
|
|
|
|
return err;
|
|
}
|
|
|
|
case SIOCSMIIREG:
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (!netif_running(dev))
|
|
return -EAGAIN;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
return err;
|
|
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Called with rtnl_lock */
|
|
static int
|
|
bnx2_change_mac_addr(struct net_device *dev, void *p)
|
|
{
|
|
struct sockaddr *addr = p;
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EINVAL;
|
|
|
|
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
|
|
if (netif_running(dev))
|
|
bnx2_set_mac_addr(bp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called with rtnl_lock */
|
|
static int
|
|
bnx2_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
|
|
((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
|
|
return -EINVAL;
|
|
|
|
dev->mtu = new_mtu;
|
|
if (netif_running(dev)) {
|
|
bnx2_netif_stop(bp);
|
|
|
|
bnx2_init_nic(bp);
|
|
|
|
bnx2_netif_start(bp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
|
|
static void
|
|
poll_bnx2(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
disable_irq(bp->pdev->irq);
|
|
bnx2_interrupt(bp->pdev->irq, dev);
|
|
enable_irq(bp->pdev->irq);
|
|
}
|
|
#endif
|
|
|
|
static void __devinit
|
|
bnx2_get_5709_media(struct bnx2 *bp)
|
|
{
|
|
u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
|
|
u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
|
|
u32 strap;
|
|
|
|
if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
|
|
return;
|
|
else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
|
|
bp->phy_flags |= PHY_SERDES_FLAG;
|
|
return;
|
|
}
|
|
|
|
if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
|
|
strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
|
|
else
|
|
strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
|
|
|
|
if (PCI_FUNC(bp->pdev->devfn) == 0) {
|
|
switch (strap) {
|
|
case 0x4:
|
|
case 0x5:
|
|
case 0x6:
|
|
bp->phy_flags |= PHY_SERDES_FLAG;
|
|
return;
|
|
}
|
|
} else {
|
|
switch (strap) {
|
|
case 0x1:
|
|
case 0x2:
|
|
case 0x4:
|
|
bp->phy_flags |= PHY_SERDES_FLAG;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __devinit
|
|
bnx2_get_pci_speed(struct bnx2 *bp)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
|
|
if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
|
|
u32 clkreg;
|
|
|
|
bp->flags |= PCIX_FLAG;
|
|
|
|
clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
|
|
|
|
clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
|
|
switch (clkreg) {
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
|
|
bp->bus_speed_mhz = 133;
|
|
break;
|
|
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
|
|
bp->bus_speed_mhz = 100;
|
|
break;
|
|
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
|
|
bp->bus_speed_mhz = 66;
|
|
break;
|
|
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
|
|
bp->bus_speed_mhz = 50;
|
|
break;
|
|
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
|
|
bp->bus_speed_mhz = 33;
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
|
|
bp->bus_speed_mhz = 66;
|
|
else
|
|
bp->bus_speed_mhz = 33;
|
|
}
|
|
|
|
if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
|
|
bp->flags |= PCI_32BIT_FLAG;
|
|
|
|
}
|
|
|
|
static int __devinit
|
|
bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp;
|
|
unsigned long mem_len;
|
|
int rc, i, j;
|
|
u32 reg;
|
|
u64 dma_mask, persist_dma_mask;
|
|
|
|
SET_MODULE_OWNER(dev);
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
bp = netdev_priv(dev);
|
|
|
|
bp->flags = 0;
|
|
bp->phy_flags = 0;
|
|
|
|
/* enable device (incl. PCI PM wakeup), and bus-mastering */
|
|
rc = pci_enable_device(pdev);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "Cannot enable PCI device, aborting.");
|
|
goto err_out;
|
|
}
|
|
|
|
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot find PCI device base address, aborting.\n");
|
|
rc = -ENODEV;
|
|
goto err_out_disable;
|
|
}
|
|
|
|
rc = pci_request_regions(pdev, DRV_MODULE_NAME);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
|
|
goto err_out_disable;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
|
|
if (bp->pm_cap == 0) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot find power management capability, aborting.\n");
|
|
rc = -EIO;
|
|
goto err_out_release;
|
|
}
|
|
|
|
bp->dev = dev;
|
|
bp->pdev = pdev;
|
|
|
|
spin_lock_init(&bp->phy_lock);
|
|
spin_lock_init(&bp->indirect_lock);
|
|
INIT_WORK(&bp->reset_task, bnx2_reset_task);
|
|
|
|
dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
|
|
mem_len = MB_GET_CID_ADDR(TX_TSS_CID + 1);
|
|
dev->mem_end = dev->mem_start + mem_len;
|
|
dev->irq = pdev->irq;
|
|
|
|
bp->regview = ioremap_nocache(dev->base_addr, mem_len);
|
|
|
|
if (!bp->regview) {
|
|
dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
|
|
rc = -ENOMEM;
|
|
goto err_out_release;
|
|
}
|
|
|
|
/* Configure byte swap and enable write to the reg_window registers.
