linux/fs/io_uring.c
Dylan Yudaken 09007af2b6 io_uring: fix provided buffer import
io_import_iovec uses the s pointer, but this was changed immediately
after the iovec was re-imported and so it was imported into the wrong
place.

Change the ordering.

Fixes: 2be2eb02e2 ("io_uring: ensure reads re-import for selected buffers")
Signed-off-by: Dylan Yudaken <dylany@fb.com>
Link: https://lore.kernel.org/r/20220630132006.2825668-1-dylany@fb.com
[axboe: ensure we don't half-import as well]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-06-30 11:34:41 -06:00

13263 lines
326 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Shared application/kernel submission and completion ring pairs, for
* supporting fast/efficient IO.
*
* A note on the read/write ordering memory barriers that are matched between
* the application and kernel side.
*
* After the application reads the CQ ring tail, it must use an
* appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
* before writing the tail (using smp_load_acquire to read the tail will
* do). It also needs a smp_mb() before updating CQ head (ordering the
* entry load(s) with the head store), pairing with an implicit barrier
* through a control-dependency in io_get_cqe (smp_store_release to
* store head will do). Failure to do so could lead to reading invalid
* CQ entries.
*
* Likewise, the application must use an appropriate smp_wmb() before
* writing the SQ tail (ordering SQ entry stores with the tail store),
* which pairs with smp_load_acquire in io_get_sqring (smp_store_release
* to store the tail will do). And it needs a barrier ordering the SQ
* head load before writing new SQ entries (smp_load_acquire to read
* head will do).
*
* When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
* needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
* updating the SQ tail; a full memory barrier smp_mb() is needed
* between.
*
* Also see the examples in the liburing library:
*
* git://git.kernel.dk/liburing
*
* io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
* from data shared between the kernel and application. This is done both
* for ordering purposes, but also to ensure that once a value is loaded from
* data that the application could potentially modify, it remains stable.
*
* Copyright (C) 2018-2019 Jens Axboe
* Copyright (c) 2018-2019 Christoph Hellwig
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/compat.h>
#include <net/compat.h>
#include <linux/refcount.h>
#include <linux/uio.h>
#include <linux/bits.h>
#include <linux/sched/signal.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/blk-mq.h>
#include <linux/bvec.h>
#include <linux/net.h>
#include <net/sock.h>
#include <net/af_unix.h>
#include <net/scm.h>
#include <linux/anon_inodes.h>
#include <linux/sched/mm.h>
#include <linux/uaccess.h>
#include <linux/nospec.h>
#include <linux/sizes.h>
#include <linux/hugetlb.h>
#include <linux/highmem.h>
#include <linux/namei.h>
#include <linux/fsnotify.h>
#include <linux/fadvise.h>
#include <linux/eventpoll.h>
#include <linux/splice.h>
#include <linux/task_work.h>
#include <linux/pagemap.h>
#include <linux/io_uring.h>
#include <linux/audit.h>
#include <linux/security.h>
#include <linux/xattr.h>
#define CREATE_TRACE_POINTS
#include <trace/events/io_uring.h>
#include <uapi/linux/io_uring.h>
#include "internal.h"
#include "io-wq.h"
#define IORING_MAX_ENTRIES 32768
#define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
#define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
/* only define max */
#define IORING_MAX_FIXED_FILES (1U << 20)
#define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
IORING_REGISTER_LAST + IORING_OP_LAST)
#define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
#define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
#define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
#define IORING_MAX_REG_BUFFERS (1U << 14)
#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
IOSQE_IO_HARDLINK | IOSQE_ASYNC)
#define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
REQ_F_ASYNC_DATA)
#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
IO_REQ_CLEAN_FLAGS)
#define IO_APOLL_MULTI_POLLED (REQ_F_APOLL_MULTISHOT | REQ_F_POLLED)
#define IO_TCTX_REFS_CACHE_NR (1U << 10)
struct io_uring {
u32 head ____cacheline_aligned_in_smp;
u32 tail ____cacheline_aligned_in_smp;
};
/*
* This data is shared with the application through the mmap at offsets
* IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
*
* The offsets to the member fields are published through struct
* io_sqring_offsets when calling io_uring_setup.
*/
struct io_rings {
/*
* Head and tail offsets into the ring; the offsets need to be
* masked to get valid indices.
*
* The kernel controls head of the sq ring and the tail of the cq ring,
* and the application controls tail of the sq ring and the head of the
* cq ring.
*/
struct io_uring sq, cq;
/*
* Bitmasks to apply to head and tail offsets (constant, equals
* ring_entries - 1)
*/
u32 sq_ring_mask, cq_ring_mask;
/* Ring sizes (constant, power of 2) */
u32 sq_ring_entries, cq_ring_entries;
/*
* Number of invalid entries dropped by the kernel due to
* invalid index stored in array
*
* Written by the kernel, shouldn't be modified by the
* application (i.e. get number of "new events" by comparing to
* cached value).
*
* After a new SQ head value was read by the application this
* counter includes all submissions that were dropped reaching
* the new SQ head (and possibly more).
*/
u32 sq_dropped;
/*
* Runtime SQ flags
*
* Written by the kernel, shouldn't be modified by the
* application.
*
* The application needs a full memory barrier before checking
* for IORING_SQ_NEED_WAKEUP after updating the sq tail.
*/
atomic_t sq_flags;
/*
* Runtime CQ flags
*
* Written by the application, shouldn't be modified by the
* kernel.
*/
u32 cq_flags;
/*
* Number of completion events lost because the queue was full;
* this should be avoided by the application by making sure
* there are not more requests pending than there is space in
* the completion queue.
*
* Written by the kernel, shouldn't be modified by the
* application (i.e. get number of "new events" by comparing to
* cached value).
*
* As completion events come in out of order this counter is not
* ordered with any other data.
*/
u32 cq_overflow;
/*
* Ring buffer of completion events.
*
* The kernel writes completion events fresh every time they are
* produced, so the application is allowed to modify pending
* entries.
*/
struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
};
struct io_mapped_ubuf {
u64 ubuf;
u64 ubuf_end;
unsigned int nr_bvecs;
unsigned long acct_pages;
struct bio_vec bvec[];
};
struct io_ring_ctx;
struct io_overflow_cqe {
struct list_head list;
struct io_uring_cqe cqe;
};
/*
* FFS_SCM is only available on 64-bit archs, for 32-bit we just define it as 0
* and define IO_URING_SCM_ALL. For this case, we use SCM for all files as we
* can't safely always dereference the file when the task has exited and ring
* cleanup is done. If a file is tracked and part of SCM, then unix gc on
* process exit may reap it before __io_sqe_files_unregister() is run.
*/
#define FFS_NOWAIT 0x1UL
#define FFS_ISREG 0x2UL
#if defined(CONFIG_64BIT)
#define FFS_SCM 0x4UL
#else
#define IO_URING_SCM_ALL
#define FFS_SCM 0x0UL
#endif
#define FFS_MASK ~(FFS_NOWAIT|FFS_ISREG|FFS_SCM)
struct io_fixed_file {
/* file * with additional FFS_* flags */
unsigned long file_ptr;
};
struct io_rsrc_put {
struct list_head list;
u64 tag;
union {
void *rsrc;
struct file *file;
struct io_mapped_ubuf *buf;
};
};
struct io_file_table {
struct io_fixed_file *files;
unsigned long *bitmap;
unsigned int alloc_hint;
};
struct io_rsrc_node {
struct percpu_ref refs;
struct list_head node;
struct list_head rsrc_list;
struct io_rsrc_data *rsrc_data;
struct llist_node llist;
bool done;
};
typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
struct io_rsrc_data {
struct io_ring_ctx *ctx;
u64 **tags;
unsigned int nr;
rsrc_put_fn *do_put;
atomic_t refs;
struct completion done;
bool quiesce;
};
#define IO_BUFFER_LIST_BUF_PER_PAGE (PAGE_SIZE / sizeof(struct io_uring_buf))
struct io_buffer_list {
/*
* If ->buf_nr_pages is set, then buf_pages/buf_ring are used. If not,
* then these are classic provided buffers and ->buf_list is used.
