aae0777f1e
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT) and sets it up as the active page table for a VM. For the upcoming HPT resize implementation we're going to want to allocate HPTs separately from activating them. So, split the allocation itself out into kvmppc_allocate_hpt() and perform the activation with a new kvmppc_set_hpt() function. Likewise we split kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt() which unsets it as an active HPT, then frees it. We also move the logic to fall back to smaller HPT sizes if the first try fails into the single caller which used that behaviour, kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in that previously if the initial attempt at CMA allocation failed, we would fall back to attempting smaller sizes with the page allocator. Now, we try first CMA, then the page allocator at each size. As far as I can tell this change should be harmless. To match, we make kvmppc_free_hpt() just free the actual HPT itself. The call to kvmppc_free_lpid() that was there, we move to the single caller. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
378 lines
9.5 KiB
C
378 lines
9.5 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Copyright SUSE Linux Products GmbH 2010
|
|
*
|
|
* Authors: Alexander Graf <agraf@suse.de>
|
|
*/
|
|
|
|
#ifndef __ASM_KVM_BOOK3S_64_H__
|
|
#define __ASM_KVM_BOOK3S_64_H__
|
|
|
|
#include <asm/book3s/64/mmu-hash.h>
|
|
|
|
/* Power architecture requires HPT is at least 256kiB, at most 64TiB */
|
|
#define PPC_MIN_HPT_ORDER 18
|
|
#define PPC_MAX_HPT_ORDER 46
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
|
|
static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
|
|
{
|
|
preempt_disable();
|
|
return &get_paca()->shadow_vcpu;
|
|
}
|
|
|
|
static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
|
|
{
|
|
preempt_enable();
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
|
|
static inline bool kvm_is_radix(struct kvm *kvm)
|
|
{
|
|
return kvm->arch.radix;
|
|
}
|
|
|
|
#define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */
|
|
#endif
|
|
|
|
#define VRMA_VSID 0x1ffffffUL /* 1TB VSID reserved for VRMA */
|
|
|
|
/*
|
|
* We use a lock bit in HPTE dword 0 to synchronize updates and
|
|
* accesses to each HPTE, and another bit to indicate non-present
|
|
* HPTEs.
|
|
*/
|
|
#define HPTE_V_HVLOCK 0x40UL
|
|
#define HPTE_V_ABSENT 0x20UL
|
|
|
|
/*
|
|
* We use this bit in the guest_rpte field of the revmap entry
|
|
* to indicate a modified HPTE.
|
|
*/
|
|
#define HPTE_GR_MODIFIED (1ul << 62)
|
|
|
|
/* These bits are reserved in the guest view of the HPTE */
|
|
#define HPTE_GR_RESERVED HPTE_GR_MODIFIED
|
|
|
|
static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
|
|
{
|
|
unsigned long tmp, old;
|
|
__be64 be_lockbit, be_bits;
|
|
|
|
/*
|
|
* We load/store in native endian, but the HTAB is in big endian. If
|
|
* we byte swap all data we apply on the PTE we're implicitly correct
|
|
* again.
|
|
*/
|
|
be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
|
|
be_bits = cpu_to_be64(bits);
|
|
|
|
asm volatile(" ldarx %0,0,%2\n"
|
|
" and. %1,%0,%3\n"
|
|
" bne 2f\n"
|
|
" or %0,%0,%4\n"
|
|
" stdcx. %0,0,%2\n"
|
|
" beq+ 2f\n"
|
|
" mr %1,%3\n"
|
|
"2: isync"
|
|
: "=&r" (tmp), "=&r" (old)
|
|
: "r" (hpte), "r" (be_bits), "r" (be_lockbit)
|
|
: "cc", "memory");
|
|
return old == 0;
|
|
}
|
|
|
|
static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
|
|
{
|
|
hpte_v &= ~HPTE_V_HVLOCK;
|
|
asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
|
|
hpte[0] = cpu_to_be64(hpte_v);
|
|
}
|
|
|
|
/* Without barrier */
|
|
static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
|
|
{
|
|
hpte_v &= ~HPTE_V_HVLOCK;
|
|
hpte[0] = cpu_to_be64(hpte_v);
|
|
}
|
|
|
|
static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
|
|
unsigned long pte_index)
|
|
{
|
|
int i, b_psize = MMU_PAGE_4K, a_psize = MMU_PAGE_4K;
|
|
unsigned int penc;
|
|
unsigned long rb = 0, va_low, sllp;
|
|
unsigned int lp = (r >> LP_SHIFT) & ((1 << LP_BITS) - 1);
|
|
|
|
if (v & HPTE_V_LARGE) {
|
|
i = hpte_page_sizes[lp];
|
|
b_psize = i & 0xf;
|
|
a_psize = i >> 4;
|
|
}
|
|
|
|
/*
|
|
* Ignore the top 14 bits of va
|
|
* v have top two bits covering segment size, hence move
|
|
* by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
|
|
* AVA field in v also have the lower 23 bits ignored.
