linux/drivers/gpu/drm/nouveau/nouveau_dmem.c
Ben Skeggs fd5e985643 drm/nouveau/dmem: use physical vram addresses during migration copies
Removes the need for temporary VMM mappings.

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2019-02-20 09:00:03 +10:00

941 lines
22 KiB
C

/*
* Copyright 2018 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "nouveau_dmem.h"
#include "nouveau_drv.h"
#include "nouveau_chan.h"
#include "nouveau_dma.h"
#include "nouveau_mem.h"
#include "nouveau_bo.h"
#include <nvif/class.h>
#include <nvif/object.h>
#include <nvif/if500b.h>
#include <nvif/if900b.h>
#include <linux/sched/mm.h>
#include <linux/hmm.h>
/*
* FIXME: this is ugly right now we are using TTM to allocate vram and we pin
* it in vram while in use. We likely want to overhaul memory management for
* nouveau to be more page like (not necessarily with system page size but a
* bigger page size) at lowest level and have some shim layer on top that would
* provide the same functionality as TTM.
*/
#define DMEM_CHUNK_SIZE (2UL << 20)
#define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT)
struct nouveau_migrate;
enum nouveau_aper {
NOUVEAU_APER_VIRT,
NOUVEAU_APER_VRAM,
NOUVEAU_APER_HOST,
};
typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages,
enum nouveau_aper, u64 dst_addr,
enum nouveau_aper, u64 src_addr);
struct nouveau_dmem_chunk {
struct list_head list;
struct nouveau_bo *bo;
struct nouveau_drm *drm;
unsigned long pfn_first;
unsigned long callocated;
unsigned long bitmap[BITS_TO_LONGS(DMEM_CHUNK_NPAGES)];
spinlock_t lock;
};
struct nouveau_dmem_migrate {
nouveau_migrate_copy_t copy_func;
struct nouveau_channel *chan;
};
struct nouveau_dmem {
struct hmm_devmem *devmem;
struct nouveau_dmem_migrate migrate;
struct list_head chunk_free;
struct list_head chunk_full;
struct list_head chunk_empty;
struct mutex mutex;
};
struct nouveau_migrate_hmem {
struct scatterlist *sg;
struct nouveau_mem mem;
unsigned long npages;
struct nvif_vma vma;
};
struct nouveau_dmem_fault {
struct nouveau_drm *drm;
struct nouveau_fence *fence;
struct nouveau_migrate_hmem hmem;
};
struct nouveau_migrate {
struct vm_area_struct *vma;
struct nouveau_drm *drm;
struct nouveau_fence *fence;
unsigned long npages;
struct nouveau_migrate_hmem hmem;
};
static void
nouveau_migrate_hmem_fini(struct nouveau_drm *drm,
struct nouveau_migrate_hmem *hmem)
{
struct nvif_vmm *vmm = &drm->client.vmm.vmm;
nouveau_mem_fini(&hmem->mem);
nvif_vmm_put(vmm, &hmem->vma);
if (hmem->sg) {
dma_unmap_sg_attrs(drm->dev->dev, hmem->sg,
hmem->npages, DMA_BIDIRECTIONAL,
DMA_ATTR_SKIP_CPU_SYNC);
kfree(hmem->sg);
hmem->sg = NULL;
}
}
static int
nouveau_migrate_hmem_init(struct nouveau_drm *drm,
struct nouveau_migrate_hmem *hmem,
unsigned long npages,
const unsigned long *pfns)
{
struct nvif_vmm *vmm = &drm->client.vmm.vmm;
unsigned long i;
int ret;
hmem->sg = kzalloc(npages * sizeof(*hmem->sg), GFP_KERNEL);
if (hmem->sg == NULL)
return -ENOMEM;
for (i = 0, hmem->npages = 0; hmem->npages < npages; ++i) {
struct page *page;
if (!pfns[i] || pfns[i] == MIGRATE_PFN_ERROR)
continue;
page = migrate_pfn_to_page(pfns[i]);
if (page == NULL) {
ret = -EINVAL;
goto error;
}
sg_set_page(&hmem->sg[hmem->npages], page, PAGE_SIZE, 0);
hmem->npages++;
}
sg_mark_end(&hmem->sg[hmem->npages - 1]);
i = dma_map_sg_attrs(drm->dev->dev, hmem->sg, hmem->npages,
DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC);
if (i != hmem->npages) {
ret = -ENOMEM;
goto error;
}
ret = nouveau_mem_sgl(&hmem->mem, &drm->client,
hmem->npages, hmem->sg);
if (ret)
goto error;
ret = nvif_vmm_get(vmm, LAZY, false, hmem->mem.mem.page,
0, hmem->mem.mem.size, &hmem->vma);
if (ret)
goto error;
ret = nouveau_mem_map(&hmem->mem, vmm, &hmem->vma);
if (ret)
goto error;
return 0;
error:
nouveau_migrate_hmem_fini(drm, hmem);
return ret;
}
static void
nouveau_dmem_free(struct hmm_devmem *devmem, struct page *page)
{
struct nouveau_dmem_chunk *chunk;
struct nouveau_drm *drm;
unsigned long idx;
chunk = (void *)hmm_devmem_page_get_drvdata(page);
idx = page_to_pfn(page) - chunk->pfn_first;
drm = chunk->drm;
/*
* FIXME:
*
* This is really a bad example, we need to overhaul nouveau memory
* management to be more page focus and allow lighter locking scheme
* to be use in the process.