*/
union {
struct list_head buf_list;
struct {
struct page **buf_pages;
struct io_uring_buf_ring *buf_ring;
};
};
__u16 bgid;
/* below is for ring provided buffers */
__u16 buf_nr_pages;
__u16 nr_entries;
__u16 head;
__u16 mask;
};
struct io_buffer {
struct list_head list;
__u64 addr;
__u32 len;
__u16 bid;
__u16 bgid;
};
struct io_restriction {
DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
u8 sqe_flags_allowed;
u8 sqe_flags_required;
bool registered;
};
enum {
IO_SQ_THREAD_SHOULD_STOP = 0,
IO_SQ_THREAD_SHOULD_PARK,
};
struct io_sq_data {
refcount_t refs;
atomic_t park_pending;
struct mutex lock;
/* ctx's that are using this sqd */
struct list_head ctx_list;
struct task_struct *thread;
struct wait_queue_head wait;
unsigned sq_thread_idle;
int sq_cpu;
pid_t task_pid;
pid_t task_tgid;
unsigned long state;
struct completion exited;
};
#define IO_COMPL_BATCH 32
#define IO_REQ_CACHE_SIZE 32
#define IO_REQ_ALLOC_BATCH 8
struct io_submit_link {
struct io_kiocb *head;
struct io_kiocb *last;
};
struct io_submit_state {
/* inline/task_work completion list, under ->uring_lock */
struct io_wq_work_node free_list;
/* batch completion logic */
struct io_wq_work_list compl_reqs;
struct io_submit_link link;
bool plug_started;
bool need_plug;
bool flush_cqes;
unsigned short submit_nr;
struct blk_plug plug;
};
struct io_ev_fd {
struct eventfd_ctx *cq_ev_fd;
unsigned int eventfd_async: 1;
struct rcu_head rcu;
};
#define BGID_ARRAY 64
struct io_ring_ctx {
/* const or read-mostly hot data */
struct {
struct percpu_ref refs;
struct io_rings *rings;
unsigned int flags;
enum task_work_notify_mode notify_method;
unsigned int compat: 1;
unsigned int drain_next: 1;
unsigned int restricted: 1;
unsigned int off_timeout_used: 1;
unsigned int drain_active: 1;
unsigned int drain_disabled: 1;
unsigned int has_evfd: 1;
unsigned int syscall_iopoll: 1;
} ____cacheline_aligned_in_smp;
/* submission data */
struct {
struct mutex uring_lock;
/*
* Ring buffer of indices into array of io_uring_sqe, which is
* mmapped by the application using the IORING_OFF_SQES offset.
*
* This indirection could e.g. be used to assign fixed
* io_uring_sqe entries to operations and only submit them to
* the queue when needed.
*
* The kernel modifies neither the indices array nor the entries
* array.
*/
u32 *sq_array;
struct io_uring_sqe *sq_sqes;
unsigned cached_sq_head;
unsigned sq_entries;
struct list_head defer_list;
/*
* Fixed resources fast path, should be accessed only under
* uring_lock, and updated through io_uring_register(2)
*/
struct io_rsrc_node *rsrc_node;
int rsrc_cached_refs;
atomic_t cancel_seq;
struct io_file_table file_table;
unsigned nr_user_files;
unsigned nr_user_bufs;
struct io_mapped_ubuf **user_bufs;
struct io_submit_state submit_state;
struct io_buffer_list *io_bl;
struct xarray io_bl_xa;
struct list_head io_buffers_cache;
struct list_head timeout_list;
struct list_head ltimeout_list;
struct list_head cq_overflow_list;
struct list_head apoll_cache;
struct xarray personalities;
u32 pers_next;
unsigned sq_thread_idle;
} ____cacheline_aligned_in_smp;
/* IRQ completion list, under ->completion_lock */
struct io_wq_work_list locked_free_list;
unsigned int locked_free_nr;
const struct cred *sq_creds; /* cred used for __io_sq_thread() */
struct io_sq_data *sq_data; /* if using sq thread polling */
struct wait_queue_head sqo_sq_wait;
struct list_head sqd_list;
unsigned long check_cq;
struct {
/*
* We cache a range of free CQEs we can use, once exhausted it
* should go through a slower range setup, see __io_get_cqe()
*/
struct io_uring_cqe *cqe_cached;
struct io_uring_cqe *cqe_sentinel;
unsigned cached_cq_tail;
unsigned cq_entries;
struct io_ev_fd __rcu *io_ev_fd;
struct wait_queue_head cq_wait;
unsigned cq_extra;
atomic_t cq_timeouts;
unsigned cq_last_tm_flush;
} ____cacheline_aligned_in_smp;
struct {
spinlock_t completion_lock;
spinlock_t timeout_lock;
/*
* ->iopoll_list is protected by the ctx->uring_lock for
* io_uring instances that don't use IORING_SETUP_SQPOLL.
* For SQPOLL, only the single threaded io_sq_thread() will
* manipulate the list, hence no extra locking is needed there.
*/
struct io_wq_work_list iopoll_list;
struct hlist_head *cancel_hash;
unsigned cancel_hash_bits;
bool poll_multi_queue;
struct list_head io_buffers_comp;
} ____cacheline_aligned_in_smp;
struct io_restriction restrictions;
/* slow path rsrc auxilary data, used by update/register */
struct {
struct io_rsrc_node *rsrc_backup_node;
struct io_mapped_ubuf *dummy_ubuf;
struct io_rsrc_data *file_data;
struct io_rsrc_data *buf_data;
struct delayed_work rsrc_put_work;
struct llist_head rsrc_put_llist;
struct list_head rsrc_ref_list;
spinlock_t rsrc_ref_lock;
struct list_head io_buffers_pages;
};
/* Keep this last, we don't need it for the fast path */
struct {
#if defined(CONFIG_UNIX)
struct socket *ring_sock;
#endif
/* hashed buffered write serialization */
struct io_wq_hash *hash_map;
/* Only used for accounting purposes */
struct user_struct *user;
struct mm_struct *mm_account;
/* ctx exit and cancelation */
struct llist_head fallback_llist;
struct delayed_work fallback_work;
struct work_struct exit_work;
struct list_head tctx_list;
struct completion ref_comp;
u32 iowq_limits[2];
bool iowq_limits_set;
};
};
/*
* Arbitrary limit, can be raised if need be
*/
#define IO_RINGFD_REG_MAX 16
struct io_uring_task {
/* submission side */
int cached_refs;
struct xarray xa;
struct wait_queue_head wait;
const struct io_ring_ctx *last;
struct io_wq *io_wq;
struct percpu_counter inflight;
atomic_t inflight_tracked;
atomic_t in_idle;
spinlock_t task_lock;
struct io_wq_work_list task_list;
struct io_wq_work_list prio_task_list;
struct callback_head task_work;
struct file **registered_rings;
bool task_running;
};
/*
* First field must be the file pointer in all the
* iocb unions! See also 'struct kiocb' in <linux/fs.h>
*/
struct io_poll_iocb {
struct file *file;
struct wait_queue_head *head;
__poll_t events;
struct wait_queue_entry wait;
};
struct io_poll_update {
struct file *file;
u64 old_user_data;
u64 new_user_data;
__poll_t events;
bool update_events;
bool update_user_data;
};
struct io_close {
struct file *file;
int fd;
u32 file_slot;
};
struct io_timeout_data {
struct io_kiocb *req;
struct hrtimer timer;
struct timespec64 ts;
enum hrtimer_mode mode;
u32 flags;
};
struct io_accept {
struct file *file;
struct sockaddr __user *addr;
int __user *addr_len;
int flags;
u32 file_slot;
unsigned long nofile;
};
struct io_socket {
struct file *file;
int domain;
int type;
int protocol;
int flags;
u32 file_slot;
unsigned long nofile;
};
struct io_sync {
struct file *file;
loff_t len;
loff_t off;
int flags;
int mode;
};
struct io_cancel {
struct file *file;
u64 addr;
u32 flags;
s32 fd;
};
struct io_timeout {
struct file *file;
u32 off;
u32 target_seq;
struct list_head list;
/* head of the link, used by linked timeouts only */
struct io_kiocb *head;
/* for linked completions */
struct io_kiocb *prev;
};
struct io_timeout_rem {
struct file *file;
u64 addr;
/* timeout update */
struct timespec64 ts;
u32 flags;
bool ltimeout;
};
struct io_rw {
/* NOTE: kiocb has the file as the first member, so don't do it here */
struct kiocb kiocb;
u64 addr;
u32 len;
rwf_t flags;
};
struct io_connect {
struct file *file;
struct sockaddr __user *addr;
int addr_len;
};
struct io_sr_msg {
struct file *file;
union {
struct compat_msghdr __user *umsg_compat;
struct user_msghdr __user *umsg;
void __user *buf;
};
int msg_flags;
size_t len;
size_t done_io;
unsigned int flags;
};
struct io_open {
struct file *file;
int dfd;
u32 file_slot;
struct filename *filename;
struct open_how how;
unsigned long nofile;
};
struct io_rsrc_update {
struct file *file;
u64 arg;
u32 nr_args;
u32 offset;
};
struct io_fadvise {
struct file *file;
u64 offset;
u32 len;
u32 advice;
};
struct io_madvise {
struct file *file;
u64 addr;
u32 len;
u32 advice;
};
struct io_epoll {
struct file *file;
int epfd;
int op;
int fd;
struct epoll_event event;
};
struct io_splice {
struct file *file_out;
loff_t off_out;
loff_t off_in;
u64 len;
int splice_fd_in;
unsigned int flags;
};
struct io_provide_buf {
struct file *file;
__u64 addr;
__u32 len;
__u32 bgid;
__u16 nbufs;
__u16 bid;
};
struct io_statx {