|
|
* Rely on CPU to do target byte swapping on big endian systems
|
|
* The chip's target access swapping will not swap all accesses
|
|
*/
|
|
pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
|
|
BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
|
|
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
|
|
|
|
bnx2_set_power_state(bp, PCI_D0);
|
|
|
|
bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot find PCIE capability, aborting.\n");
|
|
rc = -EIO;
|
|
goto err_out_unmap;
|
|
}
|
|
bp->flags |= PCIE_FLAG;
|
|
} else {
|
|
bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
|
|
if (bp->pcix_cap == 0) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot find PCIX capability, aborting.\n");
|
|
rc = -EIO;
|
|
goto err_out_unmap;
|
|
}
|
|
}
|
|
|
|
if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
|
|
if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
|
|
bp->flags |= MSI_CAP_FLAG;
|
|
}
|
|
|
|
/* 5708 cannot support DMA addresses > 40-bit. */
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5708)
|
|
persist_dma_mask = dma_mask = DMA_40BIT_MASK;
|
|
else
|
|
persist_dma_mask = dma_mask = DMA_64BIT_MASK;
|
|
|
|
/* Configure DMA attributes. */
|
|
if (pci_set_dma_mask(pdev, dma_mask) == 0) {
|
|
dev->features |= NETIF_F_HIGHDMA;
|
|
rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
|
|
if (rc) {
|
|
dev_err(&pdev->dev,
|
|
"pci_set_consistent_dma_mask failed, aborting.\n");
|
|
goto err_out_unmap;
|
|
}
|
|
} else if ((rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
|
|
dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
|
|
goto err_out_unmap;
|
|
}
|
|
|
|
if (!(bp->flags & PCIE_FLAG))
|
|
bnx2_get_pci_speed(bp);
|
|
|
|
/* 5706A0 may falsely detect SERR and PERR. */
|
|
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
|
|
reg = REG_RD(bp, PCI_COMMAND);
|
|
reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
|
|
REG_WR(bp, PCI_COMMAND, reg);
|
|
}
|
|
else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
|
|
!(bp->flags & PCIX_FLAG)) {
|
|
|
|
dev_err(&pdev->dev,
|
|
"5706 A1 can only be used in a PCIX bus, aborting.\n");
|
|
goto err_out_unmap;
|
|
}
|
|
|
|
bnx2_init_nvram(bp);
|
|
|
|
reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
|
|
|
|
if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
|
|
BNX2_SHM_HDR_SIGNATURE_SIG) {
|
|
u32 off = PCI_FUNC(pdev->devfn) << 2;
|
|
|
|
bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0 + off);
|
|
} else
|
|
bp->shmem_base = HOST_VIEW_SHMEM_BASE;
|
|
|
|
/* Get the permanent MAC address. First we need to make sure the
|
|
* firmware is actually running.