*/
spin_lock(&chunk->lock);
clear_bit(idx, chunk->bitmap);
WARN_ON(!chunk->callocated);
chunk->callocated--;
/*
* FIXME when chunk->callocated reach 0 we should add the chunk to
* a reclaim list so that it can be freed in case of memory pressure.
*/
spin_unlock(&chunk->lock);
}
static void
nouveau_dmem_fault_alloc_and_copy(struct vm_area_struct *vma,
const unsigned long *src_pfns,
unsigned long *dst_pfns,
unsigned long start,
unsigned long end,
void *private)
{
struct nouveau_dmem_fault *fault = private;
struct nouveau_drm *drm = fault->drm;
unsigned long addr, i, c, npages = 0;
nouveau_migrate_copy_t copy;
int ret;
/* First allocate new memory */
for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
struct page *dpage, *spage;
dst_pfns[i] = 0;
spage = migrate_pfn_to_page(src_pfns[i]);
if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
continue;
dpage = hmm_vma_alloc_locked_page(vma, addr);
if (!dpage) {
dst_pfns[i] = MIGRATE_PFN_ERROR;
continue;
}
dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) |
MIGRATE_PFN_LOCKED;
npages++;
}
/* Create scatter list FIXME: get rid of scatter list */
ret = nouveau_migrate_hmem_init(drm, &fault->hmem, npages, dst_pfns);
if (ret)
goto error;
/* Copy things over */
copy = drm->dmem->migrate.copy_func;
for (addr = start, i = c = 0; addr < end; addr += PAGE_SIZE, i++) {
struct nouveau_dmem_chunk *chunk;
struct page *spage, *dpage;
u64 src_addr, dst_addr;
dpage = migrate_pfn_to_page(dst_pfns[i]);
if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR)
continue;
dst_addr = fault->hmem.vma.addr + (c << PAGE_SHIFT);
c++;
spage = migrate_pfn_to_page(src_pfns[i]);
if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) {
dst_pfns[i] = MIGRATE_PFN_ERROR;
__free_page(dpage);
continue;
}
chunk = (void *)hmm_devmem_page_get_drvdata(spage);
src_addr = page_to_pfn(spage) - chunk->pfn_first;
src_addr = (src_addr << PAGE_SHIFT) + chunk->bo->bo.offset;
ret = copy(drm, 1, NOUVEAU_APER_VIRT, dst_addr,
NOUVEAU_APER_VRAM, src_addr);
if (ret) {
dst_pfns[i] = MIGRATE_PFN_ERROR;
__free_page(dpage);
continue;
}
}
nouveau_fence_new(drm->dmem->migrate.chan, false, &fault->fence);
return;
error:
for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) {
struct page *page;
if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR)
continue;
page = migrate_pfn_to_page(dst_pfns[i]);
dst_pfns[i] = MIGRATE_PFN_ERROR;
if (page == NULL)
continue;
__free_page(page);
}
}
void nouveau_dmem_fault_finalize_and_map(struct vm_area_struct *vma,
const unsigned long *src_pfns,
const unsigned long *dst_pfns,
unsigned long start,
unsigned long end,
void *private)
{
struct nouveau_dmem_fault *fault = private;
struct nouveau_drm *drm = fault->drm;
if (fault->fence) {
nouveau_fence_wait(fault->fence, true, false);
nouveau_fence_unref(&fault->fence);
} else {
/*
* FIXME wait for channel to be IDLE before calling finalizing
* the hmem object below (nouveau_migrate_hmem_fini()).