struct file *file;
int dfd;
unsigned int mask;
unsigned int flags;
struct filename *filename;
struct statx __user *buffer;
};
struct io_shutdown {
struct file *file;
int how;
};
struct io_rename {
struct file *file;
int old_dfd;
int new_dfd;
struct filename *oldpath;
struct filename *newpath;
int flags;
};
struct io_unlink {
struct file *file;
int dfd;
int flags;
struct filename *filename;
};
struct io_mkdir {
struct file *file;
int dfd;
umode_t mode;
struct filename *filename;
};
struct io_symlink {
struct file *file;
int new_dfd;
struct filename *oldpath;
struct filename *newpath;
};
struct io_hardlink {
struct file *file;
int old_dfd;
int new_dfd;
struct filename *oldpath;
struct filename *newpath;
int flags;
};
struct io_msg {
struct file *file;
u64 user_data;
u32 len;
};
struct io_async_connect {
struct sockaddr_storage address;
};
struct io_async_msghdr {
struct iovec fast_iov[UIO_FASTIOV];
/* points to an allocated iov, if NULL we use fast_iov instead */
struct iovec *free_iov;
struct sockaddr __user *uaddr;
struct msghdr msg;
struct sockaddr_storage addr;
};
struct io_rw_state {
struct iov_iter iter;
struct iov_iter_state iter_state;
struct iovec fast_iov[UIO_FASTIOV];
};
struct io_async_rw {
struct io_rw_state s;
const struct iovec *free_iovec;
size_t bytes_done;
struct wait_page_queue wpq;
};
struct io_xattr {
struct file *file;
struct xattr_ctx ctx;
struct filename *filename;
};
enum {
REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
REQ_F_CQE_SKIP_BIT = IOSQE_CQE_SKIP_SUCCESS_BIT,
/* first byte is taken by user flags, shift it to not overlap */
REQ_F_FAIL_BIT = 8,
REQ_F_INFLIGHT_BIT,
REQ_F_CUR_POS_BIT,
REQ_F_NOWAIT_BIT,
REQ_F_LINK_TIMEOUT_BIT,
REQ_F_NEED_CLEANUP_BIT,
REQ_F_POLLED_BIT,
REQ_F_BUFFER_SELECTED_BIT,
REQ_F_BUFFER_RING_BIT,
REQ_F_COMPLETE_INLINE_BIT,
REQ_F_REISSUE_BIT,
REQ_F_CREDS_BIT,
REQ_F_REFCOUNT_BIT,
REQ_F_ARM_LTIMEOUT_BIT,
REQ_F_ASYNC_DATA_BIT,
REQ_F_SKIP_LINK_CQES_BIT,
REQ_F_SINGLE_POLL_BIT,
REQ_F_DOUBLE_POLL_BIT,
REQ_F_PARTIAL_IO_BIT,
REQ_F_CQE32_INIT_BIT,
REQ_F_APOLL_MULTISHOT_BIT,
/* keep async read/write and isreg together and in order */
REQ_F_SUPPORT_NOWAIT_BIT,
REQ_F_ISREG_BIT,
/* not a real bit, just to check we're not overflowing the space */
__REQ_F_LAST_BIT,
};
enum {
/* ctx owns file */
REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
/* drain existing IO first */
REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
/* linked sqes */
REQ_F_LINK = BIT(REQ_F_LINK_BIT),
/* doesn't sever on completion < 0 */
REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
/* IOSQE_ASYNC */
REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
/* IOSQE_BUFFER_SELECT */
REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
/* IOSQE_CQE_SKIP_SUCCESS */
REQ_F_CQE_SKIP = BIT(REQ_F_CQE_SKIP_BIT),
/* fail rest of links */
REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
/* on inflight list, should be cancelled and waited on exit reliably */
REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
/* read/write uses file position */
REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
/* must not punt to workers */
REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
/* has or had linked timeout */
REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
/* needs cleanup */
REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
/* already went through poll handler */
REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
/* buffer already selected */
REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
/* buffer selected from ring, needs commit */
REQ_F_BUFFER_RING = BIT(REQ_F_BUFFER_RING_BIT),
/* completion is deferred through io_comp_state */
REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
/* caller should reissue async */
REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
/* supports async reads/writes */
REQ_F_SUPPORT_NOWAIT = BIT(REQ_F_SUPPORT_NOWAIT_BIT),
/* regular file */
REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
/* has creds assigned */
REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
/* skip refcounting if not set */
REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
/* there is a linked timeout that has to be armed */
REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
/* ->async_data allocated */
REQ_F_ASYNC_DATA = BIT(REQ_F_ASYNC_DATA_BIT),
/* don't post CQEs while failing linked requests */
REQ_F_SKIP_LINK_CQES = BIT(REQ_F_SKIP_LINK_CQES_BIT),
/* single poll may be active */
REQ_F_SINGLE_POLL = BIT(REQ_F_SINGLE_POLL_BIT),
/* double poll may active */
REQ_F_DOUBLE_POLL = BIT(REQ_F_DOUBLE_POLL_BIT),
/* request has already done partial IO */
REQ_F_PARTIAL_IO = BIT(REQ_F_PARTIAL_IO_BIT),
/* fast poll multishot mode */
REQ_F_APOLL_MULTISHOT = BIT(REQ_F_APOLL_MULTISHOT_BIT),
/* ->extra1 and ->extra2 are initialised */
REQ_F_CQE32_INIT = BIT(REQ_F_CQE32_INIT_BIT),
};
struct async_poll {
struct io_poll_iocb poll;
struct io_poll_iocb *double_poll;
};
typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
struct io_task_work {
union {
struct io_wq_work_node node;
struct llist_node fallback_node;
};
io_req_tw_func_t func;
};
enum {
IORING_RSRC_FILE = 0,
IORING_RSRC_BUFFER = 1,
};
struct io_cqe {
__u64 user_data;
__s32 res;
/* fd initially, then cflags for completion */
union {
__u32 flags;
int fd;
};
};
enum {
IO_CHECK_CQ_OVERFLOW_BIT,
IO_CHECK_CQ_DROPPED_BIT,
};
/*
* NOTE! Each of the iocb union members has the file pointer
* as the first entry in their struct definition. So you can
* access the file pointer through any of the sub-structs,
* or directly as just 'file' in this struct.
*/
struct io_kiocb {
union {
struct file *file;
struct io_rw rw;
struct io_poll_iocb poll;
struct io_poll_update poll_update;
struct io_accept accept;
struct io_sync sync;
struct io_cancel cancel;
struct io_timeout timeout;
struct io_timeout_rem timeout_rem;
struct io_connect connect;
struct io_sr_msg sr_msg;
struct io_open open;
struct io_close close;
struct io_rsrc_update rsrc_update;
struct io_fadvise fadvise;
struct io_madvise madvise;
struct io_epoll epoll;
struct io_splice splice;
struct io_provide_buf pbuf;
struct io_statx statx;
struct io_shutdown shutdown;
struct io_rename rename;
struct io_unlink unlink;
struct io_mkdir mkdir;
struct io_symlink symlink;
struct io_hardlink hardlink;
struct io_msg msg;
struct io_xattr xattr;
struct io_socket sock;
struct io_uring_cmd uring_cmd;
};
u8 opcode;
/* polled IO has completed */
u8 iopoll_completed;
/*
* Can be either a fixed buffer index, or used with provided buffers.
* For the latter, before issue it points to the buffer group ID,
* and after selection it points to the buffer ID itself.
*/
u16 buf_index;
unsigned int flags;
struct io_cqe cqe;
struct io_ring_ctx *ctx;
struct task_struct *task;
struct io_rsrc_node *rsrc_node;
union {
/* store used ubuf, so we can prevent reloading */
struct io_mapped_ubuf *imu;
/* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
struct io_buffer *kbuf;
/*
* stores buffer ID for ring provided buffers, valid IFF
* REQ_F_BUFFER_RING is set.
*/
struct io_buffer_list *buf_list;
};
union {
/* used by request caches, completion batching and iopoll */
struct io_wq_work_node comp_list;
/* cache ->apoll->events */
__poll_t apoll_events;
};
atomic_t refs;
atomic_t poll_refs;
struct io_task_work io_task_work;
/* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
union {
struct hlist_node hash_node;
struct {
u64 extra1;
u64 extra2;
};
};
/* internal polling, see IORING_FEAT_FAST_POLL */
struct async_poll *apoll;
/* opcode allocated if it needs to store data for async defer */
void *async_data;
/* linked requests, IFF REQ_F_HARDLINK or REQ_F_LINK are set */
struct io_kiocb *link;
/* custom credentials, valid IFF REQ_F_CREDS is set */
const struct cred *creds;
struct io_wq_work work;
};
struct io_tctx_node {
struct list_head ctx_node;
struct task_struct *task;
struct io_ring_ctx *ctx;
};
struct io_defer_entry {
struct list_head list;
struct io_kiocb *req;
u32 seq;
};
struct io_cancel_data {
struct io_ring_ctx *ctx;
union {
u64 data;
struct file *file;
};
u32 flags;
int seq;
};
/*
* The URING_CMD payload starts at 'cmd' in the first sqe, and continues into
* the following sqe if SQE128 is used.