|
|
*/
|
|
reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
|
|
|
|
if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
|
|
BNX2_DEV_INFO_SIGNATURE_MAGIC) {
|
|
dev_err(&pdev->dev, "Firmware not running, aborting.\n");
|
|
rc = -ENODEV;
|
|
goto err_out_unmap;
|
|
}
|
|
|
|
reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
|
|
for (i = 0, j = 0; i < 3; i++) {
|
|
u8 num, k, skip0;
|
|
|
|
num = (u8) (reg >> (24 - (i * 8)));
|
|
for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
|
|
if (num >= k || !skip0 || k == 1) {
|
|
bp->fw_version[j++] = (num / k) + '0';
|
|
skip0 = 0;
|
|
}
|
|
}
|
|
if (i != 2)
|
|
bp->fw_version[j++] = '.';
|
|
}
|
|
if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) &
|
|
BNX2_PORT_FEATURE_ASF_ENABLED) {
|
|
bp->flags |= ASF_ENABLE_FLAG;
|
|
|
|
for (i = 0; i < 30; i++) {
|
|
reg = REG_RD_IND(bp, bp->shmem_base +
|
|
BNX2_BC_STATE_CONDITION);
|
|
if (reg & BNX2_CONDITION_MFW_RUN_MASK)
|
|
break;
|
|
msleep(10);
|
|
}
|
|
}
|
|
reg = REG_RD_IND(bp, bp->shmem_base + BNX2_BC_STATE_CONDITION);
|
|
reg &= BNX2_CONDITION_MFW_RUN_MASK;
|
|
if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
|
|
reg != BNX2_CONDITION_MFW_RUN_NONE) {
|
|
int i;
|
|
u32 addr = REG_RD_IND(bp, bp->shmem_base + BNX2_MFW_VER_PTR);
|
|
|
|
bp->fw_version[j++] = ' ';
|
|
for (i = 0; i < 3; i++) {
|
|
reg = REG_RD_IND(bp, addr + i * 4);
|
|
reg = swab32(reg);
|
|
memcpy(&bp->fw_version[j], ®, 4);
|
|
j += 4;
|
|
}
|
|
}
|
|
|
|
reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
|
|
bp->mac_addr[0] = (u8) (reg >> 8);
|
|
bp->mac_addr[1] = (u8) reg;
|
|
|
|
reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
|
|
bp->mac_addr[2] = (u8) (reg >> 24);
|
|
bp->mac_addr[3] = (u8) (reg >> 16);
|
|
bp->mac_addr[4] = (u8) (reg >> 8);
|
|
bp->mac_addr[5] = (u8) reg;
|
|
|
|
bp->tx_ring_size = MAX_TX_DESC_CNT;
|
|
bnx2_set_rx_ring_size(bp, 255);
|
|
|
|
bp->rx_csum = 1;
|
|
|
|
bp->rx_offset = sizeof(struct l2_fhdr) + 2;
|
|
|
|
bp->tx_quick_cons_trip_int = 20;
|
|
bp->tx_quick_cons_trip = 20;
|
|
bp->tx_ticks_int = 80;
|
|
bp->tx_ticks = 80;
|
|
|
|
bp->rx_quick_cons_trip_int = 6;
|
|
bp->rx_quick_cons_trip = 6;
|
|
bp->rx_ticks_int = 18;
|
|
bp->rx_ticks = 18;
|
|
|
|
bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
|
|
|
|
bp->timer_interval = HZ;
|
|
bp->current_interval = HZ;
|
|
|
|
bp->phy_addr = 1;
|
|
|
|
/* Disable WOL support if we are running on a SERDES chip. */
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_get_5709_media(bp);
|
|
else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
|
|
bp->phy_flags |= PHY_SERDES_FLAG;
|
|
|
|
bp->phy_port = PORT_TP;
|
|
if (bp->phy_flags & PHY_SERDES_FLAG) {
|
|
bp->phy_port = PORT_FIBRE;
|
|
bp->flags |= NO_WOL_FLAG;
|
|
if (CHIP_NUM(bp) != CHIP_NUM_5706) {
|
|
bp->phy_addr = 2;
|
|
reg = REG_RD_IND(bp, bp->shmem_base +
|
|
BNX2_SHARED_HW_CFG_CONFIG);
|
|
if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
|
|
bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
|
|
}
|
|
bnx2_init_remote_phy(bp);
|
|
|
|
} else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
|
|
CHIP_NUM(bp) == CHIP_NUM_5708)
|
|
bp->phy_flags |= PHY_CRC_FIX_FLAG;
|
|
else if (CHIP_ID(bp) == CHIP_ID_5709_A0 ||
|
|
CHIP_ID(bp) == CHIP_ID_5709_A1)
|
|
bp->phy_flags |= PHY_DIS_EARLY_DAC_FLAG;
|
|
|
|
if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5708_B0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5708_B1))
|
|
bp->flags |= NO_WOL_FLAG;
|
|
|
|
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
|
|
bp->tx_quick_cons_trip_int =
|
|
bp->tx_quick_cons_trip;
|
|
bp->tx_ticks_int = bp->tx_ticks;
|
|
bp->rx_quick_cons_trip_int =
|
|
bp->rx_quick_cons_trip;
|
|
bp->rx_ticks_int = bp->rx_ticks;
|
|
bp->comp_prod_trip_int = bp->comp_prod_trip;
|
|
bp->com_ticks_int = bp->com_ticks;
|
|
bp->cmd_ticks_int = bp->cmd_ticks;
|
|
}
|
|
|
|
/* Disable MSI on 5706 if AMD 8132 bridge is found.