*/
}
nouveau_migrate_hmem_fini(drm, &fault->hmem);
}
static const struct migrate_vma_ops nouveau_dmem_fault_migrate_ops = {
.alloc_and_copy = nouveau_dmem_fault_alloc_and_copy,
.finalize_and_map = nouveau_dmem_fault_finalize_and_map,
};
static int
nouveau_dmem_fault(struct hmm_devmem *devmem,
struct vm_area_struct *vma,
unsigned long addr,
const struct page *page,
unsigned int flags,
pmd_t *pmdp)
{
struct drm_device *drm_dev = dev_get_drvdata(devmem->device);
unsigned long src[1] = {0}, dst[1] = {0};
struct nouveau_dmem_fault fault = {0};
int ret;
/*
* FIXME what we really want is to find some heuristic to migrate more
* than just one page on CPU fault. When such fault happens it is very
* likely that more surrounding page will CPU fault too.
*/
fault.drm = nouveau_drm(drm_dev);
ret = migrate_vma(&nouveau_dmem_fault_migrate_ops, vma, addr,
addr + PAGE_SIZE, src, dst, &fault);
if (ret)
return VM_FAULT_SIGBUS;
if (dst[0] == MIGRATE_PFN_ERROR)
return VM_FAULT_SIGBUS;
return 0;
}
static const struct hmm_devmem_ops
nouveau_dmem_devmem_ops = {
.free = nouveau_dmem_free,
.fault = nouveau_dmem_fault,
};
static int
nouveau_dmem_chunk_alloc(struct nouveau_drm *drm)
{
struct nouveau_dmem_chunk *chunk;
int ret;
if (drm->dmem == NULL)
return -EINVAL;
mutex_lock(&drm->dmem->mutex);
chunk = list_first_entry_or_null(&drm->dmem->chunk_empty,
struct nouveau_dmem_chunk,
list);
if (chunk == NULL) {
mutex_unlock(&drm->dmem->mutex);
return -ENOMEM;
}
list_del(&chunk->list);
mutex_unlock(&drm->dmem->mutex);
ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0,
TTM_PL_FLAG_VRAM, 0, 0, NULL, NULL,
&chunk->bo);
if (ret)
goto out;
ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
if (ret) {
nouveau_bo_ref(NULL, &chunk->bo);
goto out;
}
bitmap_zero(chunk->bitmap, DMEM_CHUNK_NPAGES);
spin_lock_init(&chunk->lock);
out:
mutex_lock(&drm->dmem->mutex);
if (chunk->bo)
list_add(&chunk->list, &drm->dmem->chunk_empty);
else
list_add_tail(&chunk->list, &drm->dmem->chunk_empty);
mutex_unlock(&drm->dmem->mutex);
return ret;
}
static struct nouveau_dmem_chunk *
nouveau_dmem_chunk_first_free_locked(struct nouveau_drm *drm)
{
struct nouveau_dmem_chunk *chunk;
chunk = list_first_entry_or_null(&drm->dmem->chunk_free,
struct nouveau_dmem_chunk,
list);
if (chunk)
return chunk;
chunk = list_first_entry_or_null(&drm->dmem->chunk_empty,
struct nouveau_dmem_chunk,
list);
if (chunk->bo)
return chunk;
return NULL;
}
static int
nouveau_dmem_pages_alloc(struct nouveau_drm *drm,
unsigned long npages,
unsigned long *pages)
{
struct nouveau_dmem_chunk *chunk;
unsigned long c;
int ret;
memset(pages, 0xff, npages * sizeof(*pages));
mutex_lock(&drm->dmem->mutex);
for (c = 0; c < npages;) {
unsigned long i;
chunk = nouveau_dmem_chunk_first_free_locked(drm);
if (chunk == NULL) {
mutex_unlock(&drm->dmem->mutex);
ret = nouveau_dmem_chunk_alloc(drm);
if (ret) {
if (c)
break;
return ret;
}
continue;
}
spin_lock(&chunk->lock);
i = find_first_zero_bit(chunk->bitmap, DMEM_CHUNK_NPAGES);
while (i < DMEM_CHUNK_NPAGES && c < npages) {
pages[c] = chunk->pfn_first + i;
set_bit(i, chunk->bitmap);
chunk->callocated++;
c++;
i = find_next_zero_bit(chunk->bitmap,
DMEM_CHUNK_NPAGES, i);
}
spin_unlock(&chunk->lock);
}
mutex_unlock(&drm->dmem->mutex);
return 0;
}
static struct page *
nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm)
{
unsigned long pfns[1];
struct page *page;
int ret;
/* FIXME stop all the miss-match API ... */