*/
#define uring_cmd_pdu_size(is_sqe128) \
((1 + !!(is_sqe128)) * sizeof(struct io_uring_sqe) - \
offsetof(struct io_uring_sqe, cmd))
struct io_op_def {
/* needs req->file assigned */
unsigned needs_file : 1;
/* should block plug */
unsigned plug : 1;
/* hash wq insertion if file is a regular file */
unsigned hash_reg_file : 1;
/* unbound wq insertion if file is a non-regular file */
unsigned unbound_nonreg_file : 1;
/* set if opcode supports polled "wait" */
unsigned pollin : 1;
unsigned pollout : 1;
unsigned poll_exclusive : 1;
/* op supports buffer selection */
unsigned buffer_select : 1;
/* do prep async if is going to be punted */
unsigned needs_async_setup : 1;
/* opcode is not supported by this kernel */
unsigned not_supported : 1;
/* skip auditing */
unsigned audit_skip : 1;
/* supports ioprio */
unsigned ioprio : 1;
/* supports iopoll */
unsigned iopoll : 1;
/* size of async data needed, if any */
unsigned short async_size;
};
static const struct io_op_def io_op_defs[] = {
[IORING_OP_NOP] = {
.audit_skip = 1,
.iopoll = 1,
},
[IORING_OP_READV] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollin = 1,
.buffer_select = 1,
.needs_async_setup = 1,
.plug = 1,
.audit_skip = 1,
.ioprio = 1,
.iopoll = 1,
.async_size = sizeof(struct io_async_rw),
},
[IORING_OP_WRITEV] = {
.needs_file = 1,
.hash_reg_file = 1,
.unbound_nonreg_file = 1,
.pollout = 1,
.needs_async_setup = 1,
.plug = 1,
.audit_skip = 1,
.ioprio = 1,
.iopoll = 1,
.async_size = sizeof(struct io_async_rw),
},
[IORING_OP_FSYNC] = {
.needs_file = 1,
.audit_skip = 1,
},
[IORING_OP_READ_FIXED] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollin = 1,
.plug = 1,
.audit_skip = 1,
.ioprio = 1,
.iopoll = 1,
.async_size = sizeof(struct io_async_rw),
},
[IORING_OP_WRITE_FIXED] = {
.needs_file = 1,
.hash_reg_file = 1,
.unbound_nonreg_file = 1,
.pollout = 1,
.plug = 1,
.audit_skip = 1,
.ioprio = 1,
.iopoll = 1,
.async_size = sizeof(struct io_async_rw),
},
[IORING_OP_POLL_ADD] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.audit_skip = 1,
},
[IORING_OP_POLL_REMOVE] = {
.audit_skip = 1,
},
[IORING_OP_SYNC_FILE_RANGE] = {
.needs_file = 1,
.audit_skip = 1,
},
[IORING_OP_SENDMSG] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollout = 1,
.needs_async_setup = 1,
.ioprio = 1,
.async_size = sizeof(struct io_async_msghdr),
},
[IORING_OP_RECVMSG] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollin = 1,
.buffer_select = 1,
.needs_async_setup = 1,
.ioprio = 1,
.async_size = sizeof(struct io_async_msghdr),
},
[IORING_OP_TIMEOUT] = {
.audit_skip = 1,
.async_size = sizeof(struct io_timeout_data),
},
[IORING_OP_TIMEOUT_REMOVE] = {
/* used by timeout updates' prep() */
.audit_skip = 1,
},
[IORING_OP_ACCEPT] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollin = 1,
.poll_exclusive = 1,
.ioprio = 1, /* used for flags */
},
[IORING_OP_ASYNC_CANCEL] = {
.audit_skip = 1,
},
[IORING_OP_LINK_TIMEOUT] = {
.audit_skip = 1,
.async_size = sizeof(struct io_timeout_data),
},
[IORING_OP_CONNECT] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollout = 1,
.needs_async_setup = 1,
.async_size = sizeof(struct io_async_connect),
},
[IORING_OP_FALLOCATE] = {
.needs_file = 1,
},
[IORING_OP_OPENAT] = {},
[IORING_OP_CLOSE] = {},
[IORING_OP_FILES_UPDATE] = {
.audit_skip = 1,
.iopoll = 1,
},
[IORING_OP_STATX] = {
.audit_skip = 1,
},
[IORING_OP_READ] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollin = 1,
.buffer_select = 1,
.plug = 1,
.audit_skip = 1,
.ioprio = 1,
.iopoll = 1,
.async_size = sizeof(struct io_async_rw),
},
[IORING_OP_WRITE] = {
.needs_file = 1,
.hash_reg_file = 1,
.unbound_nonreg_file = 1,
.pollout = 1,
.plug = 1,
.audit_skip = 1,
.ioprio = 1,
.iopoll = 1,
.async_size = sizeof(struct io_async_rw),
},
[IORING_OP_FADVISE] = {
.needs_file = 1,
.audit_skip = 1,
},
[IORING_OP_MADVISE] = {},
[IORING_OP_SEND] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollout = 1,
.audit_skip = 1,
.ioprio = 1,
},
[IORING_OP_RECV] = {
.needs_file = 1,
.unbound_nonreg_file = 1,
.pollin = 1,
.buffer_select = 1,
.audit_skip = 1,
.ioprio = 1,
},
[IORING_OP_OPENAT2] = {
},
[IORING_OP_EPOLL_CTL] = {
.unbound_nonreg_file = 1,
.audit_skip = 1,
},
[IORING_OP_SPLICE] = {
.needs_file = 1,
.hash_reg_file = 1,
.unbound_nonreg_file = 1,
.audit_skip = 1,
},
[IORING_OP_PROVIDE_BUFFERS] = {
.audit_skip = 1,
.iopoll = 1,
},
[IORING_OP_REMOVE_BUFFERS] = {
.audit_skip = 1,
.iopoll = 1,
},
[IORING_OP_TEE] = {
.needs_file = 1,
.hash_reg_file = 1,
.unbound_nonreg_file = 1,
.audit_skip = 1,
},
[IORING_OP_SHUTDOWN] = {
.needs_file = 1,
},
[IORING_OP_RENAMEAT] = {},
[IORING_OP_UNLINKAT] = {},
[IORING_OP_MKDIRAT] = {},
[IORING_OP_SYMLINKAT] = {},
[IORING_OP_LINKAT] = {},
[IORING_OP_MSG_RING] = {
.needs_file = 1,
.iopoll = 1,
},
[IORING_OP_FSETXATTR] = {
.needs_file = 1
},
[IORING_OP_SETXATTR] = {},
[IORING_OP_FGETXATTR] = {
.needs_file = 1
},
[IORING_OP_GETXATTR] = {},
[IORING_OP_SOCKET] = {
.audit_skip = 1,
},
[IORING_OP_URING_CMD] = {
.needs_file = 1,
.plug = 1,
.needs_async_setup = 1,
.async_size = uring_cmd_pdu_size(1),
},
};
/* requests with any of those set should undergo io_disarm_next() */
#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
static bool io_disarm_next(struct io_kiocb *req);
static void io_uring_del_tctx_node(unsigned long index);
static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
struct task_struct *task,
bool cancel_all);
static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
static void __io_req_complete_post(struct io_kiocb *req, s32 res, u32 cflags);
static void io_dismantle_req(struct io_kiocb *req);
static void io_queue_linked_timeout(struct io_kiocb *req);
static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
struct io_uring_rsrc_update2 *up,
unsigned nr_args);
static void io_clean_op(struct io_kiocb *req);
static inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
unsigned issue_flags);
static struct file *io_file_get_normal(struct io_kiocb *req, int fd);
static void io_queue_sqe(struct io_kiocb *req);
static void io_rsrc_put_work(struct work_struct *work);
static void io_req_task_queue(struct io_kiocb *req);
static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
static int io_req_prep_async(struct io_kiocb *req);
static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
unsigned int issue_flags, u32 slot_index);
static int __io_close_fixed(struct io_kiocb *req, unsigned int issue_flags,
unsigned int offset);
static inline int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
static void io_eventfd_signal(struct io_ring_ctx *ctx);
static void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags);
static struct kmem_cache *req_cachep;
static const struct file_operations io_uring_fops;
const char *io_uring_get_opcode(u8 opcode)
{
switch ((enum io_uring_op)opcode) {
case IORING_OP_NOP:
return "NOP";
case IORING_OP_READV:
return "READV";
case IORING_OP_WRITEV:
return "WRITEV";
case IORING_OP_FSYNC:
return "FSYNC";