|
|
*
|
|
* MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
|
|
* with byte enables disabled on the unused 32-bit word. This is legal
|
|
* but causes problems on the AMD 8132 which will eventually stop
|
|
* responding after a while.
|
|
*
|
|
* AMD believes this incompatibility is unique to the 5706, and
|
|
* prefers to locally disable MSI rather than globally disabling it.
|
|
*/
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
|
|
struct pci_dev *amd_8132 = NULL;
|
|
|
|
while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
|
|
PCI_DEVICE_ID_AMD_8132_BRIDGE,
|
|
amd_8132))) {
|
|
|
|
if (amd_8132->revision >= 0x10 &&
|
|
amd_8132->revision <= 0x13) {
|
|
disable_msi = 1;
|
|
pci_dev_put(amd_8132);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bnx2_set_default_link(bp);
|
|
bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
|
|
|
|
init_timer(&bp->timer);
|
|
bp->timer.expires = RUN_AT(bp->timer_interval);
|
|
bp->timer.data = (unsigned long) bp;
|
|
bp->timer.function = bnx2_timer;
|
|
|
|
return 0;
|
|
|
|
err_out_unmap:
|
|
if (bp->regview) {
|
|
iounmap(bp->regview);
|
|
bp->regview = NULL;
|
|
}
|
|
|
|
err_out_release:
|
|
pci_release_regions(pdev);
|
|
|
|
err_out_disable:
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
static char * __devinit
|
|
bnx2_bus_string(struct bnx2 *bp, char *str)
|
|
{
|
|
char *s = str;
|
|
|
|
if (bp->flags & PCIE_FLAG) {
|
|
s += sprintf(s, "PCI Express");
|
|
} else {
|
|
s += sprintf(s, "PCI");
|
|
if (bp->flags & PCIX_FLAG)
|
|
s += sprintf(s, "-X");
|
|
if (bp->flags & PCI_32BIT_FLAG)
|
|
s += sprintf(s, " 32-bit");
|
|
else
|
|
s += sprintf(s, " 64-bit");
|
|
s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
|
|
}
|
|
return str;
|
|
}
|
|
|
|
static int __devinit
|
|
bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
static int version_printed = 0;
|
|
struct net_device *dev = NULL;
|
|
struct bnx2 *bp;
|
|
int rc, i;
|
|
char str[40];
|
|
|
|
if (version_printed++ == 0)
|
|
printk(KERN_INFO "%s", version);
|
|
|
|
/* dev zeroed in init_etherdev */
|
|
dev = alloc_etherdev(sizeof(*bp));
|
|
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
rc = bnx2_init_board(pdev, dev);
|
|
if (rc < 0) {
|
|
free_netdev(dev);
|
|
return rc;
|
|
}
|
|
|
|
dev->open = bnx2_open;
|
|
dev->hard_start_xmit = bnx2_start_xmit;
|
|
dev->stop = bnx2_close;
|
|
dev->get_stats = bnx2_get_stats;
|
|
dev->set_multicast_list = bnx2_set_rx_mode;
|
|
dev->do_ioctl = bnx2_ioctl;
|
|
dev->set_mac_address = bnx2_change_mac_addr;
|
|
dev->change_mtu = bnx2_change_mtu;
|
|
dev->tx_timeout = bnx2_tx_timeout;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
#ifdef BCM_VLAN
|
|
dev->vlan_rx_register = bnx2_vlan_rx_register;
|
|
#endif
|
|
dev->ethtool_ops = &bnx2_ethtool_ops;
|
|
|
|
bp = netdev_priv(dev);
|
|
netif_napi_add(dev, &bp->napi, bnx2_poll, 64);
|
|
|
|
#if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
|
|
dev->poll_controller = poll_bnx2;
|
|
#endif
|
|
