Getting samples for the idle task is often not interesting, so don't generate them when exclude_idle is set for the event in question. Signed-off-by: Søren Sandmann Pedersen <sandmann@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> LKML-Reference: <ye8pr8fmlq7.fsf@camel16.daimi.au.dk> Signed-off-by: Ingo Molnar <mingo@elte.hu>
		
			
				
	
	
		
			5131 lines
		
	
	
		
			116 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5131 lines
		
	
	
		
			116 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Performance events core code:
 | |
|  *
 | |
|  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 | |
|  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 | |
|  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | |
|  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 | |
|  *
 | |
|  * For licensing details see kernel-base/COPYING
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <linux/dcache.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/vmstat.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/anon_inodes.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/perf_event.h>
 | |
| 
 | |
| #include <asm/irq_regs.h>
 | |
| 
 | |
| /*
 | |
|  * Each CPU has a list of per CPU events:
 | |
|  */
 | |
| DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
 | |
| 
 | |
| int perf_max_events __read_mostly = 1;
 | |
| static int perf_reserved_percpu __read_mostly;
 | |
| static int perf_overcommit __read_mostly = 1;
 | |
| 
 | |
| static atomic_t nr_events __read_mostly;
 | |
| static atomic_t nr_mmap_events __read_mostly;
 | |
| static atomic_t nr_comm_events __read_mostly;
 | |
| static atomic_t nr_task_events __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * perf event paranoia level:
 | |
|  *  -1 - not paranoid at all
 | |
|  *   0 - disallow raw tracepoint access for unpriv
 | |
|  *   1 - disallow cpu events for unpriv
 | |
|  *   2 - disallow kernel profiling for unpriv
 | |
|  */
 | |
| int sysctl_perf_event_paranoid __read_mostly = 1;
 | |
| 
 | |
| static inline bool perf_paranoid_tracepoint_raw(void)
 | |
| {
 | |
| 	return sysctl_perf_event_paranoid > -1;
 | |
| }
 | |
| 
 | |
| static inline bool perf_paranoid_cpu(void)
 | |
| {
 | |
| 	return sysctl_perf_event_paranoid > 0;
 | |
| }
 | |
| 
 | |
| static inline bool perf_paranoid_kernel(void)
 | |
| {
 | |
| 	return sysctl_perf_event_paranoid > 1;
 | |
| }
 | |
| 
 | |
| int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
 | |
| 
 | |
| /*
 | |
|  * max perf event sample rate
 | |
|  */
 | |
| int sysctl_perf_event_sample_rate __read_mostly = 100000;
 | |
| 
 | |
| static atomic64_t perf_event_id;
 | |
| 
 | |
| /*
 | |
|  * Lock for (sysadmin-configurable) event reservations:
 | |
|  */
 | |
| static DEFINE_SPINLOCK(perf_resource_lock);
 | |
| 
 | |
| /*
 | |
|  * Architecture provided APIs - weak aliases:
 | |
|  */
 | |
| extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void __weak hw_perf_disable(void)		{ barrier(); }
 | |
| void __weak hw_perf_enable(void)		{ barrier(); }
 | |
| 
 | |
| void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
 | |
| void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
 | |
| 
 | |
| int __weak
 | |
| hw_perf_group_sched_in(struct perf_event *group_leader,
 | |
| 	       struct perf_cpu_context *cpuctx,
 | |
| 	       struct perf_event_context *ctx, int cpu)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __weak perf_event_print_debug(void)	{ }
 | |
| 
 | |
| static DEFINE_PER_CPU(int, perf_disable_count);
 | |
| 
 | |
| void __perf_disable(void)
 | |
| {
 | |
| 	__get_cpu_var(perf_disable_count)++;
 | |
| }
 | |
| 
 | |
| bool __perf_enable(void)
 | |
| {
 | |
| 	return !--__get_cpu_var(perf_disable_count);
 | |
| }
 | |
| 
 | |
| void perf_disable(void)
 | |
| {
 | |
| 	__perf_disable();
 | |
| 	hw_perf_disable();
 | |
| }
 | |
| 
 | |
| void perf_enable(void)
 | |
| {
 | |
| 	if (__perf_enable())
 | |
| 		hw_perf_enable();
 | |
| }
 | |
| 
 | |
| static void get_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
 | |
| }
 | |
| 
 | |
| static void free_ctx(struct rcu_head *head)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| 	ctx = container_of(head, struct perf_event_context, rcu_head);
 | |
| 	kfree(ctx);
 | |
| }
 | |
| 
 | |
| static void put_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&ctx->refcount)) {
 | |
| 		if (ctx->parent_ctx)
 | |
| 			put_ctx(ctx->parent_ctx);
 | |
| 		if (ctx->task)
 | |
| 			put_task_struct(ctx->task);
 | |
| 		call_rcu(&ctx->rcu_head, free_ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void unclone_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (ctx->parent_ctx) {
 | |
| 		put_ctx(ctx->parent_ctx);
 | |
| 		ctx->parent_ctx = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we inherit events we want to return the parent event id
 | |
|  * to userspace.
 | |
|  */
 | |
| static u64 primary_event_id(struct perf_event *event)
 | |
| {
 | |
| 	u64 id = event->id;
 | |
| 
 | |
| 	if (event->parent)
 | |
| 		id = event->parent->id;
 | |
| 
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the perf_event_context for a task and lock it.
 | |
|  * This has to cope with with the fact that until it is locked,
 | |
|  * the context could get moved to another task.
 | |
|  */
 | |
| static struct perf_event_context *
 | |
| perf_lock_task_context(struct task_struct *task, unsigned long *flags)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
|  retry:
 | |
| 	ctx = rcu_dereference(task->perf_event_ctxp);
 | |
| 	if (ctx) {
 | |
| 		/*
 | |
| 		 * If this context is a clone of another, it might
 | |
| 		 * get swapped for another underneath us by
 | |
| 		 * perf_event_task_sched_out, though the
 | |
| 		 * rcu_read_lock() protects us from any context
 | |
| 		 * getting freed.  Lock the context and check if it
 | |
| 		 * got swapped before we could get the lock, and retry
 | |
| 		 * if so.  If we locked the right context, then it
 | |
| 		 * can't get swapped on us any more.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&ctx->lock, *flags);
 | |
| 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
 | |
| 			spin_unlock_irqrestore(&ctx->lock, *flags);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		if (!atomic_inc_not_zero(&ctx->refcount)) {
 | |
| 			spin_unlock_irqrestore(&ctx->lock, *flags);
 | |
| 			ctx = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the context for a task and increment its pin_count so it
 | |
|  * can't get swapped to another task.  This also increments its
 | |
|  * reference count so that the context can't get freed.
 | |
|  */
 | |
| static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	ctx = perf_lock_task_context(task, &flags);
 | |
| 	if (ctx) {
 | |
| 		++ctx->pin_count;
 | |
| 		spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 	}
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| static void perf_unpin_context(struct perf_event_context *ctx)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&ctx->lock, flags);
 | |
| 	--ctx->pin_count;
 | |
| 	spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 	put_ctx(ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a event from the lists for its context.
 | |
|  * Must be called with ctx->mutex and ctx->lock held.
 | |
|  */
 | |
| static void
 | |
| list_add_event(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *group_leader = event->group_leader;
 | |
| 
 | |
| 	/*
 | |
| 	 * Depending on whether it is a standalone or sibling event,
 | |
| 	 * add it straight to the context's event list, or to the group
 | |
| 	 * leader's sibling list:
 | |
| 	 */
 | |
| 	if (group_leader == event)
 | |
| 		list_add_tail(&event->group_entry, &ctx->group_list);
 | |
| 	else {
 | |
| 		list_add_tail(&event->group_entry, &group_leader->sibling_list);
 | |
| 		group_leader->nr_siblings++;
 | |
| 	}
 | |
| 
 | |
| 	list_add_rcu(&event->event_entry, &ctx->event_list);
 | |
| 	ctx->nr_events++;
 | |
| 	if (event->attr.inherit_stat)
 | |
| 		ctx->nr_stat++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a event from the lists for its context.
 | |
|  * Must be called with ctx->mutex and ctx->lock held.
 | |
|  */
 | |
| static void
 | |
| list_del_event(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *sibling, *tmp;
 | |
| 
 | |
| 	if (list_empty(&event->group_entry))
 | |
| 		return;
 | |
| 	ctx->nr_events--;
 | |
| 	if (event->attr.inherit_stat)
 | |
| 		ctx->nr_stat--;
 | |
| 
 | |
| 	list_del_init(&event->group_entry);
 | |
| 	list_del_rcu(&event->event_entry);
 | |
| 
 | |
| 	if (event->group_leader != event)
 | |
| 		event->group_leader->nr_siblings--;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this was a group event with sibling events then
 | |
| 	 * upgrade the siblings to singleton events by adding them
 | |
| 	 * to the context list directly:
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
 | |
| 
 | |
| 		list_move_tail(&sibling->group_entry, &ctx->group_list);
 | |
| 		sibling->group_leader = sibling;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| event_sched_out(struct perf_event *event,
 | |
| 		  struct perf_cpu_context *cpuctx,
 | |
| 		  struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 	if (event->pending_disable) {
 | |
| 		event->pending_disable = 0;
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 	}
 | |
| 	event->tstamp_stopped = ctx->time;
 | |
| 	event->pmu->disable(event);
 | |
| 	event->oncpu = -1;
 | |
| 
 | |
| 	if (!is_software_event(event))
 | |
| 		cpuctx->active_oncpu--;
 | |
| 	ctx->nr_active--;
 | |
| 	if (event->attr.exclusive || !cpuctx->active_oncpu)
 | |
| 		cpuctx->exclusive = 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| group_sched_out(struct perf_event *group_event,
 | |
| 		struct perf_cpu_context *cpuctx,
 | |
| 		struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	event_sched_out(group_event, cpuctx, ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Schedule out siblings (if any):
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
 | |
| 		event_sched_out(event, cpuctx, ctx);
 | |
| 
 | |
| 	if (group_event->attr.exclusive)
 | |
| 		cpuctx->exclusive = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to remove a performance event
 | |
|  *
 | |
|  * We disable the event on the hardware level first. After that we
 | |
|  * remove it from the context list.
 | |
|  */
 | |
| static void __perf_event_remove_from_context(void *info)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a task context, we need to check whether it is
 | |
| 	 * the current task context of this cpu. If not it has been
 | |
| 	 * scheduled out before the smp call arrived.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&ctx->lock);
 | |
| 	/*
 | |
| 	 * Protect the list operation against NMI by disabling the
 | |
| 	 * events on a global level.
 | |
| 	 */
 | |
| 	perf_disable();
 | |
| 
 | |
| 	event_sched_out(event, cpuctx, ctx);
 | |
| 
 | |
| 	list_del_event(event, ctx);
 | |
| 
 | |
| 	if (!ctx->task) {
 | |
| 		/*
 | |
| 		 * Allow more per task events with respect to the
 | |
| 		 * reservation:
 | |
| 		 */
 | |
| 		cpuctx->max_pertask =
 | |
| 			min(perf_max_events - ctx->nr_events,
 | |
| 			    perf_max_events - perf_reserved_percpu);
 | |
| 	}
 | |
| 
 | |
| 	perf_enable();
 | |
| 	spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Remove the event from a task's (or a CPU's) list of events.
 | |
|  *
 | |
|  * Must be called with ctx->mutex held.
 | |
|  *
 | |
|  * CPU events are removed with a smp call. For task events we only
 | |
|  * call when the task is on a CPU.
 | |
|  *
 | |
|  * If event->ctx is a cloned context, callers must make sure that
 | |
|  * every task struct that event->ctx->task could possibly point to
 | |
|  * remains valid.  This is OK when called from perf_release since
 | |
|  * that only calls us on the top-level context, which can't be a clone.
 | |
|  * When called from perf_event_exit_task, it's OK because the
 | |
|  * context has been detached from its task.
 | |
|  */
 | |
| static void perf_event_remove_from_context(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct task_struct *task = ctx->task;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Per cpu events are removed via an smp call and
 | |
| 		 * the removal is always sucessful.
 | |
| 		 */
 | |
| 		smp_call_function_single(event->cpu,
 | |
| 					 __perf_event_remove_from_context,
 | |
| 					 event, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	task_oncpu_function_call(task, __perf_event_remove_from_context,
 | |
| 				 event);
 | |
| 
 | |
| 	spin_lock_irq(&ctx->lock);
 | |
| 	/*
 | |
| 	 * If the context is active we need to retry the smp call.
 | |
| 	 */
 | |
| 	if (ctx->nr_active && !list_empty(&event->group_entry)) {
 | |
| 		spin_unlock_irq(&ctx->lock);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The lock prevents that this context is scheduled in so we
 | |
| 	 * can remove the event safely, if the call above did not
 | |
| 	 * succeed.
 | |
| 	 */
 | |
| 	if (!list_empty(&event->group_entry)) {
 | |
| 		list_del_event(event, ctx);
 | |
| 	}
 | |
| 	spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| 
 | |
| static inline u64 perf_clock(void)
 | |
| {
 | |
| 	return cpu_clock(smp_processor_id());
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the record of the current time in a context.
 | |
|  */
 | |
| static void update_context_time(struct perf_event_context *ctx)
 | |
| {
 | |
| 	u64 now = perf_clock();
 | |
| 
 | |
| 	ctx->time += now - ctx->timestamp;
 | |
| 	ctx->timestamp = now;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the total_time_enabled and total_time_running fields for a event.
 | |
|  */
 | |
| static void update_event_times(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	u64 run_end;
 | |
| 
 | |
| 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
 | |
| 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	event->total_time_enabled = ctx->time - event->tstamp_enabled;
 | |
| 
 | |
| 	if (event->state == PERF_EVENT_STATE_INACTIVE)
 | |
| 		run_end = event->tstamp_stopped;
 | |
| 	else
 | |
| 		run_end = ctx->time;
 | |
| 
 | |
| 	event->total_time_running = run_end - event->tstamp_running;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update total_time_enabled and total_time_running for all events in a group.
 | |
|  */
 | |
| static void update_group_times(struct perf_event *leader)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	update_event_times(leader);
 | |
| 	list_for_each_entry(event, &leader->sibling_list, group_entry)
 | |
| 		update_event_times(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to disable a performance event
 | |
|  */
 | |
| static void __perf_event_disable(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a per-task event, need to check whether this
 | |
| 	 * event's task is the current task on this cpu.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&ctx->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is on, turn it off.
 | |
| 	 * If it is in error state, leave it in error state.
 | |
| 	 */
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
 | |
| 		update_context_time(ctx);
 | |
| 		update_group_times(event);
 | |
| 		if (event == event->group_leader)
 | |
| 			group_sched_out(event, cpuctx, ctx);
 | |
| 		else
 | |
| 			event_sched_out(event, cpuctx, ctx);
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Disable a event.
 | |
|  *
 | |
|  * If event->ctx is a cloned context, callers must make sure that
 | |
|  * every task struct that event->ctx->task could possibly point to
 | |
|  * remains valid.  This condition is satisifed when called through
 | |
|  * perf_event_for_each_child or perf_event_for_each because they
 | |
|  * hold the top-level event's child_mutex, so any descendant that
 | |
|  * goes to exit will block in sync_child_event.
 | |
|  * When called from perf_pending_event it's OK because event->ctx
 | |
|  * is the current context on this CPU and preemption is disabled,
 | |
|  * hence we can't get into perf_event_task_sched_out for this context.
 | |
|  */
 | |
| static void perf_event_disable(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct task_struct *task = ctx->task;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Disable the event on the cpu that it's on
 | |
| 		 */
 | |
| 		smp_call_function_single(event->cpu, __perf_event_disable,
 | |
| 					 event, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
|  retry:
 | |
| 	task_oncpu_function_call(task, __perf_event_disable, event);
 | |
| 
 | |
| 	spin_lock_irq(&ctx->lock);
 | |
| 	/*
 | |
| 	 * If the event is still active, we need to retry the cross-call.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
 | |
| 		spin_unlock_irq(&ctx->lock);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we have the lock this context can't be scheduled
 | |
| 	 * in, so we can change the state safely.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
 | |
| 		update_group_times(event);
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| 
 | |
| static int
 | |
| event_sched_in(struct perf_event *event,
 | |
| 		 struct perf_cpu_context *cpuctx,
 | |
| 		 struct perf_event_context *ctx,
 | |
| 		 int cpu)
 | |
| {
 | |
| 	if (event->state <= PERF_EVENT_STATE_OFF)
 | |
| 		return 0;
 | |
| 
 | |
| 	event->state = PERF_EVENT_STATE_ACTIVE;
 | |
| 	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
 | |
| 	/*
 | |
| 	 * The new state must be visible before we turn it on in the hardware:
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	if (event->pmu->enable(event)) {
 | |
| 		event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 		event->oncpu = -1;
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	event->tstamp_running += ctx->time - event->tstamp_stopped;
 | |
| 
 | |
| 	if (!is_software_event(event))
 | |
| 		cpuctx->active_oncpu++;
 | |
| 	ctx->nr_active++;
 | |
| 
 | |
| 	if (event->attr.exclusive)
 | |
| 		cpuctx->exclusive = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| group_sched_in(struct perf_event *group_event,
 | |
| 	       struct perf_cpu_context *cpuctx,
 | |
| 	       struct perf_event_context *ctx,
 | |
| 	       int cpu)
 | |
| {
 | |
| 	struct perf_event *event, *partial_group;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (group_event->state == PERF_EVENT_STATE_OFF)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
 | |
| 	if (ret)
 | |
| 		return ret < 0 ? ret : 0;
 | |
| 
 | |
| 	if (event_sched_in(group_event, cpuctx, ctx, cpu))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/*
 | |
| 	 * Schedule in siblings as one group (if any):
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
 | |
| 		if (event_sched_in(event, cpuctx, ctx, cpu)) {
 | |
| 			partial_group = event;
 | |
| 			goto group_error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| group_error:
 | |
| 	/*
 | |
| 	 * Groups can be scheduled in as one unit only, so undo any
 | |
| 	 * partial group before returning:
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
 | |
| 		if (event == partial_group)
 | |
| 			break;
 | |
| 		event_sched_out(event, cpuctx, ctx);
 | |
| 	}
 | |
| 	event_sched_out(group_event, cpuctx, ctx);
 | |
| 
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 for a group consisting entirely of software events,
 | |
|  * 0 if the group contains any hardware events.