case IORING_OP_READ_FIXED:
return "READ_FIXED";
case IORING_OP_WRITE_FIXED:
return "WRITE_FIXED";
case IORING_OP_POLL_ADD:
return "POLL_ADD";
case IORING_OP_POLL_REMOVE:
return "POLL_REMOVE";
case IORING_OP_SYNC_FILE_RANGE:
return "SYNC_FILE_RANGE";
case IORING_OP_SENDMSG:
return "SENDMSG";
case IORING_OP_RECVMSG:
return "RECVMSG";
case IORING_OP_TIMEOUT:
return "TIMEOUT";
case IORING_OP_TIMEOUT_REMOVE:
return "TIMEOUT_REMOVE";
case IORING_OP_ACCEPT:
return "ACCEPT";
case IORING_OP_ASYNC_CANCEL:
return "ASYNC_CANCEL";
case IORING_OP_LINK_TIMEOUT:
return "LINK_TIMEOUT";
case IORING_OP_CONNECT:
return "CONNECT";
case IORING_OP_FALLOCATE:
return "FALLOCATE";
case IORING_OP_OPENAT:
return "OPENAT";
case IORING_OP_CLOSE:
return "CLOSE";
case IORING_OP_FILES_UPDATE:
return "FILES_UPDATE";
case IORING_OP_STATX:
return "STATX";
case IORING_OP_READ:
return "READ";
case IORING_OP_WRITE:
return "WRITE";
case IORING_OP_FADVISE:
return "FADVISE";
case IORING_OP_MADVISE:
return "MADVISE";
case IORING_OP_SEND:
return "SEND";
case IORING_OP_RECV:
return "RECV";
case IORING_OP_OPENAT2:
return "OPENAT2";
case IORING_OP_EPOLL_CTL:
return "EPOLL_CTL";
case IORING_OP_SPLICE:
return "SPLICE";
case IORING_OP_PROVIDE_BUFFERS:
return "PROVIDE_BUFFERS";
case IORING_OP_REMOVE_BUFFERS:
return "REMOVE_BUFFERS";
case IORING_OP_TEE:
return "TEE";
case IORING_OP_SHUTDOWN:
return "SHUTDOWN";
case IORING_OP_RENAMEAT:
return "RENAMEAT";
case IORING_OP_UNLINKAT:
return "UNLINKAT";
case IORING_OP_MKDIRAT:
return "MKDIRAT";
case IORING_OP_SYMLINKAT:
return "SYMLINKAT";
case IORING_OP_LINKAT:
return "LINKAT";
case IORING_OP_MSG_RING:
return "MSG_RING";
case IORING_OP_FSETXATTR:
return "FSETXATTR";
case IORING_OP_SETXATTR:
return "SETXATTR";
case IORING_OP_FGETXATTR:
return "FGETXATTR";
case IORING_OP_GETXATTR:
return "GETXATTR";
case IORING_OP_SOCKET:
return "SOCKET";
case IORING_OP_URING_CMD:
return "URING_CMD";
case IORING_OP_LAST:
return "INVALID";
}
return "INVALID";
}
struct sock *io_uring_get_socket(struct file *file)
{
#if defined(CONFIG_UNIX)
if (file->f_op == &io_uring_fops) {
struct io_ring_ctx *ctx = file->private_data;
return ctx->ring_sock->sk;
}
#endif
return NULL;
}
EXPORT_SYMBOL(io_uring_get_socket);
#if defined(CONFIG_UNIX)
static inline bool io_file_need_scm(struct file *filp)
{
#if defined(IO_URING_SCM_ALL)
return true;
#else
return !!unix_get_socket(filp);
#endif
}
#else
static inline bool io_file_need_scm(struct file *filp)
{
return false;
}
#endif
static void io_ring_submit_unlock(struct io_ring_ctx *ctx, unsigned issue_flags)
{
lockdep_assert_held(&ctx->uring_lock);
if (issue_flags & IO_URING_F_UNLOCKED)
mutex_unlock(&ctx->uring_lock);
}
static void io_ring_submit_lock(struct io_ring_ctx *ctx, unsigned issue_flags)
{
/*
* "Normal" inline submissions always hold the uring_lock, since we
* grab it from the system call. Same is true for the SQPOLL offload.
* The only exception is when we've detached the request and issue it
* from an async worker thread, grab the lock for that case.
*/
if (issue_flags & IO_URING_F_UNLOCKED)
mutex_lock(&ctx->uring_lock);
lockdep_assert_held(&ctx->uring_lock);
}
static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
{
if (!*locked) {
mutex_lock(&ctx->uring_lock);
*locked = true;
}
}
#define io_for_each_link(pos, head) \
for (pos = (head); pos; pos = pos->link)
/*
* Shamelessly stolen from the mm implementation of page reference checking,
* see commit f958d7b528b1 for details.
*/
#define req_ref_zero_or_close_to_overflow(req) \
((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
{
WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
return atomic_inc_not_zero(&req->refs);
}
static inline bool req_ref_put_and_test(struct io_kiocb *req)
{
if (likely(!(req->flags & REQ_F_REFCOUNT)))
return true;
WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
return atomic_dec_and_test(&req->refs);
}
static inline void req_ref_get(struct io_kiocb *req)
{
WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
atomic_inc(&req->refs);
}
static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
{
if (!wq_list_empty(&ctx->submit_state.compl_reqs))
__io_submit_flush_completions(ctx);
}
static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
{
if (!(req->flags & REQ_F_REFCOUNT)) {
req->flags |= REQ_F_REFCOUNT;
atomic_set(&req->refs, nr);
}
}
static inline void io_req_set_refcount(struct io_kiocb *req)
{
__io_req_set_refcount(req, 1);
}
#define IO_RSRC_REF_BATCH 100
static void io_rsrc_put_node(struct io_rsrc_node *node, int nr)
{
percpu_ref_put_many(&node->refs, nr);
}
static inline void io_req_put_rsrc_locked(struct io_kiocb *req,
struct io_ring_ctx *ctx)
__must_hold(&ctx->uring_lock)
{
struct io_rsrc_node *node = req->rsrc_node;
if (node) {
if (node == ctx->rsrc_node)
ctx->rsrc_cached_refs++;
else
io_rsrc_put_node(node, 1);
}
}
static inline void io_req_put_rsrc(struct io_kiocb *req)
{
if (req->rsrc_node)
io_rsrc_put_node(req->rsrc_node, 1);
}
static __cold void io_rsrc_refs_drop(struct io_ring_ctx *ctx)
__must_hold(&ctx->uring_lock)
{
if (ctx->rsrc_cached_refs) {
io_rsrc_put_node(ctx->rsrc_node, ctx->rsrc_cached_refs);
ctx->rsrc_cached_refs = 0;
}
}
static void io_rsrc_refs_refill(struct io_ring_ctx *ctx)
__must_hold(&ctx->uring_lock)
{
ctx->rsrc_cached_refs += IO_RSRC_REF_BATCH;
percpu_ref_get_many(&ctx->rsrc_node->refs, IO_RSRC_REF_BATCH);
}
static inline void io_req_set_rsrc_node(struct io_kiocb *req,
struct io_ring_ctx *ctx,
unsigned int issue_flags)
{
if (!req->rsrc_node) {
req->rsrc_node = ctx->rsrc_node;
if (!(issue_flags & IO_URING_F_UNLOCKED)) {
lockdep_assert_held(&ctx->uring_lock);
ctx->rsrc_cached_refs--;
if (unlikely(ctx->rsrc_cached_refs < 0))
io_rsrc_refs_refill(ctx);
} else {
percpu_ref_get(&req->rsrc_node->refs);
}
}
}
static unsigned int __io_put_kbuf(struct io_kiocb *req, struct list_head *list)
{
if (req->flags & REQ_F_BUFFER_RING) {
if (req->buf_list)
req->buf_list->head++;
req->flags &= ~REQ_F_BUFFER_RING;
} else {
list_add(&req->kbuf->list, list);
req->flags &= ~REQ_F_BUFFER_SELECTED;
}
return IORING_CQE_F_BUFFER | (req->buf_index << IORING_CQE_BUFFER_SHIFT);
}
static inline unsigned int io_put_kbuf_comp(struct io_kiocb *req)
{
lockdep_assert_held(&req->ctx->completion_lock);
if (!(req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)))
return 0;
return __io_put_kbuf(req, &req->ctx->io_buffers_comp);
}
static inline unsigned int io_put_kbuf(struct io_kiocb *req,
unsigned issue_flags)
{
unsigned int cflags;
if (!(req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)))
return 0;
/*
* We can add this buffer back to two lists:
*
* 1) The io_buffers_cache list. This one is protected by the
* ctx->uring_lock. If we already hold this lock, add back to this
* list as we can grab it from issue as well.
* 2) The io_buffers_comp list. This one is protected by the
* ctx->completion_lock.
*
* We migrate buffers from the comp_list to the issue cache list
* when we need one.