ret = nouveau_dmem_pages_alloc(drm, 1, pfns);
if (ret)
return NULL;
page = pfn_to_page(pfns[0]);
get_page(page);
lock_page(page);
return page;
}
static void
nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page)
{
unlock_page(page);
put_page(page);
}
void
nouveau_dmem_resume(struct nouveau_drm *drm)
{
struct nouveau_dmem_chunk *chunk;
int ret;
if (drm->dmem == NULL)
return;
mutex_lock(&drm->dmem->mutex);
list_for_each_entry (chunk, &drm->dmem->chunk_free, list) {
ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
/* FIXME handle pin failure */
WARN_ON(ret);
}
list_for_each_entry (chunk, &drm->dmem->chunk_full, list) {
ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
/* FIXME handle pin failure */
WARN_ON(ret);
}
list_for_each_entry (chunk, &drm->dmem->chunk_empty, list) {
ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
/* FIXME handle pin failure */
WARN_ON(ret);
}
mutex_unlock(&drm->dmem->mutex);
}
void
nouveau_dmem_suspend(struct nouveau_drm *drm)
{
struct nouveau_dmem_chunk *chunk;
if (drm->dmem == NULL)
return;
mutex_lock(&drm->dmem->mutex);
list_for_each_entry (chunk, &drm->dmem->chunk_free, list) {
nouveau_bo_unpin(chunk->bo);
}
list_for_each_entry (chunk, &drm->dmem->chunk_full, list) {
nouveau_bo_unpin(chunk->bo);
}
list_for_each_entry (chunk, &drm->dmem->chunk_empty, list) {
nouveau_bo_unpin(chunk->bo);
}
mutex_unlock(&drm->dmem->mutex);
}
void
nouveau_dmem_fini(struct nouveau_drm *drm)
{
struct nouveau_dmem_chunk *chunk, *tmp;
if (drm->dmem == NULL)
return;
mutex_lock(&drm->dmem->mutex);
WARN_ON(!list_empty(&drm->dmem->chunk_free));
WARN_ON(!list_empty(&drm->dmem->chunk_full));
list_for_each_entry_safe (chunk, tmp, &drm->dmem->chunk_empty, list) {
if (chunk->bo) {
nouveau_bo_unpin(chunk->bo);
nouveau_bo_ref(NULL, &chunk->bo);
}
list_del(&chunk->list);
kfree(chunk);
}
mutex_unlock(&drm->dmem->mutex);
}
static int
nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages,
enum nouveau_aper dst_aper, u64 dst_addr,
enum nouveau_aper src_aper, u64 src_addr)
{
struct nouveau_channel *chan = drm->dmem->migrate.chan;
u32 launch_dma = (1 << 9) /* MULTI_LINE_ENABLE. */ |
(1 << 8) /* DST_MEMORY_LAYOUT_PITCH. */ |
(1 << 7) /* SRC_MEMORY_LAYOUT_PITCH. */ |
(1 << 2) /* FLUSH_ENABLE_TRUE. */ |
(2 << 0) /* DATA_TRANSFER_TYPE_NON_PIPELINED. */;
int ret;
ret = RING_SPACE(chan, 13);
if (ret)
return ret;
if (src_aper != NOUVEAU_APER_VIRT) {
switch (src_aper) {
case NOUVEAU_APER_VRAM:
BEGIN_IMC0(chan, NvSubCopy, 0x0260, 0);
break;
case NOUVEAU_APER_HOST:
BEGIN_IMC0(chan, NvSubCopy, 0x0260, 1);
break;
default:
return -EINVAL;
}
launch_dma |= 0x00001000; /* SRC_TYPE_PHYSICAL. */
}
if (dst_aper != NOUVEAU_APER_VIRT) {
switch (dst_aper) {
case NOUVEAU_APER_VRAM:
BEGIN_IMC0(chan, NvSubCopy, 0x0264, 0);
break;
case NOUVEAU_APER_HOST:
BEGIN_IMC0(chan, NvSubCopy, 0x0264, 1);
break;
default:
return -EINVAL;
}
launch_dma |= 0x00002000; /* DST_TYPE_PHYSICAL. */
}
BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
OUT_RING (chan, upper_32_bits(src_addr));
OUT_RING (chan, lower_32_bits(src_addr));
OUT_RING (chan, upper_32_bits(dst_addr));
OUT_RING (chan, lower_32_bits(dst_addr));
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, npages);
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
OUT_RING (chan, launch_dma);
return 0;
}
static int
nouveau_dmem_migrate_init(struct nouveau_drm *drm)
{
switch (drm->ttm.copy.oclass) {