 | |
|  */
 | |
| static int is_software_only_group(struct perf_event *leader)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	if (!is_software_event(leader))
 | |
| 		return 0;
 | |
| 
 | |
| 	list_for_each_entry(event, &leader->sibling_list, group_entry)
 | |
| 		if (!is_software_event(event))
 | |
| 			return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Work out whether we can put this event group on the CPU now.
 | |
|  */
 | |
| static int group_can_go_on(struct perf_event *event,
 | |
| 			   struct perf_cpu_context *cpuctx,
 | |
| 			   int can_add_hw)
 | |
| {
 | |
| 	/*
 | |
| 	 * Groups consisting entirely of software events can always go on.
 | |
| 	 */
 | |
| 	if (is_software_only_group(event))
 | |
| 		return 1;
 | |
| 	/*
 | |
| 	 * If an exclusive group is already on, no other hardware
 | |
| 	 * events can go on.
 | |
| 	 */
 | |
| 	if (cpuctx->exclusive)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * If this group is exclusive and there are already
 | |
| 	 * events on the CPU, it can't go on.
 | |
| 	 */
 | |
| 	if (event->attr.exclusive && cpuctx->active_oncpu)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Otherwise, try to add it if all previous groups were able
 | |
| 	 * to go on.
 | |
| 	 */
 | |
| 	return can_add_hw;
 | |
| }
 | |
| 
 | |
| static void add_event_to_ctx(struct perf_event *event,
 | |
| 			       struct perf_event_context *ctx)
 | |
| {
 | |
| 	list_add_event(event, ctx);
 | |
| 	event->tstamp_enabled = ctx->time;
 | |
| 	event->tstamp_running = ctx->time;
 | |
| 	event->tstamp_stopped = ctx->time;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to install and enable a performance event
 | |
|  *
 | |
|  * Must be called with ctx->mutex held
 | |
|  */
 | |
| static void __perf_install_in_context(void *info)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_event *leader = event->group_leader;
 | |
| 	int cpu = smp_processor_id();
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a task context, we need to check whether it is
 | |
| 	 * the current task context of this cpu. If not it has been
 | |
| 	 * scheduled out before the smp call arrived.
 | |
| 	 * Or possibly this is the right context but it isn't
 | |
| 	 * on this cpu because it had no events.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx) {
 | |
| 		if (cpuctx->task_ctx || ctx->task != current)
 | |
| 			return;
 | |
| 		cpuctx->task_ctx = ctx;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&ctx->lock);
 | |
| 	ctx->is_active = 1;
 | |
| 	update_context_time(ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Protect the list operation against NMI by disabling the
 | |
| 	 * events on a global level. NOP for non NMI based events.
 | |
| 	 */
 | |
| 	perf_disable();
 | |
| 
 | |
| 	add_event_to_ctx(event, ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't put the event on if it is disabled or if
 | |
| 	 * it is in a group and the group isn't on.
 | |
| 	 */
 | |
| 	if (event->state != PERF_EVENT_STATE_INACTIVE ||
 | |
| 	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * An exclusive event can't go on if there are already active
 | |
| 	 * hardware events, and no hardware event can go on if there
 | |
| 	 * is already an exclusive event on.
 | |
| 	 */
 | |
| 	if (!group_can_go_on(event, cpuctx, 1))
 | |
| 		err = -EEXIST;
 | |
| 	else
 | |
| 		err = event_sched_in(event, cpuctx, ctx, cpu);
 | |
| 
 | |
| 	if (err) {
 | |
| 		/*
 | |
| 		 * This event couldn't go on.  If it is in a group
 | |
| 		 * then we have to pull the whole group off.
 | |
| 		 * If the event group is pinned then put it in error state.
 | |
| 		 */
 | |
| 		if (leader != event)
 | |
| 			group_sched_out(leader, cpuctx, ctx);
 | |
| 		if (leader->attr.pinned) {
 | |
| 			update_group_times(leader);
 | |
| 			leader->state = PERF_EVENT_STATE_ERROR;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!err && !ctx->task && cpuctx->max_pertask)
 | |
| 		cpuctx->max_pertask--;
 | |
| 
 | |
|  unlock:
 | |
| 	perf_enable();
 | |
| 
 | |
| 	spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attach a performance event to a context
 | |
|  *
 | |
|  * First we add the event to the list with the hardware enable bit
 | |
|  * in event->hw_config cleared.
 | |
|  *
 | |
|  * If the event is attached to a task which is on a CPU we use a smp
 | |
|  * call to enable it in the task context. The task might have been
 | |
|  * scheduled away, but we check this in the smp call again.
 | |
|  *
 | |
|  * Must be called with ctx->mutex held.
 | |
|  */
 | |
| static void
 | |
| perf_install_in_context(struct perf_event_context *ctx,
 | |
| 			struct perf_event *event,
 | |
| 			int cpu)
 | |
| {
 | |
| 	struct task_struct *task = ctx->task;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Per cpu events are installed via an smp call and
 | |
| 		 * the install is always sucessful.
 | |
| 		 */
 | |
| 		smp_call_function_single(cpu, __perf_install_in_context,
 | |
| 					 event, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	task_oncpu_function_call(task, __perf_install_in_context,
 | |
| 				 event);
 | |
| 
 | |
| 	spin_lock_irq(&ctx->lock);
 | |
| 	/*
 | |
| 	 * we need to retry the smp call.
 | |
| 	 */
 | |
| 	if (ctx->is_active && list_empty(&event->group_entry)) {
 | |
| 		spin_unlock_irq(&ctx->lock);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The lock prevents that this context is scheduled in so we
 | |
| 	 * can add the event safely, if it the call above did not
 | |
| 	 * succeed.
 | |
| 	 */
 | |
| 	if (list_empty(&event->group_entry))
 | |
| 		add_event_to_ctx(event, ctx);
 | |
| 	spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put a event into inactive state and update time fields.
 | |
|  * Enabling the leader of a group effectively enables all
 | |
|  * the group members that aren't explicitly disabled, so we
 | |
|  * have to update their ->tstamp_enabled also.
 | |
|  * Note: this works for group members as well as group leaders
 | |
|  * since the non-leader members' sibling_lists will be empty.
 | |
|  */
 | |
| static void __perf_event_mark_enabled(struct perf_event *event,
 | |
| 					struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *sub;
 | |
| 
 | |
| 	event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 	event->tstamp_enabled = ctx->time - event->total_time_enabled;
 | |
| 	list_for_each_entry(sub, &event->sibling_list, group_entry)
 | |
| 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 			sub->tstamp_enabled =
 | |
| 				ctx->time - sub->total_time_enabled;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to enable a performance event
 | |
|  */
 | |
| static void __perf_event_enable(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_event *leader = event->group_leader;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a per-task event, need to check whether this
 | |
| 	 * event's task is the current task on this cpu.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx) {
 | |
| 		if (cpuctx->task_ctx || ctx->task != current)
 | |
| 			return;
 | |
| 		cpuctx->task_ctx = ctx;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&ctx->lock);
 | |
| 	ctx->is_active = 1;
 | |
| 	update_context_time(ctx);
 | |
| 
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		goto unlock;
 | |
| 	__perf_event_mark_enabled(event, ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is in a group and isn't the group leader,
 | |
| 	 * then don't put it on unless the group is on.
 | |
| 	 */
 | |
| 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (!group_can_go_on(event, cpuctx, 1)) {
 | |
| 		err = -EEXIST;
 | |
| 	} else {
 | |
| 		perf_disable();
 | |
| 		if (event == leader)
 | |
| 			err = group_sched_in(event, cpuctx, ctx,
 | |
| 					     smp_processor_id());
 | |
| 		else
 | |
| 			err = event_sched_in(event, cpuctx, ctx,
 | |
| 					       smp_processor_id());
 | |
| 		perf_enable();
 | |
| 	}
 | |
| 
 | |
| 	if (err) {
 | |
| 		/*
 | |
| 		 * If this event can't go on and it's part of a
 | |
| 		 * group, then the whole group has to come off.
 | |
| 		 */
 | |
| 		if (leader != event)
 | |
| 			group_sched_out(leader, cpuctx, ctx);
 | |
| 		if (leader->attr.pinned) {
 | |
| 			update_group_times(leader);
 | |
| 			leader->state = PERF_EVENT_STATE_ERROR;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|  unlock:
 | |
| 	spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable a event.
 | |
|  *
 | |
|  * If event->ctx is a cloned context, callers must make sure that
 | |
|  * every task struct that event->ctx->task could possibly point to
 | |
|  * remains valid.  This condition is satisfied when called through
 | |
|  * perf_event_for_each_child or perf_event_for_each as described
 | |
|  * for perf_event_disable.
 | |
|  */
 | |
| static void perf_event_enable(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct task_struct *task = ctx->task;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Enable the event on the cpu that it's on
 | |
| 		 */
 | |
| 		smp_call_function_single(event->cpu, __perf_event_enable,
 | |
| 					 event, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&ctx->lock);
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is in error state, clear that first.
 | |
| 	 * That way, if we see the event in error state below, we
 | |
| 	 * know that it has gone back into error state, as distinct
 | |
| 	 * from the task having been scheduled away before the
 | |
| 	 * cross-call arrived.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ERROR)
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 
 | |
|  retry:
 | |
| 	spin_unlock_irq(&ctx->lock);
 | |
| 	task_oncpu_function_call(task, __perf_event_enable, event);
 | |
| 
 | |
| 	spin_lock_irq(&ctx->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the context is active and the event is still off,
 | |
| 	 * we need to retry the cross-call.
 | |
| 	 */
 | |
| 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
 | |
| 		goto retry;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we have the lock this context can't be scheduled
 | |
| 	 * in, so we can change the state safely.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_OFF)
 | |
| 		__perf_event_mark_enabled(event, ctx);
 | |
| 
 | |
|  out:
 | |
| 	spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| 
 | |
| static int perf_event_refresh(struct perf_event *event, int refresh)
 | |
| {
 | |
| 	/*
 | |
| 	 * not supported on inherited events
 | |
| 	 */
 | |
| 	if (event->attr.inherit)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	atomic_add(refresh, &event->event_limit);
 | |
| 	perf_event_enable(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __perf_event_sched_out(struct perf_event_context *ctx,
 | |
| 			      struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	spin_lock(&ctx->lock);
 | |
| 	ctx->is_active = 0;
 | |
| 	if (likely(!ctx->nr_events))
 | |
| 		goto out;
 | |
| 	update_context_time(ctx);
 | |
| 
 | |
| 	perf_disable();
 | |
| 	if (ctx->nr_active)
 | |
| 		list_for_each_entry(event, &ctx->group_list, group_entry)
 | |
| 			group_sched_out(event, cpuctx, ctx);
 | |
| 
 | |
| 	perf_enable();
 | |
|  out:
 | |
| 	spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test whether two contexts are equivalent, i.e. whether they
 | |
|  * have both been cloned from the same version of the same context
 | |
|  * and they both have the same number of enabled events.
 | |
|  * If the number of enabled events is the same, then the set
 | |
|  * of enabled events should be the same, because these are both
 | |
|  * inherited contexts, therefore we can't access individual events
 | |
|  * in them directly with an fd; we can only enable/disable all
 | |
|  * events via prctl, or enable/disable all events in a family
 | |
|  * via ioctl, which will have the same effect on both contexts.
 | |
|  */
 | |
| static int context_equiv(struct perf_event_context *ctx1,
 | |
| 			 struct perf_event_context *ctx2)
 | |
| {
 | |
| 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
 | |
| 		&& ctx1->parent_gen == ctx2->parent_gen
 | |
| 		&& !ctx1->pin_count && !ctx2->pin_count;
 | |
| }
 | |
| 
 | |
| static void __perf_event_read(void *event);
 | |
| 
 | |
| static void __perf_event_sync_stat(struct perf_event *event,
 | |
| 				     struct perf_event *next_event)
 | |
| {
 | |
| 	u64 value;
 | |
| 
 | |
| 	if (!event->attr.inherit_stat)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the event value, we cannot use perf_event_read()
 | |
| 	 * because we're in the middle of a context switch and have IRQs
 | |
| 	 * disabled, which upsets smp_call_function_single(), however
 | |
| 	 * we know the event must be on the current CPU, therefore we
 | |
| 	 * don't need to use it.
 | |
| 	 */
 | |
| 	switch (event->state) {
 | |
| 	case PERF_EVENT_STATE_ACTIVE:
 | |
| 		__perf_event_read(event);
 | |
| 		break;
 | |
| 
 | |
| 	case PERF_EVENT_STATE_INACTIVE:
 | |
| 		update_event_times(event);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to keep per-task stats reliable we need to flip the event
 | |
| 	 * values when we flip the contexts.
 | |
| 	 */
 | |
| 	value = atomic64_read(&next_event->count);
 | |
| 	value = atomic64_xchg(&event->count, value);
 | |
| 	atomic64_set(&next_event->count, value);
 | |
| 
 | |
| 	swap(event->total_time_enabled, next_event->total_time_enabled);
 | |
| 	swap(event->total_time_running, next_event->total_time_running);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we swizzled the values, update the user visible data too.
 | |
| 	 */
 | |
| 	perf_event_update_userpage(event);
 | |
| 	perf_event_update_userpage(next_event);
 | |
| }
 | |
| 
 | |
| #define list_next_entry(pos, member) \
 | |
| 	list_entry(pos->member.next, typeof(*pos), member)
 | |
| 
 | |
| static void perf_event_sync_stat(struct perf_event_context *ctx,
 | |
| 				   struct perf_event_context *next_ctx)
 | |
| {
 | |
| 	struct perf_event *event, *next_event;
 | |
| 
 | |
| 	if (!ctx->nr_stat)
 | |
| 		return;
 | |
| 
 | |
| 	event = list_first_entry(&ctx->event_list,
 | |
| 				   struct perf_event, event_entry);
 | |
| 
 | |
| 	next_event = list_first_entry(&next_ctx->event_list,
 | |
| 					struct perf_event, event_entry);
 | |
| 
 | |
| 	while (&event->event_entry != &ctx->event_list &&
 | |
| 	       &next_event->event_entry != &next_ctx->event_list) {
 | |
| 
 | |
| 		__perf_event_sync_stat(event, next_event);
 | |
| 
 | |
| 		event = list_next_entry(event, event_entry);
 | |
| 		next_event = list_next_entry(next_event, event_entry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from scheduler to remove the events of the current task,
 | |
|  * with interrupts disabled.
 | |
|  *
 | |
|  * We stop each event and update the event value in event->count.
 | |
|  *
 | |
|  * This does not protect us against NMI, but disable()
 | |
|  * sets the disabled bit in the control field of event _before_
 | |
|  * accessing the event control register. If a NMI hits, then it will
 | |
|  * not restart the event.
 | |
|  */
 | |
| void perf_event_task_sched_out(struct task_struct *task,
 | |
| 				 struct task_struct *next, int cpu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
 | |
| 	struct perf_event_context *ctx = task->perf_event_ctxp;
 | |
| 	struct perf_event_context *next_ctx;
 | |
| 	struct perf_event_context *parent;
 | |
| 	struct pt_regs *regs;
 | |
| 	int do_switch = 1;
 | |
| 
 | |
| 	regs = task_pt_regs(task);
 | |
| 	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
 | |
| 
 | |
| 	if (likely(!ctx || !cpuctx->task_ctx))
 | |
| 		return;
 | |
| 
 | |
| 	update_context_time(ctx);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	parent = rcu_dereference(ctx->parent_ctx);
 | |
| 	next_ctx = next->perf_event_ctxp;
 | |
| 	if (parent && next_ctx &&
 | |
| 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
 | |
| 		/*
 | |
| 		 * Looks like the two contexts are clones, so we might be
 | |
| 		 * able to optimize the context switch.  We lock both
 | |
| 		 * contexts and check that they are clones under the
 | |
| 		 * lock (including re-checking that neither has been
 | |
| 		 * uncloned in the meantime).  It doesn't matter which
 | |
| 		 * order we take the locks because no other cpu could
 | |
| 		 * be trying to lock both of these tasks.
 | |
| 		 */
 | |
| 		spin_lock(&ctx->lock);
 | |
| 		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
 | |
| 		if (context_equiv(ctx, next_ctx)) {
 | |
| 			/*
 | |
| 			 * XXX do we need a memory barrier of sorts
 | |
| 			 * wrt to rcu_dereference() of perf_event_ctxp
 | |
| 			 */
 | |
| 			task->perf_event_ctxp = next_ctx;
 | |
| 			next->perf_event_ctxp = ctx;
 | |
| 			ctx->task = next;
 | |
| 			next_ctx->task = task;
 | |
| 			do_switch = 0;
 | |
| 
 | |
| 			perf_event_sync_stat(ctx, next_ctx);
 | |
| 		}
 | |
| 		spin_unlock(&next_ctx->lock);
 | |
| 		spin_unlock(&ctx->lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (do_switch) {
 | |
| 		__perf_event_sched_out(ctx, cpuctx);
 | |
| 		cpuctx->task_ctx = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with IRQs disabled
 | |
|  */
 | |
| static void __perf_event_task_sched_out(struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
 | |
| 
 | |
| 	if (!cpuctx->task_ctx)
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
 | |
| 		return;
 | |
| 
 | |
| 	__perf_event_sched_out(ctx, cpuctx);
 | |
| 	cpuctx->task_ctx = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with IRQs disabled
 | |
|  */
 | |
| static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __perf_event_sched_in(struct perf_event_context *ctx,
 | |
| 			struct perf_cpu_context *cpuctx, int cpu)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	int can_add_hw = 1;
 | |
| 
 | |
| 	spin_lock(&ctx->lock);
 | |
| 	ctx->is_active = 1;
 | |
| 	if (likely(!ctx->nr_events))
 | |
| 		goto out;
 | |
| 
 | |
| 	ctx->timestamp = perf_clock();
 | |
| 
 | |
| 	perf_disable();
 | |
| 
 | |
| 	/*
 | |
| 	 * First go through the list and put on any pinned groups
 | |
| 	 * in order to give them the best chance of going on.