*/
if (req->flags & REQ_F_BUFFER_RING) {
/* no buffers to recycle for this case */
cflags = __io_put_kbuf(req, NULL);
} else if (issue_flags & IO_URING_F_UNLOCKED) {
struct io_ring_ctx *ctx = req->ctx;
spin_lock(&ctx->completion_lock);
cflags = __io_put_kbuf(req, &ctx->io_buffers_comp);
spin_unlock(&ctx->completion_lock);
} else {
lockdep_assert_held(&req->ctx->uring_lock);
cflags = __io_put_kbuf(req, &req->ctx->io_buffers_cache);
}
return cflags;
}
static struct io_buffer_list *io_buffer_get_list(struct io_ring_ctx *ctx,
unsigned int bgid)
{
if (ctx->io_bl && bgid < BGID_ARRAY)
return &ctx->io_bl[bgid];
return xa_load(&ctx->io_bl_xa, bgid);
}
static void io_kbuf_recycle(struct io_kiocb *req, unsigned issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer_list *bl;
struct io_buffer *buf;
if (!(req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)))
return;
/*
* For legacy provided buffer mode, don't recycle if we already did
* IO to this buffer. For ring-mapped provided buffer mode, we should
* increment ring->head to explicitly monopolize the buffer to avoid
* multiple use.
*/
if ((req->flags & REQ_F_BUFFER_SELECTED) &&
(req->flags & REQ_F_PARTIAL_IO))
return;
/*
* We don't need to recycle for REQ_F_BUFFER_RING, we can just clear
* the flag and hence ensure that bl->head doesn't get incremented.
* If the tail has already been incremented, hang on to it.
*/
if (req->flags & REQ_F_BUFFER_RING) {
if (req->buf_list) {
if (req->flags & REQ_F_PARTIAL_IO) {
req->buf_list->head++;
req->buf_list = NULL;
} else {
req->buf_index = req->buf_list->bgid;
req->flags &= ~REQ_F_BUFFER_RING;
}
}
return;
}
io_ring_submit_lock(ctx, issue_flags);
buf = req->kbuf;
bl = io_buffer_get_list(ctx, buf->bgid);
list_add(&buf->list, &bl->buf_list);
req->flags &= ~REQ_F_BUFFER_SELECTED;
req->buf_index = buf->bgid;
io_ring_submit_unlock(ctx, issue_flags);
}
static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
bool cancel_all)
__must_hold(&req->ctx->timeout_lock)
{
struct io_kiocb *req;
if (task && head->task != task)
return false;
if (cancel_all)
return true;
io_for_each_link(req, head) {
if (req->flags & REQ_F_INFLIGHT)
return true;
}
return false;
}
static bool io_match_linked(struct io_kiocb *head)
{
struct io_kiocb *req;
io_for_each_link(req, head) {
if (req->flags & REQ_F_INFLIGHT)
return true;
}
return false;
}
/*
* As io_match_task() but protected against racing with linked timeouts.
* User must not hold timeout_lock.
*/
static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
bool cancel_all)
{
bool matched;
if (task && head->task != task)
return false;
if (cancel_all)
return true;
if (head->flags & REQ_F_LINK_TIMEOUT) {
struct io_ring_ctx *ctx = head->ctx;
/* protect against races with linked timeouts */
spin_lock_irq(&ctx->timeout_lock);
matched = io_match_linked(head);
spin_unlock_irq(&ctx->timeout_lock);
} else {
matched = io_match_linked(head);
}
return matched;
}
static inline bool req_has_async_data(struct io_kiocb *req)
{
return req->flags & REQ_F_ASYNC_DATA;
}
static inline void req_set_fail(struct io_kiocb *req)
{
req->flags |= REQ_F_FAIL;
if (req->flags & REQ_F_CQE_SKIP) {
req->flags &= ~REQ_F_CQE_SKIP;
req->flags |= REQ_F_SKIP_LINK_CQES;
}
}
static inline void req_fail_link_node(struct io_kiocb *req, int res)
{
req_set_fail(req);
req->cqe.res = res;
}
static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
{
wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
}
static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
{
struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
complete(&ctx->ref_comp);
}
static inline bool io_is_timeout_noseq(struct io_kiocb *req)
{
return !req->timeout.off;
}
static __cold void io_fallback_req_func(struct work_struct *work)
{
struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
fallback_work.work);
struct llist_node *node = llist_del_all(&ctx->fallback_llist);
struct io_kiocb *req, *tmp;
bool locked = false;
percpu_ref_get(&ctx->refs);
llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
req->io_task_work.func(req, &locked);
if (locked) {
io_submit_flush_completions(ctx);
mutex_unlock(&ctx->uring_lock);
}
percpu_ref_put(&ctx->refs);
}
static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
{
struct io_ring_ctx *ctx;
int hash_bits;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return NULL;
xa_init(&ctx->io_bl_xa);
/*
* Use 5 bits less than the max cq entries, that should give us around
* 32 entries per hash list if totally full and uniformly spread.
*/
hash_bits = ilog2(p->cq_entries);
hash_bits -= 5;
if (hash_bits <= 0)
hash_bits = 1;
ctx->cancel_hash_bits = hash_bits;
ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
GFP_KERNEL);
if (!ctx->cancel_hash)
goto err;
__hash_init(ctx->cancel_hash, 1U << hash_bits);
ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
if (!ctx->dummy_ubuf)
goto err;
/* set invalid range, so io_import_fixed() fails meeting it */
ctx->dummy_ubuf->ubuf = -1UL;
if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
goto err;
ctx->flags = p->flags;
init_waitqueue_head(&ctx->sqo_sq_wait);
INIT_LIST_HEAD(&ctx->sqd_list);
INIT_LIST_HEAD(&ctx->cq_overflow_list);
INIT_LIST_HEAD(&ctx->io_buffers_cache);
INIT_LIST_HEAD(&ctx->apoll_cache);
init_completion(&ctx->ref_comp);
xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
mutex_init(&ctx->uring_lock);
init_waitqueue_head(&ctx->cq_wait);
spin_lock_init(&ctx->completion_lock);
spin_lock_init(&ctx->timeout_lock);
INIT_WQ_LIST(&ctx->iopoll_list);
INIT_LIST_HEAD(&ctx->io_buffers_pages);
INIT_LIST_HEAD(&ctx->io_buffers_comp);
INIT_LIST_HEAD(&ctx->defer_list);
INIT_LIST_HEAD(&ctx->timeout_list);
INIT_LIST_HEAD(&ctx->ltimeout_list);
spin_lock_init(&ctx->rsrc_ref_lock);
INIT_LIST_HEAD(&ctx->rsrc_ref_list);
INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
init_llist_head(&ctx->rsrc_put_llist);
INIT_LIST_HEAD(&ctx->tctx_list);
ctx->submit_state.free_list.next = NULL;
INIT_WQ_LIST(&ctx->locked_free_list);
INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
return ctx;
err:
kfree(ctx->dummy_ubuf);
kfree(ctx->cancel_hash);
kfree(ctx->io_bl);
xa_destroy(&ctx->io_bl_xa);
kfree(ctx);
return NULL;
}
static void io_account_cq_overflow(struct io_ring_ctx *ctx)
{
struct io_rings *r = ctx->rings;
WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
ctx->cq_extra--;
}
static bool req_need_defer(struct io_kiocb *req, u32 seq)
{
if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
struct io_ring_ctx *ctx = req->ctx;
return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
}
return false;
}
static inline bool io_req_ffs_set(struct io_kiocb *req)
{
return req->flags & REQ_F_FIXED_FILE;
}
static inline void io_req_track_inflight(struct io_kiocb *req)
{
if (!(req->flags & REQ_F_INFLIGHT)) {
req->flags |= REQ_F_INFLIGHT;
atomic_inc(&req->task->io_uring->inflight_tracked);
}
}
static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
{
if (WARN_ON_ONCE(!req->link))
return NULL;
req->flags &= ~REQ_F_ARM_LTIMEOUT;
req->flags |= REQ_F_LINK_TIMEOUT;
/* linked timeouts should have two refs once prep'ed */
io_req_set_refcount(req);
__io_req_set_refcount(req->link, 2);
return req->link;
}
static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
{
if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
return NULL;
return __io_prep_linked_timeout(req);
}
static noinline void __io_arm_ltimeout(struct io_kiocb *req)
{
io_queue_linked_timeout(__io_prep_linked_timeout(req));
}
static inline void io_arm_ltimeout(struct io_kiocb *req)
{
if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
__io_arm_ltimeout(req);
}
static void io_prep_async_work(struct io_kiocb *req)
{
const struct io_op_def *def = &io_op_defs[req->opcode];
struct io_ring_ctx *ctx = req->ctx;
if (!(req->flags & REQ_F_CREDS)) {
req->flags |= REQ_F_CREDS;
req->creds = get_current_cred();
}
req->work.list.next = NULL;
req->work.flags = 0;
req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
if (req->flags & REQ_F_FORCE_ASYNC)
req->work.flags |= IO_WQ_WORK_CONCURRENT;
if (req->flags & REQ_F_ISREG) {
if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
io_wq_hash_work(&req->work, file_inode(req->file));
} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
if (def->unbound_nonreg_file)
req->work.flags |= IO_WQ_WORK_UNBOUND;
}
}
static void io_prep_async_link(struct io_kiocb *req)
{
struct io_kiocb *cur;
if (req->flags & REQ_F_LINK_TIMEOUT) {
struct io_ring_ctx *ctx = req->ctx;
spin_lock_irq(&ctx->timeout_lock);
io_for_each_link(cur, req)
io_prep_async_work(cur);
spin_unlock_irq(&ctx->timeout_lock);
} else {
io_for_each_link(cur, req)
io_prep_async_work(cur);
}
}
static inline void io_req_add_compl_list(struct io_kiocb *req)
{
struct io_submit_state *state = &req->ctx->submit_state;
if (!(req->flags & REQ_F_CQE_SKIP))
state->flush_cqes = true;
wq_list_add_tail(&req->comp_list, &state->compl_reqs);
}
static void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
{
struct io_kiocb *link = io_prep_linked_timeout(req);
struct io_uring_task *tctx = req->task->io_uring;
BUG_ON(!tctx);
BUG_ON(!tctx->io_wq);
/* init ->work of the whole link before punting */
io_prep_async_link(req);
/*
* Not expected to happen, but if we do have a bug where this _can_
* happen, catch it here and ensure the request is marked as
* canceled. That will make io-wq go through the usual work cancel
* procedure rather than attempt to run this request (or create a new
* worker for it).