case PASCAL_DMA_COPY_A:
case PASCAL_DMA_COPY_B:
case VOLTA_DMA_COPY_A:
case TURING_DMA_COPY_A:
drm->dmem->migrate.copy_func = nvc0b5_migrate_copy;
drm->dmem->migrate.chan = drm->ttm.chan;
return 0;
default:
break;
}
return -ENODEV;
}
void
nouveau_dmem_init(struct nouveau_drm *drm)
{
struct device *device = drm->dev->dev;
unsigned long i, size;
int ret;
/* This only make sense on PASCAL or newer */
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL)
return;
if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL)))
return;
mutex_init(&drm->dmem->mutex);
INIT_LIST_HEAD(&drm->dmem->chunk_free);
INIT_LIST_HEAD(&drm->dmem->chunk_full);
INIT_LIST_HEAD(&drm->dmem->chunk_empty);
size = ALIGN(drm->client.device.info.ram_user, DMEM_CHUNK_SIZE);
/* Initialize migration dma helpers before registering memory */
ret = nouveau_dmem_migrate_init(drm);
if (ret) {
kfree(drm->dmem);
drm->dmem = NULL;
return;
}
/*
* FIXME we need some kind of policy to decide how much VRAM we
* want to register with HMM. For now just register everything
* and latter if we want to do thing like over commit then we
* could revisit this.
*/
drm->dmem->devmem = hmm_devmem_add(&nouveau_dmem_devmem_ops,
device, size);
if (drm->dmem->devmem == NULL) {
kfree(drm->dmem);
drm->dmem = NULL;
return;
}
for (i = 0; i < (size / DMEM_CHUNK_SIZE); ++i) {
struct nouveau_dmem_chunk *chunk;
struct page *page;
unsigned long j;
chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
if (chunk == NULL) {
nouveau_dmem_fini(drm);
return;
}
chunk->drm = drm;
chunk->pfn_first = drm->dmem->devmem->pfn_first;
chunk->pfn_first += (i * DMEM_CHUNK_NPAGES);
list_add_tail(&chunk->list, &drm->dmem->chunk_empty);
page = pfn_to_page(chunk->pfn_first);
for (j = 0; j < DMEM_CHUNK_NPAGES; ++j, ++page) {
hmm_devmem_page_set_drvdata(page, (long)chunk);
}
}
NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", size >> 20);
}
static void
nouveau_dmem_migrate_alloc_and_copy(struct vm_area_struct *vma,
const unsigned long *src_pfns,
unsigned long *dst_pfns,
unsigned long start,
unsigned long end,
void *private)
{
struct nouveau_migrate *migrate = private;
struct nouveau_drm *drm = migrate->drm;
unsigned long addr, i, c, npages = 0;
nouveau_migrate_copy_t copy;
int ret;
/* First allocate new memory */
for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
struct page *dpage, *spage;
dst_pfns[i] = 0;
spage = migrate_pfn_to_page(src_pfns[i]);
if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
continue;
dpage = nouveau_dmem_page_alloc_locked(drm);
if (!dpage)
continue;
dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) |
MIGRATE_PFN_LOCKED |
MIGRATE_PFN_DEVICE;
npages++;
}
if (!npages)
return;
/* Create scatter list FIXME: get rid of scatter list */
ret = nouveau_migrate_hmem_init(drm, &migrate->hmem, npages, src_pfns);
if (ret)
goto error;
/* Copy things over */
copy = drm->dmem->migrate.copy_func;
for (addr = start, i = c = 0; addr < end; addr += PAGE_SIZE, i++) {
struct nouveau_dmem_chunk *chunk;
struct page *spage, *dpage;
u64 src_addr, dst_addr;
dpage = migrate_pfn_to_page(dst_pfns[i]);
if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR)
continue;
chunk = (void *)hmm_devmem_page_get_drvdata(dpage);
dst_addr = page_to_pfn(dpage) - chunk->pfn_first;
dst_addr = (dst_addr << PAGE_SHIFT) + chunk->bo->bo.offset;
spage = migrate_pfn_to_page(src_pfns[i]);
if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) {