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &ctx->group_list, group_entry) {
 | |
| 		if (event->state <= PERF_EVENT_STATE_OFF ||
 | |
| 		    !event->attr.pinned)
 | |
| 			continue;
 | |
| 		if (event->cpu != -1 && event->cpu != cpu)
 | |
| 			continue;
 | |
| 
 | |
| 		if (group_can_go_on(event, cpuctx, 1))
 | |
| 			group_sched_in(event, cpuctx, ctx, cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this pinned group hasn't been scheduled,
 | |
| 		 * put it in error state.
 | |
| 		 */
 | |
| 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
 | |
| 			update_group_times(event);
 | |
| 			event->state = PERF_EVENT_STATE_ERROR;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(event, &ctx->group_list, group_entry) {
 | |
| 		/*
 | |
| 		 * Ignore events in OFF or ERROR state, and
 | |
| 		 * ignore pinned events since we did them already.
 | |
| 		 */
 | |
| 		if (event->state <= PERF_EVENT_STATE_OFF ||
 | |
| 		    event->attr.pinned)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Listen to the 'cpu' scheduling filter constraint
 | |
| 		 * of events:
 | |
| 		 */
 | |
| 		if (event->cpu != -1 && event->cpu != cpu)
 | |
| 			continue;
 | |
| 
 | |
| 		if (group_can_go_on(event, cpuctx, can_add_hw))
 | |
| 			if (group_sched_in(event, cpuctx, ctx, cpu))
 | |
| 				can_add_hw = 0;
 | |
| 	}
 | |
| 	perf_enable();
 | |
|  out:
 | |
| 	spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from scheduler to add the events of the current task
 | |
|  * with interrupts disabled.
 | |
|  *
 | |
|  * We restore the event value and then enable it.
 | |
|  *
 | |
|  * This does not protect us against NMI, but enable()
 | |
|  * sets the enabled bit in the control field of event _before_
 | |
|  * accessing the event control register. If a NMI hits, then it will
 | |
|  * keep the event running.
 | |
|  */
 | |
| void perf_event_task_sched_in(struct task_struct *task, int cpu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
 | |
| 	struct perf_event_context *ctx = task->perf_event_ctxp;
 | |
| 
 | |
| 	if (likely(!ctx))
 | |
| 		return;
 | |
| 	if (cpuctx->task_ctx == ctx)
 | |
| 		return;
 | |
| 	__perf_event_sched_in(ctx, cpuctx, cpu);
 | |
| 	cpuctx->task_ctx = ctx;
 | |
| }
 | |
| 
 | |
| static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
 | |
| {
 | |
| 	struct perf_event_context *ctx = &cpuctx->ctx;
 | |
| 
 | |
| 	__perf_event_sched_in(ctx, cpuctx, cpu);
 | |
| }
 | |
| 
 | |
| #define MAX_INTERRUPTS (~0ULL)
 | |
| 
 | |
| static void perf_log_throttle(struct perf_event *event, int enable);
 | |
| 
 | |
| static void perf_adjust_period(struct perf_event *event, u64 events)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	u64 period, sample_period;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	events *= hwc->sample_period;
 | |
| 	period = div64_u64(events, event->attr.sample_freq);
 | |
| 
 | |
| 	delta = (s64)(period - hwc->sample_period);
 | |
| 	delta = (delta + 7) / 8; /* low pass filter */
 | |
| 
 | |
| 	sample_period = hwc->sample_period + delta;
 | |
| 
 | |
| 	if (!sample_period)
 | |
| 		sample_period = 1;
 | |
| 
 | |
| 	hwc->sample_period = sample_period;
 | |
| }
 | |
| 
 | |
| static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	struct hw_perf_event *hwc;
 | |
| 	u64 interrupts, freq;
 | |
| 
 | |
| 	spin_lock(&ctx->lock);
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 			continue;
 | |
| 
 | |
| 		hwc = &event->hw;
 | |
| 
 | |
| 		interrupts = hwc->interrupts;
 | |
| 		hwc->interrupts = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * unthrottle events on the tick
 | |
| 		 */
 | |
| 		if (interrupts == MAX_INTERRUPTS) {
 | |
| 			perf_log_throttle(event, 1);
 | |
| 			event->pmu->unthrottle(event);
 | |
| 			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
 | |
| 		}
 | |
| 
 | |
| 		if (!event->attr.freq || !event->attr.sample_freq)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * if the specified freq < HZ then we need to skip ticks
 | |
| 		 */
 | |
| 		if (event->attr.sample_freq < HZ) {
 | |
| 			freq = event->attr.sample_freq;
 | |
| 
 | |
| 			hwc->freq_count += freq;
 | |
| 			hwc->freq_interrupts += interrupts;
 | |
| 
 | |
| 			if (hwc->freq_count < HZ)
 | |
| 				continue;
 | |
| 
 | |
| 			interrupts = hwc->freq_interrupts;
 | |
| 			hwc->freq_interrupts = 0;
 | |
| 			hwc->freq_count -= HZ;
 | |
| 		} else
 | |
| 			freq = HZ;
 | |
| 
 | |
| 		perf_adjust_period(event, freq * interrupts);
 | |
| 
 | |
| 		/*
 | |
| 		 * In order to avoid being stalled by an (accidental) huge
 | |
| 		 * sample period, force reset the sample period if we didn't
 | |
| 		 * get any events in this freq period.
 | |
| 		 */
 | |
| 		if (!interrupts) {
 | |
| 			perf_disable();
 | |
| 			event->pmu->disable(event);
 | |
| 			atomic64_set(&hwc->period_left, 0);
 | |
| 			event->pmu->enable(event);
 | |
| 			perf_enable();
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Round-robin a context's events:
 | |
|  */
 | |
| static void rotate_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	if (!ctx->nr_events)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&ctx->lock);
 | |
| 	/*
 | |
| 	 * Rotate the first entry last (works just fine for group events too):
 | |
| 	 */
 | |
| 	perf_disable();
 | |
| 	list_for_each_entry(event, &ctx->group_list, group_entry) {
 | |
| 		list_move_tail(&event->group_entry, &ctx->group_list);
 | |
| 		break;
 | |
| 	}
 | |
| 	perf_enable();
 | |
| 
 | |
| 	spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| void perf_event_task_tick(struct task_struct *curr, int cpu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| 	if (!atomic_read(&nr_events))
 | |
| 		return;
 | |
| 
 | |
| 	cpuctx = &per_cpu(perf_cpu_context, cpu);
 | |
| 	ctx = curr->perf_event_ctxp;
 | |
| 
 | |
| 	perf_ctx_adjust_freq(&cpuctx->ctx);
 | |
| 	if (ctx)
 | |
| 		perf_ctx_adjust_freq(ctx);
 | |
| 
 | |
| 	perf_event_cpu_sched_out(cpuctx);
 | |
| 	if (ctx)
 | |
| 		__perf_event_task_sched_out(ctx);
 | |
| 
 | |
| 	rotate_ctx(&cpuctx->ctx);
 | |
| 	if (ctx)
 | |
| 		rotate_ctx(ctx);
 | |
| 
 | |
| 	perf_event_cpu_sched_in(cpuctx, cpu);
 | |
| 	if (ctx)
 | |
| 		perf_event_task_sched_in(curr, cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable all of a task's events that have been marked enable-on-exec.
 | |
|  * This expects task == current.
 | |
|  */
 | |
| static void perf_event_enable_on_exec(struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct perf_event *event;
 | |
| 	unsigned long flags;
 | |
| 	int enabled = 0;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	ctx = task->perf_event_ctxp;
 | |
| 	if (!ctx || !ctx->nr_events)
 | |
| 		goto out;
 | |
| 
 | |
| 	__perf_event_task_sched_out(ctx);
 | |
| 
 | |
| 	spin_lock(&ctx->lock);
 | |
| 
 | |
| 	list_for_each_entry(event, &ctx->group_list, group_entry) {
 | |
| 		if (!event->attr.enable_on_exec)
 | |
| 			continue;
 | |
| 		event->attr.enable_on_exec = 0;
 | |
| 		if (event->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 			continue;
 | |
| 		__perf_event_mark_enabled(event, ctx);
 | |
| 		enabled = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Unclone this context if we enabled any event.
 | |
| 	 */
 | |
| 	if (enabled)
 | |
| 		unclone_ctx(ctx);
 | |
| 
 | |
| 	spin_unlock(&ctx->lock);
 | |
| 
 | |
| 	perf_event_task_sched_in(task, smp_processor_id());
 | |
|  out:
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to read the hardware event
 | |
|  */
 | |
| static void __perf_event_read(void *info)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a task context, we need to check whether it is
 | |
| 	 * the current task context of this cpu.  If not it has been
 | |
| 	 * scheduled out before the smp call arrived.  In that case
 | |
| 	 * event->count would have been updated to a recent sample
 | |
| 	 * when the event was scheduled out.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx)
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	if (ctx->is_active)
 | |
| 		update_context_time(ctx);
 | |
| 	event->pmu->read(event);
 | |
| 	update_event_times(event);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static u64 perf_event_read(struct perf_event *event)
 | |
| {
 | |
| 	/*
 | |
| 	 * If event is enabled and currently active on a CPU, update the
 | |
| 	 * value in the event structure:
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
 | |
| 		smp_call_function_single(event->oncpu,
 | |
| 					 __perf_event_read, event, 1);
 | |
| 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
 | |
| 		update_event_times(event);
 | |
| 	}
 | |
| 
 | |
| 	return atomic64_read(&event->count);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the perf_event context in a task_struct:
 | |
|  */
 | |
| static void
 | |
| __perf_event_init_context(struct perf_event_context *ctx,
 | |
| 			    struct task_struct *task)
 | |
| {
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 	spin_lock_init(&ctx->lock);
 | |
| 	mutex_init(&ctx->mutex);
 | |
| 	INIT_LIST_HEAD(&ctx->group_list);
 | |
| 	INIT_LIST_HEAD(&ctx->event_list);
 | |
| 	atomic_set(&ctx->refcount, 1);
 | |
| 	ctx->task = task;
 | |
| }
 | |
| 
 | |
| static struct perf_event_context *find_get_context(pid_t pid, int cpu)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct task_struct *task;
 | |
| 	unsigned long flags;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * If cpu is not a wildcard then this is a percpu event:
 | |
| 	 */
 | |
| 	if (cpu != -1) {
 | |
| 		/* Must be root to operate on a CPU event: */
 | |
| 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
 | |
| 			return ERR_PTR(-EACCES);
 | |
| 
 | |
| 		if (cpu < 0 || cpu > num_possible_cpus())
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 		/*
 | |
| 		 * We could be clever and allow to attach a event to an
 | |
| 		 * offline CPU and activate it when the CPU comes up, but
 | |
| 		 * that's for later.
 | |
| 		 */
 | |
| 		if (!cpu_isset(cpu, cpu_online_map))
 | |
| 			return ERR_PTR(-ENODEV);
 | |
| 
 | |
| 		cpuctx = &per_cpu(perf_cpu_context, cpu);
 | |
| 		ctx = &cpuctx->ctx;
 | |
| 		get_ctx(ctx);
 | |
| 
 | |
| 		return ctx;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!pid)
 | |
| 		task = current;
 | |
| 	else
 | |
| 		task = find_task_by_vpid(pid);
 | |
| 	if (task)
 | |
| 		get_task_struct(task);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (!task)
 | |
| 		return ERR_PTR(-ESRCH);
 | |
| 
 | |
| 	/*
 | |
| 	 * Can't attach events to a dying task.
 | |
| 	 */
 | |
| 	err = -ESRCH;
 | |
| 	if (task->flags & PF_EXITING)
 | |
| 		goto errout;
 | |
| 
 | |
| 	/* Reuse ptrace permission checks for now. */
 | |
| 	err = -EACCES;
 | |
| 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
 | |
| 		goto errout;
 | |
| 
 | |
|  retry:
 | |
| 	ctx = perf_lock_task_context(task, &flags);
 | |
| 	if (ctx) {
 | |
| 		unclone_ctx(ctx);
 | |
| 		spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (!ctx) {
 | |
| 		ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
 | |
| 		err = -ENOMEM;
 | |
| 		if (!ctx)
 | |
| 			goto errout;
 | |
| 		__perf_event_init_context(ctx, task);
 | |
| 		get_ctx(ctx);
 | |
| 		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
 | |
| 			/*
 | |
| 			 * We raced with some other task; use
 | |
| 			 * the context they set.
 | |
| 			 */
 | |
| 			kfree(ctx);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		get_task_struct(task);
 | |
| 	}
 | |
| 
 | |
| 	put_task_struct(task);
 | |
| 	return ctx;
 | |
| 
 | |
|  errout:
 | |
| 	put_task_struct(task);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static void free_event_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	event = container_of(head, struct perf_event, rcu_head);
 | |
| 	if (event->ns)
 | |
| 		put_pid_ns(event->ns);
 | |
| 	kfree(event);
 | |
| }
 | |
| 
 | |
| static void perf_pending_sync(struct perf_event *event);
 | |
| 
 | |
| static void free_event(struct perf_event *event)
 | |
| {
 | |
| 	perf_pending_sync(event);
 | |
| 
 | |
| 	if (!event->parent) {
 | |
| 		atomic_dec(&nr_events);
 | |
| 		if (event->attr.mmap)
 | |
| 			atomic_dec(&nr_mmap_events);
 | |
| 		if (event->attr.comm)
 | |
| 			atomic_dec(&nr_comm_events);
 | |
| 		if (event->attr.task)
 | |
| 			atomic_dec(&nr_task_events);
 | |
| 	}
 | |
| 
 | |
| 	if (event->output) {
 | |
| 		fput(event->output->filp);
 | |
| 		event->output = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (event->destroy)
 | |
| 		event->destroy(event);
 | |
| 
 | |
| 	put_ctx(event->ctx);
 | |
| 	call_rcu(&event->rcu_head, free_event_rcu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when the last reference to the file is gone.
 | |
|  */
 | |
| static int perf_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 
 | |
| 	file->private_data = NULL;
 | |
| 
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 	perf_event_remove_from_context(event);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	mutex_lock(&event->owner->perf_event_mutex);
 | |
| 	list_del_init(&event->owner_entry);
 | |
| 	mutex_unlock(&event->owner->perf_event_mutex);
 | |
| 	put_task_struct(event->owner);
 | |
| 
 | |
| 	free_event(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_event_read_size(struct perf_event *event)
 | |
| {
 | |
| 	int entry = sizeof(u64); /* value */
 | |
| 	int size = 0;
 | |
| 	int nr = 1;
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		size += sizeof(u64);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		size += sizeof(u64);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_ID)
 | |
| 		entry += sizeof(u64);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
 | |
| 		nr += event->group_leader->nr_siblings;
 | |
| 		size += sizeof(u64);
 | |
| 	}
 | |
| 
 | |
| 	size += entry * nr;
 | |
| 
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static u64 perf_event_read_value(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *child;
 | |
| 	u64 total = 0;
 | |
| 
 | |
| 	total += perf_event_read(event);
 | |
| 	list_for_each_entry(child, &event->child_list, child_list)
 | |
| 		total += perf_event_read(child);
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| static int perf_event_read_entry(struct perf_event *event,
 | |
| 				   u64 read_format, char __user *buf)
 | |
| {
 | |
| 	int n = 0, count = 0;
 | |
| 	u64 values[2];
 | |
| 
 | |
| 	values[n++] = perf_event_read_value(event);
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(event);
 | |
| 
 | |
| 	count = n * sizeof(u64);
 | |
| 
 | |
| 	if (copy_to_user(buf, values, count))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int perf_event_read_group(struct perf_event *event,
 | |
| 				   u64 read_format, char __user *buf)
 | |
| {
 | |
| 	struct perf_event *leader = event->group_leader, *sub;
 | |
| 	int n = 0, size = 0, err = -EFAULT;
 | |
| 	u64 values[3];
 | |
| 
 | |
| 	values[n++] = 1 + leader->nr_siblings;
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
 | |
| 		values[n++] = leader->total_time_enabled +
 | |
| 			atomic64_read(&leader->child_total_time_enabled);
 | |
| 	}
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
 | |
| 		values[n++] = leader->total_time_running +
 | |
| 			atomic64_read(&leader->child_total_time_running);
 | |
| 	}
 | |
| 
 | |
| 	size = n * sizeof(u64);
 | |
| 
 | |
| 	if (copy_to_user(buf, values, size))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	err = perf_event_read_entry(leader, read_format, buf + size);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	size += err;
 | |
| 
 | |
| 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
 | |
| 		err = perf_event_read_entry(sub, read_format,
 | |
| 				buf + size);
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 
 | |
| 		size += err;
 | |
| 	}
 | |
| 
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static int perf_event_read_one(struct perf_event *event,
 | |
| 				 u64 read_format, char __user *buf)
 | |
| {
 | |
| 	u64 values[4];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	values[n++] = perf_event_read_value(event);
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
 | |
| 		values[n++] = event->total_time_enabled +
 | |
| 			atomic64_read(&event->child_total_time_enabled);
 | |
| 	}
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
 | |
| 		values[n++] = event->total_time_running +
 | |
| 			atomic64_read(&event->child_total_time_running);
 | |
| 	}
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(event);
 | |
| 
 | |
| 	if (copy_to_user(buf, values, n * sizeof(u64)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return n * sizeof(u64);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the performance event - simple non blocking version for now
 | |
|  */
 | |
| static ssize_t
 | |
| perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
 | |
| {
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Return end-of-file for a read on a event that is in
 | |
| 	 * error state (i.e. because it was pinned but it couldn't be
 | |
| 	 * scheduled on to the CPU at some point).