*/
if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
req->work.flags |= IO_WQ_WORK_CANCEL;
trace_io_uring_queue_async_work(req->ctx, req, req->cqe.user_data,
req->opcode, req->flags, &req->work,
io_wq_is_hashed(&req->work));
io_wq_enqueue(tctx->io_wq, &req->work);
if (link)
io_queue_linked_timeout(link);
}
static void io_kill_timeout(struct io_kiocb *req, int status)
__must_hold(&req->ctx->completion_lock)
__must_hold(&req->ctx->timeout_lock)
{
struct io_timeout_data *io = req->async_data;
if (hrtimer_try_to_cancel(&io->timer) != -1) {
if (status)
req_set_fail(req);
atomic_set(&req->ctx->cq_timeouts,
atomic_read(&req->ctx->cq_timeouts) + 1);
list_del_init(&req->timeout.list);
io_req_tw_post_queue(req, status, 0);
}
}
static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
{
while (!list_empty(&ctx->defer_list)) {
struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
struct io_defer_entry, list);
if (req_need_defer(de->req, de->seq))
break;
list_del_init(&de->list);
io_req_task_queue(de->req);
kfree(de);
}
}
static __cold void io_flush_timeouts(struct io_ring_ctx *ctx)
__must_hold(&ctx->completion_lock)
{
u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
struct io_kiocb *req, *tmp;
spin_lock_irq(&ctx->timeout_lock);
list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
u32 events_needed, events_got;
if (io_is_timeout_noseq(req))
break;
/*
* Since seq can easily wrap around over time, subtract
* the last seq at which timeouts were flushed before comparing.
* Assuming not more than 2^31-1 events have happened since,
* these subtractions won't have wrapped, so we can check if
* target is in [last_seq, current_seq] by comparing the two.
*/
events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
events_got = seq - ctx->cq_last_tm_flush;
if (events_got < events_needed)
break;
io_kill_timeout(req, 0);
}
ctx->cq_last_tm_flush = seq;
spin_unlock_irq(&ctx->timeout_lock);
}
static inline void io_commit_cqring(struct io_ring_ctx *ctx)
{
/* order cqe stores with ring update */
smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
}
static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
{
if (ctx->off_timeout_used || ctx->drain_active) {
spin_lock(&ctx->completion_lock);
if (ctx->off_timeout_used)
io_flush_timeouts(ctx);
if (ctx->drain_active)
io_queue_deferred(ctx);
io_commit_cqring(ctx);
spin_unlock(&ctx->completion_lock);
}
if (ctx->has_evfd)
io_eventfd_signal(ctx);
}
static inline bool io_sqring_full(struct io_ring_ctx *ctx)
{
struct io_rings *r = ctx->rings;
return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
}
static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
{
return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
}
/*
* writes to the cq entry need to come after reading head; the
* control dependency is enough as we're using WRITE_ONCE to
* fill the cq entry
*/
static noinline struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx)
{
struct io_rings *rings = ctx->rings;
unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
unsigned int shift = 0;
unsigned int free, queued, len;
if (ctx->flags & IORING_SETUP_CQE32)
shift = 1;
/* userspace may cheat modifying the tail, be safe and do min */
queued = min(__io_cqring_events(ctx), ctx->cq_entries);
free = ctx->cq_entries - queued;
/* we need a contiguous range, limit based on the current array offset */
len = min(free, ctx->cq_entries - off);
if (!len)
return NULL;
ctx->cached_cq_tail++;
ctx->cqe_cached = &rings->cqes[off];
ctx->cqe_sentinel = ctx->cqe_cached + len;
ctx->cqe_cached++;
return &rings->cqes[off << shift];
}
static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
{
if (likely(ctx->cqe_cached < ctx->cqe_sentinel)) {
struct io_uring_cqe *cqe = ctx->cqe_cached;
if (ctx->flags & IORING_SETUP_CQE32) {
unsigned int off = ctx->cqe_cached - ctx->rings->cqes;
cqe += off;
}
ctx->cached_cq_tail++;
ctx->cqe_cached++;
return cqe;
}
return __io_get_cqe(ctx);
}
static void io_eventfd_signal(struct io_ring_ctx *ctx)
{
struct io_ev_fd *ev_fd;
rcu_read_lock();
/*
* rcu_dereference ctx->io_ev_fd once and use it for both for checking
* and eventfd_signal
*/
ev_fd = rcu_dereference(ctx->io_ev_fd);
/*
* Check again if ev_fd exists incase an io_eventfd_unregister call
* completed between the NULL check of ctx->io_ev_fd at the start of
* the function and rcu_read_lock.
*/
if (unlikely(!ev_fd))
goto out;
if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
goto out;
if (!ev_fd->eventfd_async || io_wq_current_is_worker())
eventfd_signal(ev_fd->cq_ev_fd, 1);
out:
rcu_read_unlock();
}
static inline void io_cqring_wake(struct io_ring_ctx *ctx)
{
/*
* wake_up_all() may seem excessive, but io_wake_function() and
* io_should_wake() handle the termination of the loop and only
* wake as many waiters as we need to.
*/
if (wq_has_sleeper(&ctx->cq_wait))
wake_up_all(&ctx->cq_wait);
}
/*
* This should only get called when at least one event has been posted.
* Some applications rely on the eventfd notification count only changing
* IFF a new CQE has been added to the CQ ring. There's no depedency on
* 1:1 relationship between how many times this function is called (and
* hence the eventfd count) and number of CQEs posted to the CQ ring.
*/
static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx)
{
if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
ctx->has_evfd))
__io_commit_cqring_flush(ctx);
io_cqring_wake(ctx);
}
static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
{
if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
ctx->has_evfd))
__io_commit_cqring_flush(ctx);
if (ctx->flags & IORING_SETUP_SQPOLL)
io_cqring_wake(ctx);
}
/* Returns true if there are no backlogged entries after the flush */
static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
{
bool all_flushed, posted;
size_t cqe_size = sizeof(struct io_uring_cqe);
if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
return false;
if (ctx->flags & IORING_SETUP_CQE32)
cqe_size <<= 1;
posted = false;
spin_lock(&ctx->completion_lock);
while (!list_empty(&ctx->cq_overflow_list)) {
struct io_uring_cqe *cqe = io_get_cqe(ctx);
struct io_overflow_cqe *ocqe;
if (!cqe && !force)
break;
ocqe = list_first_entry(&ctx->cq_overflow_list,
struct io_overflow_cqe, list);
if (cqe)
memcpy(cqe, &ocqe->cqe, cqe_size);
else
io_account_cq_overflow(ctx);
posted = true;
list_del(&ocqe->list);
kfree(ocqe);
}
all_flushed = list_empty(&ctx->cq_overflow_list);
if (all_flushed) {
clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
}
io_commit_cqring(ctx);
spin_unlock(&ctx->completion_lock);
if (posted)
io_cqring_ev_posted(ctx);
return all_flushed;
}
static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
{
bool ret = true;
if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
/* iopoll syncs against uring_lock, not completion_lock */
if (ctx->flags & IORING_SETUP_IOPOLL)
mutex_lock(&ctx->uring_lock);
ret = __io_cqring_overflow_flush(ctx, false);
if (ctx->flags & IORING_SETUP_IOPOLL)
mutex_unlock(&ctx->uring_lock);
}
return ret;
}
static void __io_put_task(struct task_struct *task, int nr)
{
struct io_uring_task *tctx = task->io_uring;
percpu_counter_sub(&tctx->inflight, nr);
if (unlikely(atomic_read(&tctx->in_idle)))
wake_up(&tctx->wait);
put_task_struct_many(task, nr);
}
/* must to be called somewhat shortly after putting a request */
static inline void io_put_task(struct task_struct *task, int nr)
{
if (likely(task == current))
task->io_uring->cached_refs += nr;
else
__io_put_task(task, nr);
}
static void io_task_refs_refill(struct io_uring_task *tctx)
{
unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
percpu_counter_add(&tctx->inflight, refill);
refcount_add(refill, &current->usage);
tctx->cached_refs += refill;
}
static inline void io_get_task_refs(int nr)
{
struct io_uring_task *tctx = current->io_uring;
tctx->cached_refs -= nr;
if (unlikely(tctx->cached_refs < 0))
io_task_refs_refill(tctx);
}
static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
{
struct io_uring_task *tctx = task->io_uring;
unsigned int refs = tctx->cached_refs;
if (refs) {
tctx->cached_refs = 0;
percpu_counter_sub(&tctx->inflight, refs);
put_task_struct_many(task, refs);
}
}
static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
s32 res, u32 cflags, u64 extra1,
u64 extra2)
{
struct io_overflow_cqe *ocqe;
size_t ocq_size = sizeof(struct io_overflow_cqe);
bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
if (is_cqe32)
ocq_size += sizeof(struct io_uring_cqe);
ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
if (!ocqe) {
/*
* If we're in ring overflow flush mode, or in task cancel mode,
* or cannot allocate an overflow entry, then we need to drop it
* on the floor.