nouveau_dmem_page_free_locked(drm, dpage);
dst_pfns[i] = 0;
continue;
}
src_addr = migrate->hmem.vma.addr + (c << PAGE_SHIFT);
c++;
ret = copy(drm, 1, NOUVEAU_APER_VRAM, dst_addr,
NOUVEAU_APER_VIRT, src_addr);
if (ret) {
nouveau_dmem_page_free_locked(drm, dpage);
dst_pfns[i] = 0;
continue;
}
}
nouveau_fence_new(drm->dmem->migrate.chan, false, &migrate->fence);
return;
error:
for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) {
struct page *page;
if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR)
continue;
page = migrate_pfn_to_page(dst_pfns[i]);
dst_pfns[i] = MIGRATE_PFN_ERROR;
if (page == NULL)
continue;
__free_page(page);
}
}
void nouveau_dmem_migrate_finalize_and_map(struct vm_area_struct *vma,
const unsigned long *src_pfns,
const unsigned long *dst_pfns,
unsigned long start,
unsigned long end,
void *private)
{
struct nouveau_migrate *migrate = private;
struct nouveau_drm *drm = migrate->drm;
if (migrate->fence) {
nouveau_fence_wait(migrate->fence, true, false);
nouveau_fence_unref(&migrate->fence);
} else {
/*
* FIXME wait for channel to be IDLE before finalizing
* the hmem object below (nouveau_migrate_hmem_fini()) ?
*/
}
nouveau_migrate_hmem_fini(drm, &migrate->hmem);
/*
* FIXME optimization: update GPU page table to point to newly
* migrated memory.
*/
}
static const struct migrate_vma_ops nouveau_dmem_migrate_ops = {
.alloc_and_copy = nouveau_dmem_migrate_alloc_and_copy,
.finalize_and_map = nouveau_dmem_migrate_finalize_and_map,
};
int
nouveau_dmem_migrate_vma(struct nouveau_drm *drm,
struct vm_area_struct *vma,
unsigned long start,
unsigned long end)
{
unsigned long *src_pfns, *dst_pfns, npages;
struct nouveau_migrate migrate = {0};
unsigned long i, c, max;
int ret = 0;
npages = (end - start) >> PAGE_SHIFT;
max = min(SG_MAX_SINGLE_ALLOC, npages);
src_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL);
if (src_pfns == NULL)
return -ENOMEM;
dst_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL);
if (dst_pfns == NULL) {
kfree(src_pfns);
return -ENOMEM;
}
migrate.drm = drm;
migrate.vma = vma;
migrate.npages = npages;
for (i = 0; i < npages; i += c) {
unsigned long next;
c = min(SG_MAX_SINGLE_ALLOC, npages);
next = start + (c << PAGE_SHIFT);
ret = migrate_vma(&nouveau_dmem_migrate_ops, vma, start,
next, src_pfns, dst_pfns, &migrate);
if (ret)
goto out;
start = next;
}
out:
kfree(dst_pfns);
kfree(src_pfns);
return ret;
}
static inline bool
nouveau_dmem_page(struct nouveau_drm *drm, struct page *page)
{
if (!is_device_private_page(page))
return false;
if (drm->dmem->devmem != page->pgmap->data)
return false;
return true;
}
void
nouveau_dmem_convert_pfn(struct nouveau_drm *drm,
struct hmm_range *range)
{
unsigned long i, npages;
npages = (range->end - range->start) >> PAGE_SHIFT;
for (i = 0; i < npages; ++i) {
struct nouveau_dmem_chunk *chunk;
struct page *page;
uint64_t addr;
page = hmm_pfn_to_page(range, range->pfns[i]);
if (page == NULL)
continue;
if (!(range->pfns[i] & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
continue;
}
if (!nouveau_dmem_page(drm, page)) {
WARN(1, "Some unknown device memory !\n");
range->pfns[i] = 0;
continue;
}
chunk = (void *)hmm_devmem_page_get_drvdata(page);
addr = page_to_pfn(page) - chunk->pfn_first;
addr = (addr + chunk->bo->bo.mem.start) << PAGE_SHIFT;
range->pfns[i] &= ((1UL << range->pfn_shift) - 1);
range->pfns[i] |= (addr >> PAGE_SHIFT) << range->pfn_shift;
}
}