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ERROR)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (count < perf_event_read_size(event))
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| 	mutex_lock(&event->child_mutex);
 | |
| 	if (read_format & PERF_FORMAT_GROUP)
 | |
| 		ret = perf_event_read_group(event, read_format, buf);
 | |
| 	else
 | |
| 		ret = perf_event_read_one(event, read_format, buf);
 | |
| 	mutex_unlock(&event->child_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 
 | |
| 	return perf_read_hw(event, buf, count);
 | |
| }
 | |
| 
 | |
| static unsigned int perf_poll(struct file *file, poll_table *wait)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	struct perf_mmap_data *data;
 | |
| 	unsigned int events = POLL_HUP;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	data = rcu_dereference(event->data);
 | |
| 	if (data)
 | |
| 		events = atomic_xchg(&data->poll, 0);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	poll_wait(file, &event->waitq, wait);
 | |
| 
 | |
| 	return events;
 | |
| }
 | |
| 
 | |
| static void perf_event_reset(struct perf_event *event)
 | |
| {
 | |
| 	(void)perf_event_read(event);
 | |
| 	atomic64_set(&event->count, 0);
 | |
| 	perf_event_update_userpage(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Holding the top-level event's child_mutex means that any
 | |
|  * descendant process that has inherited this event will block
 | |
|  * in sync_child_event if it goes to exit, thus satisfying the
 | |
|  * task existence requirements of perf_event_enable/disable.
 | |
|  */
 | |
| static void perf_event_for_each_child(struct perf_event *event,
 | |
| 					void (*func)(struct perf_event *))
 | |
| {
 | |
| 	struct perf_event *child;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| 	mutex_lock(&event->child_mutex);
 | |
| 	func(event);
 | |
| 	list_for_each_entry(child, &event->child_list, child_list)
 | |
| 		func(child);
 | |
| 	mutex_unlock(&event->child_mutex);
 | |
| }
 | |
| 
 | |
| static void perf_event_for_each(struct perf_event *event,
 | |
| 				  void (*func)(struct perf_event *))
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_event *sibling;
 | |
| 
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 	event = event->group_leader;
 | |
| 
 | |
| 	perf_event_for_each_child(event, func);
 | |
| 	func(event);
 | |
| 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
 | |
| 		perf_event_for_each_child(event, func);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| }
 | |
| 
 | |
| static int perf_event_period(struct perf_event *event, u64 __user *arg)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	unsigned long size;
 | |
| 	int ret = 0;
 | |
| 	u64 value;
 | |
| 
 | |
| 	if (!event->attr.sample_period)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	size = copy_from_user(&value, arg, sizeof(value));
 | |
| 	if (size != sizeof(value))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!value)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock_irq(&ctx->lock);
 | |
| 	if (event->attr.freq) {
 | |
| 		if (value > sysctl_perf_event_sample_rate) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		event->attr.sample_freq = value;
 | |
| 	} else {
 | |
| 		event->attr.sample_period = value;
 | |
| 		event->hw.sample_period = value;
 | |
| 	}
 | |
| unlock:
 | |
| 	spin_unlock_irq(&ctx->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int perf_event_set_output(struct perf_event *event, int output_fd);
 | |
| 
 | |
| static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	void (*func)(struct perf_event *);
 | |
| 	u32 flags = arg;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case PERF_EVENT_IOC_ENABLE:
 | |
| 		func = perf_event_enable;
 | |
| 		break;
 | |
| 	case PERF_EVENT_IOC_DISABLE:
 | |
| 		func = perf_event_disable;
 | |
| 		break;
 | |
| 	case PERF_EVENT_IOC_RESET:
 | |
| 		func = perf_event_reset;
 | |
| 		break;
 | |
| 
 | |
| 	case PERF_EVENT_IOC_REFRESH:
 | |
| 		return perf_event_refresh(event, arg);
 | |
| 
 | |
| 	case PERF_EVENT_IOC_PERIOD:
 | |
| 		return perf_event_period(event, (u64 __user *)arg);
 | |
| 
 | |
| 	case PERF_EVENT_IOC_SET_OUTPUT:
 | |
| 		return perf_event_set_output(event, arg);
 | |
| 
 | |
| 	default:
 | |
| 		return -ENOTTY;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & PERF_IOC_FLAG_GROUP)
 | |
| 		perf_event_for_each(event, func);
 | |
| 	else
 | |
| 		perf_event_for_each_child(event, func);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int perf_event_task_enable(void)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
 | |
| 		perf_event_for_each_child(event, perf_event_enable);
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int perf_event_task_disable(void)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
 | |
| 		perf_event_for_each_child(event, perf_event_disable);
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef PERF_EVENT_INDEX_OFFSET
 | |
| # define PERF_EVENT_INDEX_OFFSET 0
 | |
| #endif
 | |
| 
 | |
| static int perf_event_index(struct perf_event *event)
 | |
| {
 | |
| 	if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callers need to ensure there can be no nesting of this function, otherwise
 | |
|  * the seqlock logic goes bad. We can not serialize this because the arch
 | |
|  * code calls this from NMI context.
 | |
|  */
 | |
| void perf_event_update_userpage(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_mmap_page *userpg;
 | |
| 	struct perf_mmap_data *data;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	data = rcu_dereference(event->data);
 | |
| 	if (!data)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	userpg = data->user_page;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable preemption so as to not let the corresponding user-space
 | |
| 	 * spin too long if we get preempted.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	++userpg->lock;
 | |
| 	barrier();
 | |
| 	userpg->index = perf_event_index(event);
 | |
| 	userpg->offset = atomic64_read(&event->count);
 | |
| 	if (event->state == PERF_EVENT_STATE_ACTIVE)
 | |
| 		userpg->offset -= atomic64_read(&event->hw.prev_count);
 | |
| 
 | |
| 	userpg->time_enabled = event->total_time_enabled +
 | |
| 			atomic64_read(&event->child_total_time_enabled);
 | |
| 
 | |
| 	userpg->time_running = event->total_time_running +
 | |
| 			atomic64_read(&event->child_total_time_running);
 | |
| 
 | |
| 	barrier();
 | |
| 	++userpg->lock;
 | |
| 	preempt_enable();
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static unsigned long perf_data_size(struct perf_mmap_data *data)
 | |
| {
 | |
| 	return data->nr_pages << (PAGE_SHIFT + data->data_order);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_PERF_USE_VMALLOC
 | |
| 
 | |
| /*
 | |
|  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 | |
|  */
 | |
| 
 | |
| static struct page *
 | |
| perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
 | |
| {
 | |
| 	if (pgoff > data->nr_pages)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (pgoff == 0)
 | |
| 		return virt_to_page(data->user_page);
 | |
| 
 | |
| 	return virt_to_page(data->data_pages[pgoff - 1]);
 | |
| }
 | |
| 
 | |
| static struct perf_mmap_data *
 | |
| perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
 | |
| {
 | |
| 	struct perf_mmap_data *data;
 | |
| 	unsigned long size;
 | |
| 	int i;
 | |
| 
 | |
| 	WARN_ON(atomic_read(&event->mmap_count));
 | |
| 
 | |
| 	size = sizeof(struct perf_mmap_data);
 | |
| 	size += nr_pages * sizeof(void *);
 | |
| 
 | |
| 	data = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!data)
 | |
| 		goto fail;
 | |
| 
 | |
| 	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
 | |
| 	if (!data->user_page)
 | |
| 		goto fail_user_page;
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
 | |
| 		if (!data->data_pages[i])
 | |
| 			goto fail_data_pages;
 | |
| 	}
 | |
| 
 | |
| 	data->data_order = 0;
 | |
| 	data->nr_pages = nr_pages;
 | |
| 
 | |
| 	return data;
 | |
| 
 | |
| fail_data_pages:
 | |
| 	for (i--; i >= 0; i--)
 | |
| 		free_page((unsigned long)data->data_pages[i]);
 | |
| 
 | |
| 	free_page((unsigned long)data->user_page);
 | |
| 
 | |
| fail_user_page:
 | |
| 	kfree(data);
 | |
| 
 | |
| fail:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void perf_mmap_free_page(unsigned long addr)
 | |
| {
 | |
| 	struct page *page = virt_to_page((void *)addr);
 | |
| 
 | |
| 	page->mapping = NULL;
 | |
| 	__free_page(page);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_data_free(struct perf_mmap_data *data)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	perf_mmap_free_page((unsigned long)data->user_page);
 | |
| 	for (i = 0; i < data->nr_pages; i++)
 | |
| 		perf_mmap_free_page((unsigned long)data->data_pages[i]);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /*
 | |
|  * Back perf_mmap() with vmalloc memory.
 | |
|  *
 | |
|  * Required for architectures that have d-cache aliasing issues.
 | |
|  */
 | |
| 
 | |
| static struct page *
 | |
| perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
 | |
| {
 | |
| 	if (pgoff > (1UL << data->data_order))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_unmark_page(void *addr)
 | |
| {
 | |
| 	struct page *page = vmalloc_to_page(addr);
 | |
| 
 | |
| 	page->mapping = NULL;
 | |
| }
 | |
| 
 | |
| static void perf_mmap_data_free_work(struct work_struct *work)
 | |
| {
 | |
| 	struct perf_mmap_data *data;
 | |
| 	void *base;
 | |
| 	int i, nr;
 | |
| 
 | |
| 	data = container_of(work, struct perf_mmap_data, work);
 | |
| 	nr = 1 << data->data_order;
 | |
| 
 | |
| 	base = data->user_page;
 | |
| 	for (i = 0; i < nr + 1; i++)
 | |
| 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
 | |
| 
 | |
| 	vfree(base);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_data_free(struct perf_mmap_data *data)
 | |
| {
 | |
| 	schedule_work(&data->work);
 | |
| }
 | |
| 
 | |
| static struct perf_mmap_data *
 | |
| perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
 | |
| {
 | |
| 	struct perf_mmap_data *data;
 | |
| 	unsigned long size;
 | |
| 	void *all_buf;
 | |
| 
 | |
| 	WARN_ON(atomic_read(&event->mmap_count));
 | |
| 
 | |
| 	size = sizeof(struct perf_mmap_data);
 | |
| 	size += sizeof(void *);
 | |
| 
 | |
| 	data = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!data)
 | |
| 		goto fail;
 | |
| 
 | |
| 	INIT_WORK(&data->work, perf_mmap_data_free_work);
 | |
| 
 | |
| 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
 | |
| 	if (!all_buf)
 | |
| 		goto fail_all_buf;
 | |
| 
 | |
| 	data->user_page = all_buf;
 | |
| 	data->data_pages[0] = all_buf + PAGE_SIZE;
 | |
| 	data->data_order = ilog2(nr_pages);
 | |
| 	data->nr_pages = 1;
 | |
| 
 | |
| 	return data;
 | |
| 
 | |
| fail_all_buf:
 | |
| 	kfree(data);
 | |
| 
 | |
| fail:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 | |
| {
 | |
| 	struct perf_event *event = vma->vm_file->private_data;
 | |
| 	struct perf_mmap_data *data;
 | |
| 	int ret = VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
 | |
| 		if (vmf->pgoff == 0)
 | |
| 			ret = 0;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	data = rcu_dereference(event->data);
 | |
| 	if (!data)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
 | |
| 	if (!vmf->page)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	get_page(vmf->page);
 | |
| 	vmf->page->mapping = vma->vm_file->f_mapping;
 | |
| 	vmf->page->index   = vmf->pgoff;
 | |
| 
 | |
| 	ret = 0;
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void
 | |
| perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
 | |
| {
 | |
| 	long max_size = perf_data_size(data);
 | |
| 
 | |
| 	atomic_set(&data->lock, -1);
 | |
| 
 | |
| 	if (event->attr.watermark) {
 | |
| 		data->watermark = min_t(long, max_size,
 | |
| 					event->attr.wakeup_watermark);
 | |
| 	}
 | |
| 
 | |
| 	if (!data->watermark)
 | |
| 		data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
 | |
| 
 | |
| 
 | |
| 	rcu_assign_pointer(event->data, data);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
 | |
| {
 | |
| 	struct perf_mmap_data *data;
 | |
| 
 | |
| 	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
 | |
| 	perf_mmap_data_free(data);
 | |
| 	kfree(data);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_data_release(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_mmap_data *data = event->data;
 | |
| 
 | |
| 	WARN_ON(atomic_read(&event->mmap_count));
 | |
| 
 | |
| 	rcu_assign_pointer(event->data, NULL);
 | |
| 	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_open(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event *event = vma->vm_file->private_data;
 | |
| 
 | |
| 	atomic_inc(&event->mmap_count);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_close(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event *event = vma->vm_file->private_data;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
 | |
| 		unsigned long size = perf_data_size(event->data);
 | |
| 		struct user_struct *user = current_user();
 | |
| 
 | |
| 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
 | |
| 		vma->vm_mm->locked_vm -= event->data->nr_locked;
 | |
| 		perf_mmap_data_release(event);
 | |
| 		mutex_unlock(&event->mmap_mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct vm_operations_struct perf_mmap_vmops = {
 | |
| 	.open		= perf_mmap_open,
 | |
| 	.close		= perf_mmap_close,
 | |
| 	.fault		= perf_mmap_fault,
 | |
| 	.page_mkwrite	= perf_mmap_fault,
 | |
| };
 | |
| 
 | |
| static int perf_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	unsigned long user_locked, user_lock_limit;
 | |
| 	struct user_struct *user = current_user();
 | |
| 	unsigned long locked, lock_limit;
 | |
| 	struct perf_mmap_data *data;
 | |
| 	unsigned long vma_size;
 | |
| 	unsigned long nr_pages;
 | |
| 	long user_extra, extra;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!(vma->vm_flags & VM_SHARED))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vma_size = vma->vm_end - vma->vm_start;
 | |
| 	nr_pages = (vma_size / PAGE_SIZE) - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have data pages ensure they're a power-of-two number, so we
 | |
| 	 * can do bitmasks instead of modulo.
 | |
| 	 */
 | |
| 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vma->vm_pgoff != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| 	mutex_lock(&event->mmap_mutex);
 | |
| 	if (event->output) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_inc_not_zero(&event->mmap_count)) {
 | |
| 		if (nr_pages != event->data->nr_pages)
 | |
| 			ret = -EINVAL;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	user_extra = nr_pages + 1;
 | |
| 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
 | |
| 
 | |
| 	/*
 | |
| 	 * Increase the limit linearly with more CPUs:
 | |
| 	 */
 | |
| 	user_lock_limit *= num_online_cpus();
 | |
| 
 | |
| 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
 | |
| 
 | |
| 	extra = 0;
 | |
| 	if (user_locked > user_lock_limit)
 | |
| 		extra = user_locked - user_lock_limit;
 | |
| 
 | |
| 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
 | |
| 	lock_limit >>= PAGE_SHIFT;
 | |
| 	locked = vma->vm_mm->locked_vm + extra;
 | |
| 
 | |
| 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
 | |
| 		!capable(CAP_IPC_LOCK)) {
 | |
| 		ret = -EPERM;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(event->data);
 | |
| 
 | |
| 	data = perf_mmap_data_alloc(event, nr_pages);
 | |
| 	ret = -ENOMEM;
 | |
| 	if (!data)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	ret = 0;
 | |
| 	perf_mmap_data_init(event, data);
 | |
| 
 | |
| 	atomic_set(&event->mmap_count, 1);
 | |
| 	atomic_long_add(user_extra, &user->locked_vm);
 | |
| 	vma->vm_mm->locked_vm += extra;
 | |
| 	event->data->nr_locked = extra;
 | |
| 	if (vma->vm_flags & VM_WRITE)
 | |
| 		event->data->writable = 1;
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&event->mmap_mutex);
 | |
| 
 | |
| 	vma->vm_flags |= VM_RESERVED;
 | |
| 	vma->vm_ops = &perf_mmap_vmops;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int perf_fasync(int fd, struct file *filp, int on)
 | |
| {
 | |
| 	struct inode *inode = filp->f_path.dentry->d_inode;
 | |
| 	struct perf_event *event = filp->private_data;
 | |
| 	int retval;
 | |
| 
 | |
| 	mutex_lock(&inode->i_mutex);
 | |
| 	retval = fasync_helper(fd, filp, on, &event->fasync);
 | |
| 	mutex_unlock(&inode->i_mutex);
 | |
| 
 | |
| 	if (retval < 0)
 | |
| 		return retval;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct file_operations perf_fops = {
 | |
| 	.release		= perf_release,
 | |
| 	.read			= perf_read,
 | |
| 	.poll			= perf_poll,
 | |
| 	.unlocked_ioctl		= perf_ioctl,
 | |
| 	.compat_ioctl		= perf_ioctl,
 | |
| 	.mmap			= perf_mmap,
 | |
| 	.fasync			= perf_fasync,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Perf event wakeup
 | |
|  *
 | |
|  * If there's data, ensure we set the poll() state and publish everything
 | |
|  * to user-space before waking everybody up.
 | |
|  */
 | |
| 
 | |
| void perf_event_wakeup(struct perf_event *event)
 | |
| {
 | |
| 	wake_up_all(&event->waitq);
 | |
| 
 | |
| 	if (event->pending_kill) {
 | |
| 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
 | |
| 		event->pending_kill = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pending wakeups
 | |
|  *
 | |
|  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 | |
|  *
 | |
|  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 | |
|  * single linked list and use cmpxchg() to add entries lockless.
 | |
|  */
 | |
| 
 | |
| static void perf_pending_event(struct perf_pending_entry *entry)
 | |
| {
 | |
| 	struct perf_event *event = container_of(entry,
 | |
| 			struct perf_event, pending);
 | |
| 
 | |
| 	if (event->pending_disable) {
 | |
| 		event->pending_disable = 0;
 | |
| 		__perf_event_disable(event);
 | |
| 	}
 | |
| 
 | |
| 	if (event->pending_wakeup) {
 | |
| 		event->pending_wakeup = 0;
 | |
| 		perf_event_wakeup(event);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
 | |
| 
 | |
| static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
 | |
| 	PENDING_TAIL,
 | |
| };
 | |
| 
 | |
| static void perf_pending_queue(struct perf_pending_entry *entry,
 | |
| 			       void (*func)(struct perf_pending_entry *))
 | |
| {
 | |
| 	struct perf_pending_entry **head;
 | |
| 
 | |
| 	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
 | |
| 		return;
 | |
| 
 | |
| 	entry->func = func;
 | |
| 
 | |
| 	head = &get_cpu_var(perf_pending_head);
 | |
| 
 | |
| 	do {
 | |
| 		entry->next = *head;
 | |
| 	} while (cmpxchg(head, entry->next, entry) != entry->next);
 | |
| 
 | |
| 	set_perf_event_pending();
 | |
| 
 | |
| 	put_cpu_var(perf_pending_head);
 | |
| }
 | |
| 
 | |
| static int __perf_pending_run(void)
 | |
| {
 | |
| 	struct perf_pending_entry *list;
 | |
| 	int nr = 0;
 | |
| 
 | |
| 	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
 | |
| 	while (list != PENDING_TAIL) {
 | |
| 		void (*func)(struct perf_pending_entry *);
 | |
| 		struct perf_pending_entry *entry = list;
 | |
| 
 | |
| 		list = list->next;
 | |
| 
 | |
| 		func = entry->func;
 | |
| 		entry->next = NULL;
 | |
| 		/*
 | |
| 		 * Ensure we observe the unqueue before we issue the wakeup,
 | |
| 		 * so that we won't be waiting forever.
 | |
| 		 * -- see perf_not_pending().
 | |
| 		 */
 | |
| 		smp_wmb();
 | |
| 
 | |
| 		func(entry);
 | |
| 		nr++;
 | |
| 	}
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static inline int perf_not_pending(struct perf_event *event)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we flush on whatever cpu we run, there is a chance we don't
 | |
| 	 * need to wait.