|
|
* For base page size 4K we need 14 .. 65 bits (so need to
|
|
* collect extra 11 bits)
|
|
* For others we need 14..14+i
|
|
*/
|
|
/* This covers 14..54 bits of va*/
|
|
rb = (v & ~0x7fUL) << 16; /* AVA field */
|
|
|
|
/*
|
|
* AVA in v had cleared lower 23 bits. We need to derive
|
|
* that from pteg index
|
|
*/
|
|
va_low = pte_index >> 3;
|
|
if (v & HPTE_V_SECONDARY)
|
|
va_low = ~va_low;
|
|
/*
|
|
* get the vpn bits from va_low using reverse of hashing.
|
|
* In v we have va with 23 bits dropped and then left shifted
|
|
* HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
|
|
* right shift it with (SID_SHIFT - (23 - 7))
|
|
*/
|
|
if (!(v & HPTE_V_1TB_SEG))
|
|
va_low ^= v >> (SID_SHIFT - 16);
|
|
else
|
|
va_low ^= v >> (SID_SHIFT_1T - 16);
|
|
va_low &= 0x7ff;
|
|
|
|
switch (b_psize) {
|
|
case MMU_PAGE_4K:
|
|
sllp = get_sllp_encoding(a_psize);
|
|
rb |= sllp << 5; /* AP field */
|
|
rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */
|
|
break;
|
|
default:
|
|
{
|
|
int aval_shift;
|
|
/*
|
|
* remaining bits of AVA/LP fields
|
|
* Also contain the rr bits of LP
|
|
*/
|
|
rb |= (va_low << mmu_psize_defs[b_psize].shift) & 0x7ff000;
|
|
/*
|
|
* Now clear not needed LP bits based on actual psize
|
|
*/
|
|
rb &= ~((1ul << mmu_psize_defs[a_psize].shift) - 1);
|
|
/*
|
|
* AVAL field 58..77 - base_page_shift bits of va
|
|
* we have space for 58..64 bits, Missing bits should
|
|
* be zero filled. +1 is to take care of L bit shift
|
|
*/
|
|
aval_shift = 64 - (77 - mmu_psize_defs[b_psize].shift) + 1;
|
|
rb |= ((va_low << aval_shift) & 0xfe);
|
|
|
|
rb |= 1; /* L field */
|
|
penc = mmu_psize_defs[b_psize].penc[a_psize];
|
|
rb |= penc << 12; /* LP field */
|
|
break;
|
|
}
|
|
}
|
|
rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */
|
|
return rb;
|
|
}
|
|
|
|
static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
|
|
{
|
|
return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static inline int hpte_is_writable(unsigned long ptel)
|
|
{
|
|
unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
|
|
|
|
return pp != PP_RXRX && pp != PP_RXXX;
|
|
}
|
|
|
|
static inline unsigned long hpte_make_readonly(unsigned long ptel)
|
|
{
|
|
if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
|
|
ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
|
|
else
|
|
ptel |= PP_RXRX;
|
|
return ptel;
|
|
}
|
|
|
|
static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
|
|
{
|
|
unsigned int wimg = hptel & HPTE_R_WIMG;
|
|
|
|
/* Handle SAO */
|
|
if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
|
|
cpu_has_feature(CPU_FTR_ARCH_206))
|
|
wimg = HPTE_R_M;
|
|
|
|
if (!is_ci)
|
|
return wimg == HPTE_R_M;
|
|
/*
|
|
* if host is mapped cache inhibited, make sure hptel also have
|
|
* cache inhibited.
|
|
*/
|
|
if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
|
|
return false;
|
|
return !!(wimg & HPTE_R_I);
|
|
}
|
|
|
|
/*
|
|
* If it's present and writable, atomically set dirty and referenced bits and
|
|
* return the PTE, otherwise return 0.