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
memcpy(dev->dev_addr, bp->mac_addr, 6);
|
|
memcpy(dev->perm_addr, bp->mac_addr, 6);
|
|
bp->name = board_info[ent->driver_data].name;
|
|
|
|
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
dev->features |= NETIF_F_IPV6_CSUM;
|
|
|
|
#ifdef BCM_VLAN
|
|
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
|
|
#endif
|
|
dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
dev->features |= NETIF_F_TSO6;
|
|
|
|
if ((rc = register_netdev(dev))) {
|
|
dev_err(&pdev->dev, "Cannot register net device\n");
|
|
if (bp->regview)
|
|
iounmap(bp->regview);
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
free_netdev(dev);
|
|
return rc;
|
|
}
|
|
|
|
printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
|
|
"IRQ %d, ",
|
|
dev->name,
|
|
bp->name,
|
|
((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
|
|
((CHIP_ID(bp) & 0x0ff0) >> 4),
|
|
bnx2_bus_string(bp, str),
|
|
dev->base_addr,
|
|
bp->pdev->irq);
|
|
|
|
printk("node addr ");
|
|
for (i = 0; i < 6; i++)
|
|
printk("%2.2x", dev->dev_addr[i]);
|
|
printk("\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __devexit
|
|
bnx2_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
flush_scheduled_work();
|
|
|
|
unregister_netdev(dev);
|
|
|
|
if (bp->regview)
|
|
iounmap(bp->regview);
|
|
|
|
free_netdev(dev);
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
}
|
|
|
|
static int
|
|
bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
u32 reset_code;
|
|
|
|
/* PCI register 4 needs to be saved whether netif_running() or not.
|
|
* MSI address and data need to be saved if using MSI and
|
|
* netif_running().
|
|
*/
|
|
pci_save_state(pdev);
|
|
if (!netif_running(dev))
|
|
return 0;
|
|
|
|
flush_scheduled_work();
|
|
bnx2_netif_stop(bp);
|
|
netif_device_detach(dev);
|
|
del_timer_sync(&bp->timer);
|
|
if (bp->flags & NO_WOL_FLAG)
|
|
reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
|
|
else if (bp->wol)
|
|
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
|
|
else
|
|
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
|
|
bnx2_reset_chip(bp, reset_code);
|
|
bnx2_free_skbs(bp);
|
|
bnx2_set_power_state(bp, pci_choose_state(pdev, state));
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
pci_restore_state(pdev);
|
|
if (!netif_running(dev))
|
|
return 0;
|
|
|
|
bnx2_set_power_state(bp, PCI_D0);
|
|
netif_device_attach(dev);
|
|
bnx2_init_nic(bp);
|
|
bnx2_netif_start(bp);
|
|
return 0;
|
|
}
|
|
|
|
static struct pci_driver bnx2_pci_driver = {
|
|
.name = DRV_MODULE_NAME,
|
|
.id_table = bnx2_pci_tbl,
|
|
.probe = bnx2_init_one,
|
|
.remove = __devexit_p(bnx2_remove_one),
|
|
.suspend = bnx2_suspend,
|
|
.resume = bnx2_resume,
|
|
};
|
|
|
|
static int __init bnx2_init(void)
|
|
{
|
|
return pci_register_driver(&bnx2_pci_driver);
|
|
}
|
|
|
|
static void __exit bnx2_cleanup(void)
|
|
{
|
|
pci_unregister_driver(&bnx2_pci_driver);
|
|
}
|
|
|
|
module_init(bnx2_init);
|
|
module_exit(bnx2_cleanup);
|
|
|
|
|
|
|