 | |
| 	 */
 | |
| 	get_cpu();
 | |
| 	__perf_pending_run();
 | |
| 	put_cpu();
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure we see the proper queue state before going to sleep
 | |
| 	 * so that we do not miss the wakeup. -- see perf_pending_handle()
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	return event->pending.next == NULL;
 | |
| }
 | |
| 
 | |
| static void perf_pending_sync(struct perf_event *event)
 | |
| {
 | |
| 	wait_event(event->waitq, perf_not_pending(event));
 | |
| }
 | |
| 
 | |
| void perf_event_do_pending(void)
 | |
| {
 | |
| 	__perf_pending_run();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callchain support -- arch specific
 | |
|  */
 | |
| 
 | |
| __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Output
 | |
|  */
 | |
| static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
 | |
| 			      unsigned long offset, unsigned long head)
 | |
| {
 | |
| 	unsigned long mask;
 | |
| 
 | |
| 	if (!data->writable)
 | |
| 		return true;
 | |
| 
 | |
| 	mask = perf_data_size(data) - 1;
 | |
| 
 | |
| 	offset = (offset - tail) & mask;
 | |
| 	head   = (head   - tail) & mask;
 | |
| 
 | |
| 	if ((int)(head - offset) < 0)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void perf_output_wakeup(struct perf_output_handle *handle)
 | |
| {
 | |
| 	atomic_set(&handle->data->poll, POLL_IN);
 | |
| 
 | |
| 	if (handle->nmi) {
 | |
| 		handle->event->pending_wakeup = 1;
 | |
| 		perf_pending_queue(&handle->event->pending,
 | |
| 				   perf_pending_event);
 | |
| 	} else
 | |
| 		perf_event_wakeup(handle->event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Curious locking construct.
 | |
|  *
 | |
|  * We need to ensure a later event_id doesn't publish a head when a former
 | |
|  * event_id isn't done writing. However since we need to deal with NMIs we
 | |
|  * cannot fully serialize things.
 | |
|  *
 | |
|  * What we do is serialize between CPUs so we only have to deal with NMI
 | |
|  * nesting on a single CPU.
 | |
|  *
 | |
|  * We only publish the head (and generate a wakeup) when the outer-most
 | |
|  * event_id completes.
 | |
|  */
 | |
| static void perf_output_lock(struct perf_output_handle *handle)
 | |
| {
 | |
| 	struct perf_mmap_data *data = handle->data;
 | |
| 	int cpu;
 | |
| 
 | |
| 	handle->locked = 0;
 | |
| 
 | |
| 	local_irq_save(handle->flags);
 | |
| 	cpu = smp_processor_id();
 | |
| 
 | |
| 	if (in_nmi() && atomic_read(&data->lock) == cpu)
 | |
| 		return;
 | |
| 
 | |
| 	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	handle->locked = 1;
 | |
| }
 | |
| 
 | |
| static void perf_output_unlock(struct perf_output_handle *handle)
 | |
| {
 | |
| 	struct perf_mmap_data *data = handle->data;
 | |
| 	unsigned long head;
 | |
| 	int cpu;
 | |
| 
 | |
| 	data->done_head = data->head;
 | |
| 
 | |
| 	if (!handle->locked)
 | |
| 		goto out;
 | |
| 
 | |
| again:
 | |
| 	/*
 | |
| 	 * The xchg implies a full barrier that ensures all writes are done
 | |
| 	 * before we publish the new head, matched by a rmb() in userspace when
 | |
| 	 * reading this position.
 | |
| 	 */
 | |
| 	while ((head = atomic_long_xchg(&data->done_head, 0)))
 | |
| 		data->user_page->data_head = head;
 | |
| 
 | |
| 	/*
 | |
| 	 * NMI can happen here, which means we can miss a done_head update.
 | |
| 	 */
 | |
| 
 | |
| 	cpu = atomic_xchg(&data->lock, -1);
 | |
| 	WARN_ON_ONCE(cpu != smp_processor_id());
 | |
| 
 | |
| 	/*
 | |
| 	 * Therefore we have to validate we did not indeed do so.
 | |
| 	 */
 | |
| 	if (unlikely(atomic_long_read(&data->done_head))) {
 | |
| 		/*
 | |
| 		 * Since we had it locked, we can lock it again.
 | |
| 		 */
 | |
| 		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
 | |
| 			cpu_relax();
 | |
| 
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_xchg(&data->wakeup, 0))
 | |
| 		perf_output_wakeup(handle);
 | |
| out:
 | |
| 	local_irq_restore(handle->flags);
 | |
| }
 | |
| 
 | |
| void perf_output_copy(struct perf_output_handle *handle,
 | |
| 		      const void *buf, unsigned int len)
 | |
| {
 | |
| 	unsigned int pages_mask;
 | |
| 	unsigned long offset;
 | |
| 	unsigned int size;
 | |
| 	void **pages;
 | |
| 
 | |
| 	offset		= handle->offset;
 | |
| 	pages_mask	= handle->data->nr_pages - 1;
 | |
| 	pages		= handle->data->data_pages;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned long page_offset;
 | |
| 		unsigned long page_size;
 | |
| 		int nr;
 | |
| 
 | |
| 		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
 | |
| 		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
 | |
| 		page_offset = offset & (page_size - 1);
 | |
| 		size	    = min_t(unsigned int, page_size - page_offset, len);
 | |
| 
 | |
| 		memcpy(pages[nr] + page_offset, buf, size);
 | |
| 
 | |
| 		len	    -= size;
 | |
| 		buf	    += size;
 | |
| 		offset	    += size;
 | |
| 	} while (len);
 | |
| 
 | |
| 	handle->offset = offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check we didn't copy past our reservation window, taking the
 | |
| 	 * possible unsigned int wrap into account.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
 | |
| }
 | |
| 
 | |
| int perf_output_begin(struct perf_output_handle *handle,
 | |
| 		      struct perf_event *event, unsigned int size,
 | |
| 		      int nmi, int sample)
 | |
| {
 | |
| 	struct perf_event *output_event;
 | |
| 	struct perf_mmap_data *data;
 | |
| 	unsigned long tail, offset, head;
 | |
| 	int have_lost;
 | |
| 	struct {
 | |
| 		struct perf_event_header header;
 | |
| 		u64			 id;
 | |
| 		u64			 lost;
 | |
| 	} lost_event;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/*
 | |
| 	 * For inherited events we send all the output towards the parent.
 | |
| 	 */
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 
 | |
| 	output_event = rcu_dereference(event->output);
 | |
| 	if (output_event)
 | |
| 		event = output_event;
 | |
| 
 | |
| 	data = rcu_dereference(event->data);
 | |
| 	if (!data)
 | |
| 		goto out;
 | |
| 
 | |
| 	handle->data	= data;
 | |
| 	handle->event	= event;
 | |
| 	handle->nmi	= nmi;
 | |
| 	handle->sample	= sample;
 | |
| 
 | |
| 	if (!data->nr_pages)
 | |
| 		goto fail;
 | |
| 
 | |
| 	have_lost = atomic_read(&data->lost);
 | |
| 	if (have_lost)
 | |
| 		size += sizeof(lost_event);
 | |
| 
 | |
| 	perf_output_lock(handle);
 | |
| 
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * Userspace could choose to issue a mb() before updating the
 | |
| 		 * tail pointer. So that all reads will be completed before the
 | |
| 		 * write is issued.
 | |
| 		 */
 | |
| 		tail = ACCESS_ONCE(data->user_page->data_tail);
 | |
| 		smp_rmb();
 | |
| 		offset = head = atomic_long_read(&data->head);
 | |
| 		head += size;
 | |
| 		if (unlikely(!perf_output_space(data, tail, offset, head)))
 | |
| 			goto fail;
 | |
| 	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
 | |
| 
 | |
| 	handle->offset	= offset;
 | |
| 	handle->head	= head;
 | |
| 
 | |
| 	if (head - tail > data->watermark)
 | |
| 		atomic_set(&data->wakeup, 1);
 | |
| 
 | |
| 	if (have_lost) {
 | |
| 		lost_event.header.type = PERF_RECORD_LOST;
 | |
| 		lost_event.header.misc = 0;
 | |
| 		lost_event.header.size = sizeof(lost_event);
 | |
| 		lost_event.id          = event->id;
 | |
| 		lost_event.lost        = atomic_xchg(&data->lost, 0);
 | |
| 
 | |
| 		perf_output_put(handle, lost_event);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	atomic_inc(&data->lost);
 | |
| 	perf_output_unlock(handle);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return -ENOSPC;
 | |
| }
 | |
| 
 | |
| void perf_output_end(struct perf_output_handle *handle)
 | |
| {
 | |
| 	struct perf_event *event = handle->event;
 | |
| 	struct perf_mmap_data *data = handle->data;
 | |
| 
 | |
| 	int wakeup_events = event->attr.wakeup_events;
 | |
| 
 | |
| 	if (handle->sample && wakeup_events) {
 | |
| 		int events = atomic_inc_return(&data->events);
 | |
| 		if (events >= wakeup_events) {
 | |
| 			atomic_sub(wakeup_events, &data->events);
 | |
| 			atomic_set(&data->wakeup, 1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	perf_output_unlock(handle);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * only top level events have the pid namespace they were created in
 | |
| 	 */
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 
 | |
| 	return task_tgid_nr_ns(p, event->ns);
 | |
| }
 | |
| 
 | |
| static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * only top level events have the pid namespace they were created in
 | |
| 	 */
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 
 | |
| 	return task_pid_nr_ns(p, event->ns);
 | |
| }
 | |
| 
 | |
| static void perf_output_read_one(struct perf_output_handle *handle,
 | |
| 				 struct perf_event *event)
 | |
| {
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 	u64 values[4];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	values[n++] = atomic64_read(&event->count);
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
 | |
| 		values[n++] = event->total_time_enabled +
 | |
| 			atomic64_read(&event->child_total_time_enabled);
 | |
| 	}
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
 | |
| 		values[n++] = event->total_time_running +
 | |
| 			atomic64_read(&event->child_total_time_running);
 | |
| 	}
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(event);
 | |
| 
 | |
| 	perf_output_copy(handle, values, n * sizeof(u64));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
 | |
|  */
 | |
| static void perf_output_read_group(struct perf_output_handle *handle,
 | |
| 			    struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *leader = event->group_leader, *sub;
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 	u64 values[5];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	values[n++] = 1 + leader->nr_siblings;
 | |
| 
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		values[n++] = leader->total_time_enabled;
 | |
| 
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		values[n++] = leader->total_time_running;
 | |
| 
 | |
| 	if (leader != event)
 | |
| 		leader->pmu->read(leader);
 | |
| 
 | |
| 	values[n++] = atomic64_read(&leader->count);
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(leader);
 | |
| 
 | |
| 	perf_output_copy(handle, values, n * sizeof(u64));
 | |
| 
 | |
| 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
 | |
| 		n = 0;
 | |
| 
 | |
| 		if (sub != event)
 | |
| 			sub->pmu->read(sub);
 | |
| 
 | |
| 		values[n++] = atomic64_read(&sub->count);
 | |
| 		if (read_format & PERF_FORMAT_ID)
 | |
| 			values[n++] = primary_event_id(sub);
 | |
| 
 | |
| 		perf_output_copy(handle, values, n * sizeof(u64));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_output_read(struct perf_output_handle *handle,
 | |
| 			     struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.read_format & PERF_FORMAT_GROUP)
 | |
| 		perf_output_read_group(handle, event);
 | |
| 	else
 | |
| 		perf_output_read_one(handle, event);
 | |
| }
 | |
| 
 | |
| void perf_output_sample(struct perf_output_handle *handle,
 | |
| 			struct perf_event_header *header,
 | |
| 			struct perf_sample_data *data,
 | |
| 			struct perf_event *event)
 | |
| {
 | |
| 	u64 sample_type = data->type;
 | |
| 
 | |
| 	perf_output_put(handle, *header);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IP)
 | |
| 		perf_output_put(handle, data->ip);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TID)
 | |
| 		perf_output_put(handle, data->tid_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TIME)
 | |
| 		perf_output_put(handle, data->time);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ADDR)
 | |
| 		perf_output_put(handle, data->addr);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ID)
 | |
| 		perf_output_put(handle, data->id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STREAM_ID)
 | |
| 		perf_output_put(handle, data->stream_id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CPU)
 | |
| 		perf_output_put(handle, data->cpu_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_PERIOD)
 | |
| 		perf_output_put(handle, data->period);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_READ)
 | |
| 		perf_output_read(handle, event);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
 | |
| 		if (data->callchain) {
 | |
| 			int size = 1;
 | |
| 
 | |
| 			if (data->callchain)
 | |
| 				size += data->callchain->nr;
 | |
| 
 | |
| 			size *= sizeof(u64);
 | |
| 
 | |
| 			perf_output_copy(handle, data->callchain, size);
 | |
| 		} else {
 | |
| 			u64 nr = 0;
 | |
| 			perf_output_put(handle, nr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_RAW) {
 | |
| 		if (data->raw) {
 | |
| 			perf_output_put(handle, data->raw->size);
 | |
| 			perf_output_copy(handle, data->raw->data,
 | |
| 					 data->raw->size);
 | |
| 		} else {
 | |
| 			struct {
 | |
| 				u32	size;
 | |
| 				u32	data;
 | |
| 			} raw = {
 | |
| 				.size = sizeof(u32),
 | |
| 				.data = 0,
 | |
| 			};
 | |
| 			perf_output_put(handle, raw);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void perf_prepare_sample(struct perf_event_header *header,
 | |
| 			 struct perf_sample_data *data,
 | |
| 			 struct perf_event *event,
 | |
| 			 struct pt_regs *regs)
 | |
| {
 | |
| 	u64 sample_type = event->attr.sample_type;
 | |
| 
 | |
| 	data->type = sample_type;
 | |
| 
 | |
| 	header->type = PERF_RECORD_SAMPLE;
 | |
| 	header->size = sizeof(*header);
 | |
| 
 | |
| 	header->misc = 0;
 | |
| 	header->misc |= perf_misc_flags(regs);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IP) {
 | |
| 		data->ip = perf_instruction_pointer(regs);
 | |
| 
 | |
| 		header->size += sizeof(data->ip);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TID) {
 | |
| 		/* namespace issues */
 | |
| 		data->tid_entry.pid = perf_event_pid(event, current);
 | |
| 		data->tid_entry.tid = perf_event_tid(event, current);
 | |
| 
 | |
| 		header->size += sizeof(data->tid_entry);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TIME) {
 | |
| 		data->time = perf_clock();
 | |
| 
 | |
| 		header->size += sizeof(data->time);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ADDR)
 | |
| 		header->size += sizeof(data->addr);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ID) {
 | |
| 		data->id = primary_event_id(event);
 | |
| 
 | |
| 		header->size += sizeof(data->id);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STREAM_ID) {
 | |
| 		data->stream_id = event->id;
 | |
| 
 | |
| 		header->size += sizeof(data->stream_id);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CPU) {
 | |
| 		data->cpu_entry.cpu		= raw_smp_processor_id();
 | |
| 		data->cpu_entry.reserved	= 0;
 | |
| 
 | |
| 		header->size += sizeof(data->cpu_entry);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_PERIOD)
 | |
| 		header->size += sizeof(data->period);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_READ)
 | |
| 		header->size += perf_event_read_size(event);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
 | |
| 		int size = 1;
 | |
| 
 | |
| 		data->callchain = perf_callchain(regs);
 | |
| 
 | |
| 		if (data->callchain)
 | |
| 			size += data->callchain->nr;
 | |
| 
 | |
| 		header->size += size * sizeof(u64);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_RAW) {
 | |
| 		int size = sizeof(u32);
 | |
| 
 | |
| 		if (data->raw)
 | |
| 			size += data->raw->size;
 | |
| 		else
 | |
| 			size += sizeof(u32);
 | |
| 
 | |
| 		WARN_ON_ONCE(size & (sizeof(u64)-1));
 | |
| 		header->size += size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_event_output(struct perf_event *event, int nmi,
 | |
| 				struct perf_sample_data *data,
 | |
| 				struct pt_regs *regs)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_event_header header;
 | |
| 
 | |
| 	perf_prepare_sample(&header, data, event, regs);
 | |
| 
 | |
| 	if (perf_output_begin(&handle, event, header.size, nmi, 1))
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_sample(&handle, &header, data, event);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * read event_id
 | |
|  */
 | |
| 
 | |
| struct perf_read_event {
 | |
| 	struct perf_event_header	header;
 | |
| 
 | |
| 	u32				pid;
 | |
| 	u32				tid;
 | |
| };
 | |
| 
 | |
| static void
 | |
| perf_event_read_event(struct perf_event *event,
 | |
| 			struct task_struct *task)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_read_event read_event = {
 | |
| 		.header = {
 | |
| 			.type = PERF_RECORD_READ,
 | |
| 			.misc = 0,
 | |
| 			.size = sizeof(read_event) + perf_event_read_size(event),
 | |
| 		},
 | |
| 		.pid = perf_event_pid(event, task),
 | |
| 		.tid = perf_event_tid(event, task),
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, read_event);
 | |
| 	perf_output_read(&handle, event);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * task tracking -- fork/exit
 | |
|  *
 | |
|  * enabled by: attr.comm | attr.mmap | attr.task
 | |
|  */
 | |
| 
 | |
| struct perf_task_event {
 | |
| 	struct task_struct		*task;
 | |
| 	struct perf_event_context	*task_ctx;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				ppid;
 | |
| 		u32				tid;
 | |
| 		u32				ptid;
 | |
| 		u64				time;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static void perf_event_task_output(struct perf_event *event,
 | |
| 				     struct perf_task_event *task_event)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	int size;
 | |
| 	struct task_struct *task = task_event->task;
 | |
| 	int ret;
 | |
| 
 | |
| 	size  = task_event->event_id.header.size;
 | |
| 	ret = perf_output_begin(&handle, event, size, 0, 0);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	task_event->event_id.pid = perf_event_pid(event, task);
 | |
| 	task_event->event_id.ppid = perf_event_pid(event, current);
 | |
| 
 | |
| 	task_event->event_id.tid = perf_event_tid(event, task);
 | |
| 	task_event->event_id.ptid = perf_event_tid(event, current);
 | |
| 
 | |
| 	task_event->event_id.time = perf_clock();
 | |
| 
 | |
| 	perf_output_put(&handle, task_event->event_id);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| static int perf_event_task_match(struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.comm || event->attr.mmap || event->attr.task)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_event_task_ctx(struct perf_event_context *ctx,
 | |
| 				  struct perf_task_event *task_event)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (perf_event_task_match(event))
 | |
| 			perf_event_task_output(event, task_event);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void perf_event_task_event(struct perf_task_event *task_event)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct perf_event_context *ctx = task_event->task_ctx;
 | |
| 
 | |
| 	cpuctx = &get_cpu_var(perf_cpu_context);
 | |
| 	perf_event_task_ctx(&cpuctx->ctx, task_event);
 | |
| 	put_cpu_var(perf_cpu_context);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!ctx)
 | |
| 		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
 | |
| 	if (ctx)
 | |
| 		perf_event_task_ctx(ctx, task_event);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void perf_event_task(struct task_struct *task,
 | |
| 			      struct perf_event_context *task_ctx,
 | |
| 			      int new)
 | |
| {
 | |
| 	struct perf_task_event task_event;
 | |
| 
 | |
| 	if (!atomic_read(&nr_comm_events) &&
 | |
| 	    !atomic_read(&nr_mmap_events) &&
 | |
| 	    !atomic_read(&nr_task_events))
 | |
| 		return;
 | |
| 
 | |
| 	task_event = (struct perf_task_event){
 | |
| 		.task	  = task,
 | |
| 		.task_ctx = task_ctx,
 | |
| 		.event_id    = {
 | |
| 			.header = {
 | |
| 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
 | |
| 				.misc = 0,
 | |
| 				.size = sizeof(task_event.event_id),
 | |
| 			},
 | |
| 			/* .pid  */
 | |
| 			/* .ppid */
 | |
| 			/* .tid  */
 | |
| 			/* .ptid */
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	perf_event_task_event(&task_event);
 | |
| }
 | |
| 
 | |
| void perf_event_fork(struct task_struct *task)
 | |
| {
 | |
| 	perf_event_task(task, NULL, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * comm tracking
 | |
|  */
 | |
| 
 | |
| struct perf_comm_event {
 | |
| 	struct task_struct	*task;
 | |
| 	char			*comm;
 | |
| 	int			comm_size;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				tid;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static void perf_event_comm_output(struct perf_event *event,
 | |
| 				     struct perf_comm_event *comm_event)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	int size = comm_event->event_id.header.size;
 | |
| 	int ret = perf_output_begin(&handle, event, size, 0, 0);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
 | |
| 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
 | |
| 
 | |
| 	perf_output_put(&handle, comm_event->event_id);
 | |
| 	perf_output_copy(&handle, comm_event->comm,
 | |
| 				   comm_event->comm_size);
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| static int perf_event_comm_match(struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.comm)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_event_comm_ctx(struct perf_event_context *ctx,
 | |
| 				  struct perf_comm_event *comm_event)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (perf_event_comm_match(event))
 | |
| 			perf_event_comm_output(event, comm_event);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void perf_event_comm_event(struct perf_comm_event *comm_event)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	unsigned int size;
 | |
| 	char comm[TASK_COMM_LEN];
 | |
| 
 | |
| 	memset(comm, 0, sizeof(comm));
 | |
| 	strncpy(comm, comm_event->task->comm, sizeof(comm));
 | |
| 	size = ALIGN(strlen(comm)+1, sizeof(u64));
 | |
| 
 | |
| 	comm_event->comm = comm;
 | |
| 	comm_event->comm_size = size;
 | |
| 
 | |
| 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
 | |
| 
 | |
| 	cpuctx = &get_cpu_var(perf_cpu_context);
 | |
| 	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
 | |
| 	put_cpu_var(perf_cpu_context);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/*
 | |
| 	 * doesn't really matter which of the child contexts the
 | |
| 	 * events ends up in.