|
|
*/
|
|
static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
|
|
{
|
|
pte_t old_pte, new_pte = __pte(0);
|
|
|
|
while (1) {
|
|
/*
|
|
* Make sure we don't reload from ptep
|
|
*/
|
|
old_pte = READ_ONCE(*ptep);
|
|
/*
|
|
* wait until H_PAGE_BUSY is clear then set it atomically
|
|
*/
|
|
if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
|
|
cpu_relax();
|
|
continue;
|
|
}
|
|
/* If pte is not present return None */
|
|
if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT)))
|
|
return __pte(0);
|
|
|
|
new_pte = pte_mkyoung(old_pte);
|
|
if (writing && pte_write(old_pte))
|
|
new_pte = pte_mkdirty(new_pte);
|
|
|
|
if (pte_xchg(ptep, old_pte, new_pte))
|
|
break;
|
|
}
|
|
return new_pte;
|
|
}
|
|
|
|
static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
|
|
{
|
|
if (key)
|
|
return PP_RWRX <= pp && pp <= PP_RXRX;
|
|
return true;
|
|
}
|
|
|
|
static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
|
|
{
|
|
if (key)
|
|
return pp == PP_RWRW;
|
|
return pp <= PP_RWRW;
|
|
}
|
|
|
|
static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
|
|
{
|
|
unsigned long skey;
|
|
|
|
skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
|
|
((hpte_r & HPTE_R_KEY_LO) >> 9);
|
|
return (amr >> (62 - 2 * skey)) & 3;
|
|
}
|
|
|
|
static inline void lock_rmap(unsigned long *rmap)
|
|
{
|
|
do {
|
|
while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
|
|
cpu_relax();
|
|
} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
|
|
}
|
|
|
|
static inline void unlock_rmap(unsigned long *rmap)
|
|
{
|
|
__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
|
|
}
|
|
|
|
static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
|
|
unsigned long pagesize)
|
|
{
|
|
unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
|
|
|
|
if (pagesize <= PAGE_SIZE)
|
|
return true;
|
|
return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
|
|
}
|
|
|
|
/*
|
|
* This works for 4k, 64k and 16M pages on POWER7,
|
|
* and 4k and 16M pages on PPC970.
|
|
*/
|
|
static inline unsigned long slb_pgsize_encoding(unsigned long psize)
|
|
{
|
|
unsigned long senc = 0;
|
|
|
|
if (psize > 0x1000) {
|
|
senc = SLB_VSID_L;
|
|
if (psize == 0x10000)
|
|
senc |= SLB_VSID_LP_01;
|
|
}
|
|
return senc;
|
|
}
|
|
|
|
static inline int is_vrma_hpte(unsigned long hpte_v)
|
|
{
|
|
return (hpte_v & ~0xffffffUL) ==
|
|
(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
/*
|
|
* Note modification of an HPTE; set the HPTE modified bit
|
|
* if anyone is interested.
|
|
*/
|
|
static inline void note_hpte_modification(struct kvm *kvm,
|
|
struct revmap_entry *rev)
|
|
{
|
|
if (atomic_read(&kvm->arch.hpte_mod_interest))
|
|
rev->guest_rpte |= HPTE_GR_MODIFIED;
|
|
}
|
|
|
|
/*
|
|
* Like kvm_memslots(), but for use in real mode when we can't do
|
|
* any RCU stuff (since the secondary threads are offline from the
|
|
* kernel's point of view), and we can't print anything.
|
|
* Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
|
|
*/
|
|
static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
|
|
{
|
|
return rcu_dereference_raw_notrace(kvm->memslots[0]);
|
|
}
|
|
|
|
extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
|
|
|
|
extern void kvmhv_rm_send_ipi(int cpu);
|
|
|
|
static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
|
|
{
|
|
/* HPTEs are 2**4 bytes long */
|
|
return 1UL << (hpt->order - 4);
|
|
}
|
|
|
|
static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
|
|
{
|
|
/* 128 (2**7) bytes in each HPTEG */
|
|
return (1UL << (hpt->order - 7)) - 1;
|
|
}
|
|
|
|
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
|
|
|
|
#endif /* __ASM_KVM_BOOK3S_64_H__ */
|