 | |
| 	 */
 | |
| 	ctx = rcu_dereference(current->perf_event_ctxp);
 | |
| 	if (ctx)
 | |
| 		perf_event_comm_ctx(ctx, comm_event);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void perf_event_comm(struct task_struct *task)
 | |
| {
 | |
| 	struct perf_comm_event comm_event;
 | |
| 
 | |
| 	if (task->perf_event_ctxp)
 | |
| 		perf_event_enable_on_exec(task);
 | |
| 
 | |
| 	if (!atomic_read(&nr_comm_events))
 | |
| 		return;
 | |
| 
 | |
| 	comm_event = (struct perf_comm_event){
 | |
| 		.task	= task,
 | |
| 		/* .comm      */
 | |
| 		/* .comm_size */
 | |
| 		.event_id  = {
 | |
| 			.header = {
 | |
| 				.type = PERF_RECORD_COMM,
 | |
| 				.misc = 0,
 | |
| 				/* .size */
 | |
| 			},
 | |
| 			/* .pid */
 | |
| 			/* .tid */
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	perf_event_comm_event(&comm_event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mmap tracking
 | |
|  */
 | |
| 
 | |
| struct perf_mmap_event {
 | |
| 	struct vm_area_struct	*vma;
 | |
| 
 | |
| 	const char		*file_name;
 | |
| 	int			file_size;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				tid;
 | |
| 		u64				start;
 | |
| 		u64				len;
 | |
| 		u64				pgoff;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static void perf_event_mmap_output(struct perf_event *event,
 | |
| 				     struct perf_mmap_event *mmap_event)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	int size = mmap_event->event_id.header.size;
 | |
| 	int ret = perf_output_begin(&handle, event, size, 0, 0);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	mmap_event->event_id.pid = perf_event_pid(event, current);
 | |
| 	mmap_event->event_id.tid = perf_event_tid(event, current);
 | |
| 
 | |
| 	perf_output_put(&handle, mmap_event->event_id);
 | |
| 	perf_output_copy(&handle, mmap_event->file_name,
 | |
| 				   mmap_event->file_size);
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| static int perf_event_mmap_match(struct perf_event *event,
 | |
| 				   struct perf_mmap_event *mmap_event)
 | |
| {
 | |
| 	if (event->attr.mmap)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_event_mmap_ctx(struct perf_event_context *ctx,
 | |
| 				  struct perf_mmap_event *mmap_event)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (perf_event_mmap_match(event, mmap_event))
 | |
| 			perf_event_mmap_output(event, mmap_event);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct vm_area_struct *vma = mmap_event->vma;
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	unsigned int size;
 | |
| 	char tmp[16];
 | |
| 	char *buf = NULL;
 | |
| 	const char *name;
 | |
| 
 | |
| 	memset(tmp, 0, sizeof(tmp));
 | |
| 
 | |
| 	if (file) {
 | |
| 		/*
 | |
| 		 * d_path works from the end of the buffer backwards, so we
 | |
| 		 * need to add enough zero bytes after the string to handle
 | |
| 		 * the 64bit alignment we do later.
 | |
| 		 */
 | |
| 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
 | |
| 		if (!buf) {
 | |
| 			name = strncpy(tmp, "//enomem", sizeof(tmp));
 | |
| 			goto got_name;
 | |
| 		}
 | |
| 		name = d_path(&file->f_path, buf, PATH_MAX);
 | |
| 		if (IS_ERR(name)) {
 | |
| 			name = strncpy(tmp, "//toolong", sizeof(tmp));
 | |
| 			goto got_name;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (arch_vma_name(mmap_event->vma)) {
 | |
| 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
 | |
| 				       sizeof(tmp));
 | |
| 			goto got_name;
 | |
| 		}
 | |
| 
 | |
| 		if (!vma->vm_mm) {
 | |
| 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
 | |
| 			goto got_name;
 | |
| 		}
 | |
| 
 | |
| 		name = strncpy(tmp, "//anon", sizeof(tmp));
 | |
| 		goto got_name;
 | |
| 	}
 | |
| 
 | |
| got_name:
 | |
| 	size = ALIGN(strlen(name)+1, sizeof(u64));
 | |
| 
 | |
| 	mmap_event->file_name = name;
 | |
| 	mmap_event->file_size = size;
 | |
| 
 | |
| 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
 | |
| 
 | |
| 	cpuctx = &get_cpu_var(perf_cpu_context);
 | |
| 	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
 | |
| 	put_cpu_var(perf_cpu_context);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/*
 | |
| 	 * doesn't really matter which of the child contexts the
 | |
| 	 * events ends up in.
 | |
| 	 */
 | |
| 	ctx = rcu_dereference(current->perf_event_ctxp);
 | |
| 	if (ctx)
 | |
| 		perf_event_mmap_ctx(ctx, mmap_event);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	kfree(buf);
 | |
| }
 | |
| 
 | |
| void __perf_event_mmap(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_mmap_event mmap_event;
 | |
| 
 | |
| 	if (!atomic_read(&nr_mmap_events))
 | |
| 		return;
 | |
| 
 | |
| 	mmap_event = (struct perf_mmap_event){
 | |
| 		.vma	= vma,
 | |
| 		/* .file_name */
 | |
| 		/* .file_size */
 | |
| 		.event_id  = {
 | |
| 			.header = {
 | |
| 				.type = PERF_RECORD_MMAP,
 | |
| 				.misc = 0,
 | |
| 				/* .size */
 | |
| 			},
 | |
| 			/* .pid */
 | |
| 			/* .tid */
 | |
| 			.start  = vma->vm_start,
 | |
| 			.len    = vma->vm_end - vma->vm_start,
 | |
| 			.pgoff  = vma->vm_pgoff,
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	perf_event_mmap_event(&mmap_event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IRQ throttle logging
 | |
|  */
 | |
| 
 | |
| static void perf_log_throttle(struct perf_event *event, int enable)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	int ret;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 		u64				time;
 | |
| 		u64				id;
 | |
| 		u64				stream_id;
 | |
| 	} throttle_event = {
 | |
| 		.header = {
 | |
| 			.type = PERF_RECORD_THROTTLE,
 | |
| 			.misc = 0,
 | |
| 			.size = sizeof(throttle_event),
 | |
| 		},
 | |
| 		.time		= perf_clock(),
 | |
| 		.id		= primary_event_id(event),
 | |
| 		.stream_id	= event->id,
 | |
| 	};
 | |
| 
 | |
| 	if (enable)
 | |
| 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
 | |
| 
 | |
| 	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, throttle_event);
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic event overflow handling, sampling.
 | |
|  */
 | |
| 
 | |
| static int __perf_event_overflow(struct perf_event *event, int nmi,
 | |
| 				   int throttle, struct perf_sample_data *data,
 | |
| 				   struct pt_regs *regs)
 | |
| {
 | |
| 	int events = atomic_read(&event->event_limit);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	throttle = (throttle && event->pmu->unthrottle != NULL);
 | |
| 
 | |
| 	if (!throttle) {
 | |
| 		hwc->interrupts++;
 | |
| 	} else {
 | |
| 		if (hwc->interrupts != MAX_INTERRUPTS) {
 | |
| 			hwc->interrupts++;
 | |
| 			if (HZ * hwc->interrupts >
 | |
| 					(u64)sysctl_perf_event_sample_rate) {
 | |
| 				hwc->interrupts = MAX_INTERRUPTS;
 | |
| 				perf_log_throttle(event, 0);
 | |
| 				ret = 1;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Keep re-disabling events even though on the previous
 | |
| 			 * pass we disabled it - just in case we raced with a
 | |
| 			 * sched-in and the event got enabled again:
 | |
| 			 */
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (event->attr.freq) {
 | |
| 		u64 now = perf_clock();
 | |
| 		s64 delta = now - hwc->freq_stamp;
 | |
| 
 | |
| 		hwc->freq_stamp = now;
 | |
| 
 | |
| 		if (delta > 0 && delta < TICK_NSEC)
 | |
| 			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX event_limit might not quite work as expected on inherited
 | |
| 	 * events
 | |
| 	 */
 | |
| 
 | |
| 	event->pending_kill = POLL_IN;
 | |
| 	if (events && atomic_dec_and_test(&event->event_limit)) {
 | |
| 		ret = 1;
 | |
| 		event->pending_kill = POLL_HUP;
 | |
| 		if (nmi) {
 | |
| 			event->pending_disable = 1;
 | |
| 			perf_pending_queue(&event->pending,
 | |
| 					   perf_pending_event);
 | |
| 		} else
 | |
| 			perf_event_disable(event);
 | |
| 	}
 | |
| 
 | |
| 	perf_event_output(event, nmi, data, regs);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int perf_event_overflow(struct perf_event *event, int nmi,
 | |
| 			  struct perf_sample_data *data,
 | |
| 			  struct pt_regs *regs)
 | |
| {
 | |
| 	return __perf_event_overflow(event, nmi, 1, data, regs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic software event infrastructure
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * We directly increment event->count and keep a second value in
 | |
|  * event->hw.period_left to count intervals. This period event
 | |
|  * is kept in the range [-sample_period, 0] so that we can use the
 | |
|  * sign as trigger.
 | |
|  */
 | |
| 
 | |
| static u64 perf_swevent_set_period(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	u64 period = hwc->last_period;
 | |
| 	u64 nr, offset;
 | |
| 	s64 old, val;
 | |
| 
 | |
| 	hwc->last_period = hwc->sample_period;
 | |
| 
 | |
| again:
 | |
| 	old = val = atomic64_read(&hwc->period_left);
 | |
| 	if (val < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	nr = div64_u64(period + val, period);
 | |
| 	offset = nr * period;
 | |
| 	val -= offset;
 | |
| 	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
 | |
| 		goto again;
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_overflow(struct perf_event *event,
 | |
| 				    int nmi, struct perf_sample_data *data,
 | |
| 				    struct pt_regs *regs)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int throttle = 0;
 | |
| 	u64 overflow;
 | |
| 
 | |
| 	data->period = event->hw.last_period;
 | |
| 	overflow = perf_swevent_set_period(event);
 | |
| 
 | |
| 	if (hwc->interrupts == MAX_INTERRUPTS)
 | |
| 		return;
 | |
| 
 | |
| 	for (; overflow; overflow--) {
 | |
| 		if (__perf_event_overflow(event, nmi, throttle,
 | |
| 					    data, regs)) {
 | |
| 			/*
 | |
| 			 * We inhibit the overflow from happening when
 | |
| 			 * hwc->interrupts == MAX_INTERRUPTS.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 		throttle = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_swevent_unthrottle(struct perf_event *event)
 | |
| {
 | |
| 	/*
 | |
| 	 * Nothing to do, we already reset hwc->interrupts.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static void perf_swevent_add(struct perf_event *event, u64 nr,
 | |
| 			       int nmi, struct perf_sample_data *data,
 | |
| 			       struct pt_regs *regs)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	atomic64_add(nr, &event->count);
 | |
| 
 | |
| 	if (!hwc->sample_period)
 | |
| 		return;
 | |
| 
 | |
| 	if (!regs)
 | |
| 		return;
 | |
| 
 | |
| 	if (!atomic64_add_negative(nr, &hwc->period_left))
 | |
| 		perf_swevent_overflow(event, nmi, data, regs);
 | |
| }
 | |
| 
 | |
| static int perf_swevent_is_counting(struct perf_event *event)
 | |
| {
 | |
| 	/*
 | |
| 	 * The event is active, we're good!
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ACTIVE)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The event is off/error, not counting.
 | |
| 	 */
 | |
| 	if (event->state != PERF_EVENT_STATE_INACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The event is inactive, if the context is active
 | |
| 	 * we're part of a group that didn't make it on the 'pmu',
 | |
| 	 * not counting.
 | |
| 	 */
 | |
| 	if (event->ctx->is_active)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're inactive and the context is too, this means the
 | |
| 	 * task is scheduled out, we're counting events that happen
 | |
| 	 * to us, like migration events.
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int perf_swevent_match(struct perf_event *event,
 | |
| 				enum perf_type_id type,
 | |
| 				u32 event_id, struct pt_regs *regs)
 | |
| {
 | |
| 	if (!perf_swevent_is_counting(event))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->attr.type != type)
 | |
| 		return 0;
 | |
| 	if (event->attr.config != event_id)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (regs) {
 | |
| 		if (event->attr.exclude_user && user_mode(regs))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (event->attr.exclude_kernel && !user_mode(regs))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_ctx_event(struct perf_event_context *ctx,
 | |
| 				     enum perf_type_id type,
 | |
| 				     u32 event_id, u64 nr, int nmi,
 | |
| 				     struct perf_sample_data *data,
 | |
| 				     struct pt_regs *regs)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (perf_swevent_match(event, type, event_id, regs))
 | |
| 			perf_swevent_add(event, nr, nmi, data, regs);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	if (in_nmi())
 | |
| 		return &cpuctx->recursion[3];
 | |
| 
 | |
| 	if (in_irq())
 | |
| 		return &cpuctx->recursion[2];
 | |
| 
 | |
| 	if (in_softirq())
 | |
| 		return &cpuctx->recursion[1];
 | |
| 
 | |
| 	return &cpuctx->recursion[0];
 | |
| }
 | |
| 
 | |
| static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
 | |
| 				    u64 nr, int nmi,
 | |
| 				    struct perf_sample_data *data,
 | |
| 				    struct pt_regs *regs)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
 | |
| 	int *recursion = perf_swevent_recursion_context(cpuctx);
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| 	if (*recursion)
 | |
| 		goto out;
 | |
| 
 | |
| 	(*recursion)++;
 | |
| 	barrier();
 | |
| 
 | |
| 	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
 | |
| 				 nr, nmi, data, regs);
 | |
| 	rcu_read_lock();
 | |
| 	/*
 | |
| 	 * doesn't really matter which of the child contexts the
 | |
| 	 * events ends up in.
 | |
| 	 */
 | |
| 	ctx = rcu_dereference(current->perf_event_ctxp);
 | |
| 	if (ctx)
 | |
| 		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	barrier();
 | |
| 	(*recursion)--;
 | |
| 
 | |
| out:
 | |
| 	put_cpu_var(perf_cpu_context);
 | |
| }
 | |
| 
 | |
| void __perf_sw_event(u32 event_id, u64 nr, int nmi,
 | |
| 			    struct pt_regs *regs, u64 addr)
 | |
| {
 | |
| 	struct perf_sample_data data = {
 | |
| 		.addr = addr,
 | |
| 	};
 | |
| 
 | |
| 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
 | |
| 				&data, regs);
 | |
| }
 | |
| 
 | |
| static void perf_swevent_read(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int perf_swevent_enable(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	if (hwc->sample_period) {
 | |
| 		hwc->last_period = hwc->sample_period;
 | |
| 		perf_swevent_set_period(event);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_disable(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| 
 | |
| static const struct pmu perf_ops_generic = {
 | |
| 	.enable		= perf_swevent_enable,
 | |
| 	.disable	= perf_swevent_disable,
 | |
| 	.read		= perf_swevent_read,
 | |
| 	.unthrottle	= perf_swevent_unthrottle,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * hrtimer based swevent callback
 | |
|  */
 | |
| 
 | |
| static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
 | |
| {
 | |
| 	enum hrtimer_restart ret = HRTIMER_RESTART;
 | |
| 	struct perf_sample_data data;
 | |
| 	struct pt_regs *regs;
 | |
| 	struct perf_event *event;
 | |
| 	u64 period;
 | |
| 
 | |
| 	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
 | |
| 	event->pmu->read(event);
 | |
| 
 | |
| 	data.addr = 0;
 | |
| 	regs = get_irq_regs();
 | |
| 	/*
 | |
| 	 * In case we exclude kernel IPs or are somehow not in interrupt
 | |
| 	 * context, provide the next best thing, the user IP.
 | |
| 	 */
 | |
| 	if ((event->attr.exclude_kernel || !regs) &&
 | |
| 			!event->attr.exclude_user)
 | |
| 		regs = task_pt_regs(current);
 | |
| 
 | |
| 	if (regs) {
 | |
| 		if (!(event->attr.exclude_idle && current->pid == 0))
 | |
| 			if (perf_event_overflow(event, 0, &data, regs))
 | |
| 				ret = HRTIMER_NORESTART;
 | |
| 	}
 | |
| 
 | |
| 	period = max_t(u64, 10000, event->hw.sample_period);
 | |
| 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_start_hrtimer(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 | |
| 	hwc->hrtimer.function = perf_swevent_hrtimer;
 | |
| 	if (hwc->sample_period) {
 | |
| 		u64 period;
 | |
| 
 | |
| 		if (hwc->remaining) {
 | |
| 			if (hwc->remaining < 0)
 | |
| 				period = 10000;
 | |
| 			else
 | |
| 				period = hwc->remaining;
 | |
| 			hwc->remaining = 0;
 | |
| 		} else {
 | |
| 			period = max_t(u64, 10000, hwc->sample_period);
 | |
| 		}
 | |
| 		__hrtimer_start_range_ns(&hwc->hrtimer,
 | |
| 				ns_to_ktime(period), 0,
 | |
| 				HRTIMER_MODE_REL, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_swevent_cancel_hrtimer(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	if (hwc->sample_period) {
 | |
| 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
 | |
| 		hwc->remaining = ktime_to_ns(remaining);
 | |
| 
 | |
| 		hrtimer_cancel(&hwc->hrtimer);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Software event: cpu wall time clock
 | |
|  */
 | |
| 
 | |
| static void cpu_clock_perf_event_update(struct perf_event *event)
 | |
| {
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 	s64 prev;
 | |
| 	u64 now;
 | |
| 
 | |
| 	now = cpu_clock(cpu);
 | |
| 	prev = atomic64_read(&event->hw.prev_count);
 | |
| 	atomic64_set(&event->hw.prev_count, now);
 | |
| 	atomic64_add(now - prev, &event->count);
 | |
| }
 | |
| 
 | |
| static int cpu_clock_perf_event_enable(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 
 | |
| 	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
 | |
| 	perf_swevent_start_hrtimer(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cpu_clock_perf_event_disable(struct perf_event *event)
 | |
| {
 | |
| 	perf_swevent_cancel_hrtimer(event);
 | |
| 	cpu_clock_perf_event_update(event);
 | |
| }
 | |
| 
 | |
| static void cpu_clock_perf_event_read(struct perf_event *event)
 | |
| {
 | |
| 	cpu_clock_perf_event_update(event);
 | |
| }
 | |
| 
 | |
| static const struct pmu perf_ops_cpu_clock = {
 | |
| 	.enable		= cpu_clock_perf_event_enable,
 | |
| 	.disable	= cpu_clock_perf_event_disable,
 | |
| 	.read		= cpu_clock_perf_event_read,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Software event: task time clock
 | |
|  */
 | |
| 
 | |
| static void task_clock_perf_event_update(struct perf_event *event, u64 now)
 | |
| {
 | |
| 	u64 prev;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	prev = atomic64_xchg(&event->hw.prev_count, now);
 | |
| 	delta = now - prev;
 | |
| 	atomic64_add(delta, &event->count);
 | |
| }
 | |
| 
 | |
| static int task_clock_perf_event_enable(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	u64 now;
 | |
| 
 | |
| 	now = event->ctx->time;
 | |
| 
 | |
| 	atomic64_set(&hwc->prev_count, now);
 | |
| 
 | |
| 	perf_swevent_start_hrtimer(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void task_clock_perf_event_disable(struct perf_event *event)
 | |
| {
 | |
| 	perf_swevent_cancel_hrtimer(event);
 | |
| 	task_clock_perf_event_update(event, event->ctx->time);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void task_clock_perf_event_read(struct perf_event *event)
 | |
| {
 | |
| 	u64 time;
 | |
| 
 | |
| 	if (!in_nmi()) {
 | |
| 		update_context_time(event->ctx);
 | |
| 		time = event->ctx->time;
 | |
| 	} else {
 | |
| 		u64 now = perf_clock();
 | |
| 		u64 delta = now - event->ctx->timestamp;
 | |
| 		time = event->ctx->time + delta;
 | |
| 	}
 | |
| 
 | |
| 	task_clock_perf_event_update(event, time);
 | |
| }
 | |
| 
 | |
| static const struct pmu perf_ops_task_clock = {
 | |
| 	.enable		= task_clock_perf_event_enable,
 | |
| 	.disable	= task_clock_perf_event_disable,
 | |
| 	.read		= task_clock_perf_event_read,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_EVENT_PROFILE
 | |
| void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
 | |
| 			  int entry_size)
 | |
| {
 | |
| 	struct perf_raw_record raw = {
 | |
| 		.size = entry_size,
 | |
| 		.data = record,
 | |
| 	};
 | |
| 
 | |
| 	struct perf_sample_data data = {
 | |
| 		.addr = addr,
 | |
| 		.raw = &raw,
 | |
| 	};
 | |
| 
 | |
| 	struct pt_regs *regs = get_irq_regs();
 | |
| 
 | |
| 	if (!regs)
 | |
| 		regs = task_pt_regs(current);
 | |
| 
 | |
| 	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
 | |
| 				&data, regs);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_tp_event);
 | |
| 
 | |
| extern int ftrace_profile_enable(int);
 | |
| extern void ftrace_profile_disable(int);
 | |
| 
 | |
| static void tp_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	ftrace_profile_disable(event->attr.config);
 | |
| }
 | |
| 
 | |
| static const struct pmu *tp_perf_event_init(struct perf_event *event)
 | |
| {
 | |
| 	/*
 | |
| 	 * Raw tracepoint data is a severe data leak, only allow root to
 | |
| 	 * have these.
 | |
| 	 */
 | |
| 	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
 | |
| 			perf_paranoid_tracepoint_raw() &&
 | |
| 			!capable(CAP_SYS_ADMIN))
 | |
| 		return ERR_PTR(-EPERM);
 | |
| 
 | |
| 	if (ftrace_profile_enable(event->attr.config))
 | |
| 		return NULL;
 | |
| 
 | |
| 	event->destroy = tp_perf_event_destroy;
 | |
| 
 | |
| 	return &perf_ops_generic;
 | |
| }
 | |
| #else
 | |
| static const struct pmu *tp_perf_event_init(struct perf_event *event)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
 | |
| 
 | |
| static void sw_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	u64 event_id = event->attr.config;
 | |
| 
 | |
| 	WARN_ON(event->parent);
 | |
| 
 | |
| 	atomic_dec(&perf_swevent_enabled[event_id]);
 | |
| }
 | |
| 
 | |
| static const struct pmu *sw_perf_event_init(struct perf_event *event)
 | |
| {
 | |
| 	const struct pmu *pmu = NULL;
 | |
| 	u64 event_id = event->attr.config;
 | |
| 
 | |
| 	/*
 | |
| 	 * Software events (currently) can't in general distinguish
 | |
| 	 * between user, kernel and hypervisor events.
 | |
| 	 * However, context switches and cpu migrations are considered
 | |
| 	 * to be kernel events, and page faults are never hypervisor
 | |
| 	 * events.
 | |
| 	 */
 | |
| 	switch (event_id) {
 | |
| 	case PERF_COUNT_SW_CPU_CLOCK:
 | |
| 		pmu = &perf_ops_cpu_clock;
 | |
| 
 | |
| 		break;
 | |
| 	case PERF_COUNT_SW_TASK_CLOCK:
 | |
| 		/*
 | |
| 		 * If the user instantiates this as a per-cpu event,
 | |
| 		 * use the cpu_clock event instead.
 | |
| 		 */
 | |
| 		if (event->ctx->task)
 | |
| 			pmu = &perf_ops_task_clock;
 | |
| 		else
 | |
| 			pmu = &perf_ops_cpu_clock;
 | |
| 
 | |
| 		break;
 | |
| 	case PERF_COUNT_SW_PAGE_FAULTS:
 | |
| 	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
 | |
| 	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
 | |
| 	case PERF_COUNT_SW_CONTEXT_SWITCHES:
 | |
| 	case PERF_COUNT_SW_CPU_MIGRATIONS:
 | |
| 		if (!event->parent) {
 | |
| 			atomic_inc(&perf_swevent_enabled[event_id]);
 | |
| 			event->destroy = sw_perf_event_destroy;
 | |
| 		}
 | |
| 		pmu = &perf_ops_generic;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return pmu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialize a event structure
 | |
|  */
 | |
| static struct perf_event *
 | |
| perf_event_alloc(struct perf_event_attr *attr,
 | |
| 		   int cpu,
 | |
| 		   struct perf_event_context *ctx,
 | |
| 		   struct perf_event *group_leader,
 | |
| 		   struct perf_event *parent_event,
 | |
| 		   gfp_t gfpflags)
 | |
| {
 | |
| 	const struct pmu *pmu;
 | |
| 	struct perf_event *event;
 | |
| 	struct hw_perf_event *hwc;
 | |
| 	long err;
 | |
| 
 | |
| 	event = kzalloc(sizeof(*event), gfpflags);
 | |
| 	if (!event)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/*
 | |
| 	 * Single events are their own group leaders, with an
 | |
| 	 * empty sibling list:
 | |
| 	 */
 | |
| 	if (!group_leader)
 | |
| 		group_leader = event;
 | |
| 
 | |
| 	mutex_init(&event->child_mutex);
 | |
| 	INIT_LIST_HEAD(&event->child_list);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&event->group_entry);
 | |
| 	INIT_LIST_HEAD(&event->event_entry);
 | |
| 	INIT_LIST_HEAD(&event->sibling_list);
 | |
| 	init_waitqueue_head(&event->waitq);
 | |
| 
 | |
| 	mutex_init(&event->mmap_mutex);
 | |
| 
 | |
| 	event->cpu		= cpu;
 | |
| 	event->attr		= *attr;
 | |
| 	event->group_leader	= group_leader;
 | |
| 	event->pmu		= NULL;
 | |
| 	event->ctx		= ctx;
 | |
| 	event->oncpu		= -1;
 | |
| 
 | |
| 	event->parent		= parent_event;
 | |
| 
 | |
| 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
 | |
| 	event->id		= atomic64_inc_return(&perf_event_id);
 | |
| 
 | |
| 	event->state		= PERF_EVENT_STATE_INACTIVE;
 | |
| 
 | |
| 	if (attr->disabled)
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 
 | |
| 	pmu = NULL;
 | |
| 
 | |
| 	hwc = &event->hw;
 | |
| 	hwc->sample_period = attr->sample_period;
 | |
| 	if (attr->freq && attr->sample_freq)
 | |
| 		hwc->sample_period = 1;
 | |
| 	hwc->last_period = hwc->sample_period;
 | |
| 
 | |
| 	atomic64_set(&hwc->period_left, hwc->sample_period);
 | |
| 
 | |
| 	/*
 | |
| 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
 | |
| 	 */
 | |
| 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
 | |
| 		goto done;
 | |
| 
 | |
| 	switch (attr->type) {
 | |
| 	case PERF_TYPE_RAW:
 | |
| 	case PERF_TYPE_HARDWARE:
 | |
| 	case PERF_TYPE_HW_CACHE:
 | |
| 		pmu = hw_perf_event_init(event);
 | |
| 		break;
 | |
| 
 | |
| 	case PERF_TYPE_SOFTWARE:
 | |
| 		pmu = sw_perf_event_init(event);
 | |
| 		break;
 | |
| 
 | |
| 	case PERF_TYPE_TRACEPOINT:
 | |
| 		pmu = tp_perf_event_init(event);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| done:
 | |
| 	err = 0;
 | |
| 	if (!pmu)
 | |
| 		err = -EINVAL;
 | |
| 	else if (IS_ERR(pmu))
 | |
| 		err = PTR_ERR(pmu);
 | |
| 
 | |
| 	if (err) {
 | |
| 		if (event->ns)
 | |
| 			put_pid_ns(event->ns);
 | |
| 		kfree(event);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	event->pmu = pmu;
 | |
| 
 | |
| 	if (!event->parent) {
 | |
| 		atomic_inc(&nr_events);
 | |
| 		if (event->attr.mmap)
 | |
| 			atomic_inc(&nr_mmap_events);
 | |
| 		if (event->attr.comm)
 | |
| 			atomic_inc(&nr_comm_events);
 | |
| 		if (event->attr.task)
 | |
| 			atomic_inc(&nr_task_events);
 | |
| 	}
 | |
| 
 | |
| 	return event;
 | |
| }
 | |
| 
 | |
| static int perf_copy_attr(struct perf_event_attr __user *uattr,
 | |
| 			  struct perf_event_attr *attr)
 | |
| {
 | |
| 	u32 size;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * zero the full structure, so that a short copy will be nice.
 | |
| 	 */
 | |
| 	memset(attr, 0, sizeof(*attr));
 | |
| 
 | |
| 	ret = get_user(size, &uattr->size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (size > PAGE_SIZE)	/* silly large */
 | |
| 		goto err_size;
 | |
| 
 | |
| 	if (!size)		/* abi compat */
 | |
| 		size = PERF_ATTR_SIZE_VER0;
 | |
| 
 | |
| 	if (size < PERF_ATTR_SIZE_VER0)
 | |
| 		goto err_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're handed a bigger struct than we know of,
 | |
| 	 * ensure all the unknown bits are 0 - i.e. new
 | |
| 	 * user-space does not rely on any kernel feature
 | |
| 	 * extensions we dont know about yet.
 | |
| 	 */
 | |
| 	if (size > sizeof(*attr)) {
 | |
| 		unsigned char __user *addr;
 | |
| 		unsigned char __user *end;
 | |
| 		unsigned char val;
 | |
| 
 | |
| 		addr = (void __user *)uattr + sizeof(*attr);
 | |
| 		end  = (void __user *)uattr + size;
 | |
| 
 | |
| 		for (; addr < end; addr++) {
 | |
| 			ret = get_user(val, addr);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 			if (val)
 | |
| 				goto err_size;
 | |
| 		}
 | |
| 		size = sizeof(*attr);
 | |
| 	}
 | |
| 
 | |
| 	ret = copy_from_user(attr, uattr, size);
 | |
| 	if (ret)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the type exists, the corresponding creation will verify
 | |
| 	 * the attr->config.
 | |
| 	 */
 | |
| 	if (attr->type >= PERF_TYPE_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| 
 | |
| err_size:
 | |
| 	put_user(sizeof(*attr), &uattr->size);
 | |
| 	ret = -E2BIG;
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| int perf_event_set_output(struct perf_event *event, int output_fd)
 | |
| {
 | |
| 	struct perf_event *output_event = NULL;
 | |
| 	struct file *output_file = NULL;
 | |
| 	struct perf_event *old_output;
 | |
| 	int fput_needed = 0;
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	if (!output_fd)
 | |
| 		goto set;
 | |
| 
 | |
| 	output_file = fget_light(output_fd, &fput_needed);
 | |
| 	if (!output_file)
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	if (output_file->f_op != &perf_fops)
 | |
| 		goto out;
 | |
| 
 | |
| 	output_event = output_file->private_data;
 | |
| 
 | |
| 	/* Don't chain output fds */
 | |
| 	if (output_event->output)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Don't set an output fd when we already have an output channel */
 | |
| 	if (event->data)
 | |
| 		goto out;
 | |
| 
 | |
| 	atomic_long_inc(&output_file->f_count);
 | |
| 
 | |
| set:
 | |
| 	mutex_lock(&event->mmap_mutex);
 | |
| 	old_output = event->output;
 | |
| 	rcu_assign_pointer(event->output, output_event);
 | |
| 	mutex_unlock(&event->mmap_mutex);
 | |
| 
 | |
| 	if (old_output) {
 | |
| 		/*
 | |
| 		 * we need to make sure no existing perf_output_*()
 | |
| 		 * is still referencing this event.
 | |
| 		 */
 | |
| 		synchronize_rcu();
 | |
| 		fput(old_output->filp);
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	fput_light(output_file, fput_needed);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_perf_event_open - open a performance event, associate it to a task/cpu
 | |
|  *
 | |
|  * @attr_uptr:	event_id type attributes for monitoring/sampling
 | |
|  * @pid:		target pid
 | |
|  * @cpu:		target cpu
 | |
|  * @group_fd:		group leader event fd
 | |
|  */
 | |
| SYSCALL_DEFINE5(perf_event_open,
 | |
| 		struct perf_event_attr __user *, attr_uptr,
 | |
| 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
 | |
| {
 | |
| 	struct perf_event *event, *group_leader;
 | |
| 	struct perf_event_attr attr;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct file *event_file = NULL;
 | |
| 	struct file *group_file = NULL;
 | |
| 	int fput_needed = 0;
 | |
| 	int fput_needed2 = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	/* for future expandability... */
 | |
| 	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = perf_copy_attr(attr_uptr, &attr);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!attr.exclude_kernel) {
 | |
| 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
 | |
| 			return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (attr.freq) {
 | |
| 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the target context (task or percpu):
 | |
| 	 */
 | |
| 	ctx = find_get_context(pid, cpu);
 | |
| 	if (IS_ERR(ctx))
 | |
| 		return PTR_ERR(ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Look up the group leader (we will attach this event to it):
 | |
| 	 */
 | |
| 	group_leader = NULL;
 | |
| 	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
 | |
| 		err = -EINVAL;
 | |
| 		group_file = fget_light(group_fd, &fput_needed);
 | |
| 		if (!group_file)
 | |
| 			goto err_put_context;
 | |
| 		if (group_file->f_op != &perf_fops)
 | |
| 			goto err_put_context;
 | |
| 
 | |
| 		group_leader = group_file->private_data;
 | |
| 		/*
 | |
| 		 * Do not allow a recursive hierarchy (this new sibling
 | |
| 		 * becoming part of another group-sibling):
 | |
| 		 */
 | |
| 		if (group_leader->group_leader != group_leader)
 | |
| 			goto err_put_context;
 | |
| 		/*
 | |
| 		 * Do not allow to attach to a group in a different
 | |
| 		 * task or CPU context:
 | |
| 		 */
 | |
| 		if (group_leader->ctx != ctx)
 | |
| 			goto err_put_context;
 | |
| 		/*
 | |
| 		 * Only a group leader can be exclusive or pinned
 | |
| 		 */
 | |
| 		if (attr.exclusive || attr.pinned)
 | |
| 			goto err_put_context;
 | |
| 	}
 | |
| 
 | |
| 	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
 | |
| 				     NULL, GFP_KERNEL);
 | |
| 	err = PTR_ERR(event);
 | |
| 	if (IS_ERR(event))
 | |
| 		goto err_put_context;
 | |
| 
 | |
| 	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
 | |
| 	if (err < 0)
 | |
| 		goto err_free_put_context;
 | |
| 
 | |
| 	event_file = fget_light(err, &fput_needed2);
 | |
| 	if (!event_file)
 | |
| 		goto err_free_put_context;
 | |
| 
 | |
| 	if (flags & PERF_FLAG_FD_OUTPUT) {
 | |
| 		err = perf_event_set_output(event, group_fd);
 | |
| 		if (err)
 | |
| 			goto err_fput_free_put_context;
 | |
| 	}
 | |
| 
 | |
| 	event->filp = event_file;
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 	perf_install_in_context(ctx, event, cpu);
 | |
| 	++ctx->generation;
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	event->owner = current;
 | |
| 	get_task_struct(current);
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_add_tail(&event->owner_entry, ¤t->perf_event_list);
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| err_fput_free_put_context:
 | |
| 	fput_light(event_file, fput_needed2);
 | |
| 
 | |
| err_free_put_context:
 | |
| 	if (err < 0)
 | |
| 		kfree(event);
 | |
| 
 | |
| err_put_context:
 | |
| 	if (err < 0)
 | |
| 		put_ctx(ctx);
 | |
| 
 | |
| 	fput_light(group_file, fput_needed);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * inherit a event from parent task to child task:
 | |
|  */
 | |
| static struct perf_event *
 | |
| inherit_event(struct perf_event *parent_event,
 | |
| 	      struct task_struct *parent,
 | |
| 	      struct perf_event_context *parent_ctx,
 | |
| 	      struct task_struct *child,
 | |
| 	      struct perf_event *group_leader,
 | |
| 	      struct perf_event_context *child_ctx)
 | |
| {
 | |
| 	struct perf_event *child_event;
 | |
| 
 | |
| 	/*
 | |
| 	 * Instead of creating recursive hierarchies of events,
 | |
| 	 * we link inherited events back to the original parent,
 | |
| 	 * which has a filp for sure, which we use as the reference
 | |
| 	 * count:
 | |
| 	 */
 | |
| 	if (parent_event->parent)
 | |
| 		parent_event = parent_event->parent;
 | |
| 
 | |
| 	child_event = perf_event_alloc(&parent_event->attr,
 | |
| 					   parent_event->cpu, child_ctx,
 | |
| 					   group_leader, parent_event,
 | |
| 					   GFP_KERNEL);
 | |
| 	if (IS_ERR(child_event))
 | |
| 		return child_event;
 | |
| 	get_ctx(child_ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make the child state follow the state of the parent event,
 | |
| 	 * not its attr.disabled bit.  We hold the parent's mutex,
 | |
| 	 * so we won't race with perf_event_{en, dis}able_family.
 | |
| 	 */
 | |
| 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		child_event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 	else
 | |
| 		child_event->state = PERF_EVENT_STATE_OFF;
 | |
| 
 | |
| 	if (parent_event->attr.freq)
 | |
| 		child_event->hw.sample_period = parent_event->hw.sample_period;
 | |
| 
 | |
| 	/*
 | |
| 	 * Link it up in the child's context:
 | |
| 	 */
 | |
| 	add_event_to_ctx(child_event, child_ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get a reference to the parent filp - we will fput it
 | |
| 	 * when the child event exits. This is safe to do because
 | |
| 	 * we are in the parent and we know that the filp still
 | |
| 	 * exists and has a nonzero count:
 | |
| 	 */
 | |
| 	atomic_long_inc(&parent_event->filp->f_count);
 | |
| 
 | |
| 	/*
 | |
| 	 * Link this into the parent event's child list
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
 | |
| 	mutex_lock(&parent_event->child_mutex);
 | |
| 	list_add_tail(&child_event->child_list, &parent_event->child_list);
 | |
| 	mutex_unlock(&parent_event->child_mutex);
 | |
| 
 | |
| 	return child_event;
 | |
| }
 | |
| 
 | |
| static int inherit_group(struct perf_event *parent_event,
 | |
| 	      struct task_struct *parent,
 | |
| 	      struct perf_event_context *parent_ctx,
 | |
| 	      struct task_struct *child,
 | |
| 	      struct perf_event_context *child_ctx)
 | |
| {
 | |
| 	struct perf_event *leader;
 | |
| 	struct perf_event *sub;
 | |
| 	struct perf_event *child_ctr;
 | |
| 
 | |
| 	leader = inherit_event(parent_event, parent, parent_ctx,
 | |
| 				 child, NULL, child_ctx);
 | |
| 	if (IS_ERR(leader))
 | |
| 		return PTR_ERR(leader);
 | |
| 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
 | |
| 		child_ctr = inherit_event(sub, parent, parent_ctx,
 | |
| 					    child, leader, child_ctx);
 | |
| 		if (IS_ERR(child_ctr))
 | |
| 			return PTR_ERR(child_ctr);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sync_child_event(struct perf_event *child_event,
 | |
| 			       struct task_struct *child)
 | |
| {
 | |
| 	struct perf_event *parent_event = child_event->parent;
 | |
| 	u64 child_val;
 | |
| 
 | |
| 	if (child_event->attr.inherit_stat)
 | |
| 		perf_event_read_event(child_event, child);
 | |
| 
 | |
| 	child_val = atomic64_read(&child_event->count);
 | |
| 
 | |
| 	/*
 | |
| 	 * Add back the child's count to the parent's count:
 | |
| 	 */
 | |
| 	atomic64_add(child_val, &parent_event->count);
 | |
| 	atomic64_add(child_event->total_time_enabled,
 | |
| 		     &parent_event->child_total_time_enabled);
 | |
| 	atomic64_add(child_event->total_time_running,
 | |
| 		     &parent_event->child_total_time_running);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove this event from the parent's list
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
 | |
| 	mutex_lock(&parent_event->child_mutex);
 | |
| 	list_del_init(&child_event->child_list);
 | |
| 	mutex_unlock(&parent_event->child_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Release the parent event, if this was the last
 | |
| 	 * reference to it.
 | |
| 	 */
 | |
| 	fput(parent_event->filp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __perf_event_exit_task(struct perf_event *child_event,
 | |
| 			 struct perf_event_context *child_ctx,
 | |
| 			 struct task_struct *child)
 | |
| {
 | |
| 	struct perf_event *parent_event;
 | |
| 
 | |
| 	update_event_times(child_event);
 | |
| 	perf_event_remove_from_context(child_event);
 | |
| 
 | |
| 	parent_event = child_event->parent;
 | |
| 	/*
 | |
| 	 * It can happen that parent exits first, and has events
 | |
| 	 * that are still around due to the child reference. These
 | |
| 	 * events need to be zapped - but otherwise linger.
 | |
| 	 */
 | |
| 	if (parent_event) {
 | |
| 		sync_child_event(child_event, child);
 | |
| 		free_event(child_event);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a child task exits, feed back event values to parent events.
 | |
|  */
 | |
| void perf_event_exit_task(struct task_struct *child)
 | |
| {
 | |
| 	struct perf_event *child_event, *tmp;
 | |
| 	struct perf_event_context *child_ctx;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (likely(!child->perf_event_ctxp)) {
 | |
| 		perf_event_task(child, NULL, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	/*
 | |
| 	 * We can't reschedule here because interrupts are disabled,
 | |
| 	 * and either child is current or it is a task that can't be
 | |
| 	 * scheduled, so we are now safe from rescheduling changing
 | |
| 	 * our context.
 | |
| 	 */
 | |
| 	child_ctx = child->perf_event_ctxp;
 | |
| 	__perf_event_task_sched_out(child_ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Take the context lock here so that if find_get_context is
 | |
| 	 * reading child->perf_event_ctxp, we wait until it has
 | |
| 	 * incremented the context's refcount before we do put_ctx below.
 | |
| 	 */
 | |
| 	spin_lock(&child_ctx->lock);
 | |
| 	child->perf_event_ctxp = NULL;
 | |
| 	/*
 | |
| 	 * If this context is a clone; unclone it so it can't get
 | |
| 	 * swapped to another process while we're removing all
 | |
| 	 * the events from it.
 | |
| 	 */
 | |
| 	unclone_ctx(child_ctx);
 | |
| 	spin_unlock_irqrestore(&child_ctx->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Report the task dead after unscheduling the events so that we
 | |
| 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
 | |
| 	 * get a few PERF_RECORD_READ events.
 | |
| 	 */
 | |
| 	perf_event_task(child, child_ctx, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can recurse on the same lock type through:
 | |
| 	 *
 | |
| 	 *   __perf_event_exit_task()
 | |
| 	 *     sync_child_event()
 | |
| 	 *       fput(parent_event->filp)
 | |
| 	 *         perf_release()
 | |
| 	 *           mutex_lock(&ctx->mutex)
 | |
| 	 *
 | |
| 	 * But since its the parent context it won't be the same instance.
 | |
| 	 */
 | |
| 	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| again:
 | |
| 	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
 | |
| 				 group_entry)
 | |
| 		__perf_event_exit_task(child_event, child_ctx, child);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the last event was a group event, it will have appended all
 | |
| 	 * its siblings to the list, but we obtained 'tmp' before that which
 | |
| 	 * will still point to the list head terminating the iteration.
 | |
| 	 */
 | |
| 	if (!list_empty(&child_ctx->group_list))
 | |
| 		goto again;
 | |
| 
 | |
| 	mutex_unlock(&child_ctx->mutex);
 | |
| 
 | |
| 	put_ctx(child_ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free an unexposed, unused context as created by inheritance by
 | |
|  * init_task below, used by fork() in case of fail.
 | |
|  */
 | |
| void perf_event_free_task(struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx = task->perf_event_ctxp;
 | |
| 	struct perf_event *event, *tmp;
 | |
| 
 | |
| 	if (!ctx)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| again:
 | |
| 	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
 | |
| 		struct perf_event *parent = event->parent;
 | |
| 
 | |
| 		if (WARN_ON_ONCE(!parent))
 | |
| 			continue;
 | |
| 
 | |
| 		mutex_lock(&parent->child_mutex);
 | |
| 		list_del_init(&event->child_list);
 | |
| 		mutex_unlock(&parent->child_mutex);
 | |
| 
 | |
| 		fput(parent->filp);
 | |
| 
 | |
| 		list_del_event(event, ctx);
 | |
| 		free_event(event);
 | |
| 	}
 | |
| 
 | |
| 	if (!list_empty(&ctx->group_list))
 | |
| 		goto again;
 | |
| 
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	put_ctx(ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the perf_event context in task_struct
 | |
|  */
 | |
| int perf_event_init_task(struct task_struct *child)
 | |
| {
 | |
| 	struct perf_event_context *child_ctx, *parent_ctx;
 | |
| 	struct perf_event_context *cloned_ctx;
 | |
| 	struct perf_event *event;
 | |
| 	struct task_struct *parent = current;
 | |
| 	int inherited_all = 1;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	child->perf_event_ctxp = NULL;
 | |
| 
 | |
| 	mutex_init(&child->perf_event_mutex);
 | |
| 	INIT_LIST_HEAD(&child->perf_event_list);
 | |
| 
 | |
| 	if (likely(!parent->perf_event_ctxp))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is executed from the parent task context, so inherit
 | |
| 	 * events that have been marked for cloning.
 | |
| 	 * First allocate and initialize a context for the child.
 | |
| 	 */
 | |
| 
 | |
| 	child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
 | |
| 	if (!child_ctx)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	__perf_event_init_context(child_ctx, child);
 | |
| 	child->perf_event_ctxp = child_ctx;
 | |
| 	get_task_struct(child);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the parent's context is a clone, pin it so it won't get
 | |
| 	 * swapped under us.
 | |
| 	 */
 | |
| 	parent_ctx = perf_pin_task_context(parent);
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to check if parent_ctx != NULL here; since we saw
 | |
| 	 * it non-NULL earlier, the only reason for it to become NULL
 | |
| 	 * is if we exit, and since we're currently in the middle of
 | |
| 	 * a fork we can't be exiting at the same time.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock the parent list. No need to lock the child - not PID
 | |
| 	 * hashed yet and not running, so nobody can access it.
 | |
| 	 */
 | |
| 	mutex_lock(&parent_ctx->mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * We dont have to disable NMIs - we are only looking at
 | |
| 	 * the list, not manipulating it:
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
 | |
| 
 | |
| 		if (!event->attr.inherit) {
 | |
| 			inherited_all = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ret = inherit_group(event, parent, parent_ctx,
 | |
| 					     child, child_ctx);
 | |
| 		if (ret) {
 | |
| 			inherited_all = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (inherited_all) {
 | |
| 		/*
 | |
| 		 * Mark the child context as a clone of the parent
 | |
| 		 * context, or of whatever the parent is a clone of.
 | |
| 		 * Note that if the parent is a clone, it could get
 | |
| 		 * uncloned at any point, but that doesn't matter
 | |
| 		 * because the list of events and the generation
 | |
| 		 * count can't have changed since we took the mutex.
 | |
| 		 */
 | |
| 		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
 | |
| 		if (cloned_ctx) {
 | |
| 			child_ctx->parent_ctx = cloned_ctx;
 | |
| 			child_ctx->parent_gen = parent_ctx->parent_gen;
 | |
| 		} else {
 | |
| 			child_ctx->parent_ctx = parent_ctx;
 | |
| 			child_ctx->parent_gen = parent_ctx->generation;
 | |
| 		}
 | |
| 		get_ctx(child_ctx->parent_ctx);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&parent_ctx->mutex);
 | |
| 
 | |
| 	perf_unpin_context(parent_ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __cpuinit perf_event_init_cpu(int cpu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 
 | |
| 	cpuctx = &per_cpu(perf_cpu_context, cpu);
 | |
| 	__perf_event_init_context(&cpuctx->ctx, NULL);
 | |
| 
 | |
| 	spin_lock(&perf_resource_lock);
 | |
| 	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
 | |
| 	spin_unlock(&perf_resource_lock);
 | |
| 
 | |
| 	hw_perf_event_setup(cpu);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static void __perf_event_exit_cpu(void *info)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
 | |
| 	struct perf_event_context *ctx = &cpuctx->ctx;
 | |
| 	struct perf_event *event, *tmp;
 | |
| 
 | |
| 	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
 | |
| 		__perf_event_remove_from_context(event);
 | |
| }
 | |
| static void perf_event_exit_cpu(int cpu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
 | |
| 	struct perf_event_context *ctx = &cpuctx->ctx;
 | |
| 
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| }
 | |
| #else
 | |
| static inline void perf_event_exit_cpu(int cpu) { }
 | |
| #endif
 | |
| 
 | |
| static int __cpuinit
 | |
| perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
 | |
| {
 | |
| 	unsigned int cpu = (long)hcpu;
 | |
| 
 | |
| 	switch (action) {
 | |
| 
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_UP_PREPARE_FROZEN:
 | |
| 		perf_event_init_cpu(cpu);
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_ONLINE:
 | |
| 	case CPU_ONLINE_FROZEN:
 | |
| 		hw_perf_event_setup_online(cpu);
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_DOWN_PREPARE:
 | |
| 	case CPU_DOWN_PREPARE_FROZEN:
 | |
| 		perf_event_exit_cpu(cpu);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This has to have a higher priority than migration_notifier in sched.c.
 | |
|  */
 | |
| static struct notifier_block __cpuinitdata perf_cpu_nb = {
 | |
| 	.notifier_call		= perf_cpu_notify,
 | |
| 	.priority		= 20,
 | |
| };
 | |
| 
 | |
| void __init perf_event_init(void)
 | |
| {
 | |
| 	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
 | |
| 			(void *)(long)smp_processor_id());
 | |
| 	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
 | |
| 			(void *)(long)smp_processor_id());
 | |
| 	register_cpu_notifier(&perf_cpu_nb);
 | |
| }
 | |
| 
 | |
| static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", perf_reserved_percpu);
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| perf_set_reserve_percpu(struct sysdev_class *class,
 | |
| 			const char *buf,
 | |
| 			size_t count)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	unsigned long val;
 | |
| 	int err, cpu, mpt;
 | |
| 
 | |
| 	err = strict_strtoul(buf, 10, &val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (val > perf_max_events)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock(&perf_resource_lock);
 | |
| 	perf_reserved_percpu = val;
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		cpuctx = &per_cpu(perf_cpu_context, cpu);
 | |
| 		spin_lock_irq(&cpuctx->ctx.lock);
 | |
| 		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
 | |
| 			  perf_max_events - perf_reserved_percpu);
 | |
| 		cpuctx->max_pertask = mpt;
 | |
| 		spin_unlock_irq(&cpuctx->ctx.lock);
 | |
| 	}
 | |
| 	spin_unlock(&perf_resource_lock);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", perf_overcommit);
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 	int err;
 | |
| 
 | |
| 	err = strict_strtoul(buf, 10, &val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (val > 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock(&perf_resource_lock);
 | |
| 	perf_overcommit = val;
 | |
| 	spin_unlock(&perf_resource_lock);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static SYSDEV_CLASS_ATTR(
 | |
| 				reserve_percpu,
 | |
| 				0644,
 | |
| 				perf_show_reserve_percpu,
 | |
| 				perf_set_reserve_percpu
 | |
| 			);
 | |
| 
 | |
| static SYSDEV_CLASS_ATTR(
 | |
| 				overcommit,
 | |
| 				0644,
 | |
| 				perf_show_overcommit,
 | |
| 				perf_set_overcommit
 | |
| 			);
 | |
| 
 | |
| static struct attribute *perfclass_attrs[] = {
 | |
| 	&attr_reserve_percpu.attr,
 | |
| 	&attr_overcommit.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct attribute_group perfclass_attr_group = {
 | |
| 	.attrs			= perfclass_attrs,
 | |
| 	.name			= "perf_events",
 | |
| };
 | |
| 
 | |
| static int __init perf_event_sysfs_init(void)
 | |
| {
 | |
| 	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
 | |
| 				  &perfclass_attr_group);
 | |
| }
 | |
| device_initcall(perf_event_sysfs_init);
 |