*/
io_account_cq_overflow(ctx);
set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
return false;
}
if (list_empty(&ctx->cq_overflow_list)) {
set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
}
ocqe->cqe.user_data = user_data;
ocqe->cqe.res = res;
ocqe->cqe.flags = cflags;
if (is_cqe32) {
ocqe->cqe.big_cqe[0] = extra1;
ocqe->cqe.big_cqe[1] = extra2;
}
list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
return true;
}
static inline bool __io_fill_cqe_req(struct io_ring_ctx *ctx,
struct io_kiocb *req)
{
struct io_uring_cqe *cqe;
if (!(ctx->flags & IORING_SETUP_CQE32)) {
trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
req->cqe.res, req->cqe.flags, 0, 0);
/*
* If we can't get a cq entry, userspace overflowed the
* submission (by quite a lot). Increment the overflow count in
* the ring.
*/
cqe = io_get_cqe(ctx);
if (likely(cqe)) {
memcpy(cqe, &req->cqe, sizeof(*cqe));
return true;
}
return io_cqring_event_overflow(ctx, req->cqe.user_data,
req->cqe.res, req->cqe.flags,
0, 0);
} else {
u64 extra1 = 0, extra2 = 0;
if (req->flags & REQ_F_CQE32_INIT) {
extra1 = req->extra1;
extra2 = req->extra2;
}
trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
req->cqe.res, req->cqe.flags, extra1, extra2);
/*
* If we can't get a cq entry, userspace overflowed the
* submission (by quite a lot). Increment the overflow count in
* the ring.
*/
cqe = io_get_cqe(ctx);
if (likely(cqe)) {
memcpy(cqe, &req->cqe, sizeof(struct io_uring_cqe));
WRITE_ONCE(cqe->big_cqe[0], extra1);
WRITE_ONCE(cqe->big_cqe[1], extra2);
return true;
}
return io_cqring_event_overflow(ctx, req->cqe.user_data,
req->cqe.res, req->cqe.flags,
extra1, extra2);
}
}
static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
s32 res, u32 cflags)
{
struct io_uring_cqe *cqe;
ctx->cq_extra++;
trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
/*
* If we can't get a cq entry, userspace overflowed the
* submission (by quite a lot). Increment the overflow count in
* the ring.
*/
cqe = io_get_cqe(ctx);
if (likely(cqe)) {
WRITE_ONCE(cqe->user_data, user_data);
WRITE_ONCE(cqe->res, res);
WRITE_ONCE(cqe->flags, cflags);
if (ctx->flags & IORING_SETUP_CQE32) {
WRITE_ONCE(cqe->big_cqe[0], 0);
WRITE_ONCE(cqe->big_cqe[1], 0);
}
return true;
}
return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
}
static void __io_req_complete_put(struct io_kiocb *req)
{
/*
* If we're the last reference to this request, add to our locked
* free_list cache.
*/
if (req_ref_put_and_test(req)) {
struct io_ring_ctx *ctx = req->ctx;
if (req->flags & IO_REQ_LINK_FLAGS) {
if (req->flags & IO_DISARM_MASK)
io_disarm_next(req);
if (req->link) {
io_req_task_queue(req->link);
req->link = NULL;
}
}
io_req_put_rsrc(req);
/*
* Selected buffer deallocation in io_clean_op() assumes that
* we don't hold ->completion_lock. Clean them here to avoid
* deadlocks.
*/
io_put_kbuf_comp(req);
io_dismantle_req(req);
io_put_task(req->task, 1);
wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
ctx->locked_free_nr++;
}
}
static void __io_req_complete_post(struct io_kiocb *req, s32 res,
u32 cflags)
{
if (!(req->flags & REQ_F_CQE_SKIP)) {
req->cqe.res = res;
req->cqe.flags = cflags;
__io_fill_cqe_req(req->ctx, req);
}
__io_req_complete_put(req);
}
static void io_req_complete_post(struct io_kiocb *req, s32 res, u32 cflags)
{
struct io_ring_ctx *ctx = req->ctx;
spin_lock(&ctx->completion_lock);
__io_req_complete_post(req, res, cflags);
io_commit_cqring(ctx);
spin_unlock(&ctx->completion_lock);
io_cqring_ev_posted(ctx);
}
static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
u32 cflags)
{
req->cqe.res = res;
req->cqe.flags = cflags;
req->flags |= REQ_F_COMPLETE_INLINE;
}
static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
s32 res, u32 cflags)
{
if (issue_flags & IO_URING_F_COMPLETE_DEFER)
io_req_complete_state(req, res, cflags);
else
io_req_complete_post(req, res, cflags);
}
static inline void io_req_complete(struct io_kiocb *req, s32 res)
{
if (res < 0)
req_set_fail(req);
__io_req_complete(req, 0, res, 0);
}
static void io_req_complete_failed(struct io_kiocb *req, s32 res)
{
req_set_fail(req);
io_req_complete_post(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
}
/*
* Don't initialise the fields below on every allocation, but do that in
* advance and keep them valid across allocations.
*/
static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
{
req->ctx = ctx;
req->link = NULL;
req->async_data = NULL;
/* not necessary, but safer to zero */
req->cqe.res = 0;
}
static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
struct io_submit_state *state)
{
spin_lock(&ctx->completion_lock);
wq_list_splice(&ctx->locked_free_list, &state->free_list);
ctx->locked_free_nr = 0;
spin_unlock(&ctx->completion_lock);
}
static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
{
return !ctx->submit_state.free_list.next;
}
/*
* A request might get retired back into the request caches even before opcode
* handlers and io_issue_sqe() are done with it, e.g. inline completion path.
* Because of that, io_alloc_req() should be called only under ->uring_lock
* and with extra caution to not get a request that is still worked on.
*/
static __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
__must_hold(&ctx->uring_lock)
{
gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
void *reqs[IO_REQ_ALLOC_BATCH];
int ret, i;
/*
* If we have more than a batch's worth of requests in our IRQ side
* locked cache, grab the lock and move them over to our submission
* side cache.
*/
if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
if (!io_req_cache_empty(ctx))
return true;
}
ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
/*
* Bulk alloc is all-or-nothing. If we fail to get a batch,
* retry single alloc to be on the safe side.
*/
if (unlikely(ret <= 0)) {
reqs[0] = kmem_cache_alloc(req_cachep, gfp);
if (!reqs[0])
return false;
ret = 1;
}
percpu_ref_get_many(&ctx->refs, ret);
for (i = 0; i < ret; i++) {
struct io_kiocb *req = reqs[i];
io_preinit_req(req, ctx);
io_req_add_to_cache(req, ctx);
}
return true;
}
static inline bool io_alloc_req_refill(struct io_ring_ctx *ctx)
{
if (unlikely(io_req_cache_empty(ctx)))
return __io_alloc_req_refill(ctx);
return true;
}
static inline struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
{
struct io_wq_work_node *node;
node = wq_stack_extract(&ctx->submit_state.free_list);
return container_of(node, struct io_kiocb, comp_list);
}
static inline void io_put_file(struct file *file)
{
if (file)
fput(file);
}
static inline void io_dismantle_req(struct io_kiocb *req)
{
unsigned int flags = req->flags;
if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
io_clean_op(req);
if (!(flags & REQ_F_FIXED_FILE))
io_put_file(req->file);
}
static __cold void io_free_req(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
io_req_put_rsrc(req);
io_dismantle_req(req);
io_put_task(req->task, 1);
spin_lock(&ctx->completion_lock);
wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
ctx->locked_free_nr++;
spin_unlock(&ctx->completion_lock);
}
static inline void io_remove_next_linked(struct io_kiocb *req)
{
struct io_kiocb *nxt = req->link;
req->link = nxt->link;
nxt->link = NULL;
}
static struct io_kiocb *io_disarm_linked_timeout(struct io_kiocb *req)
__must_hold(&req->ctx->completion_lock)
__must_hold(&req->ctx->timeout_lock)
{
struct io_kiocb *link = req->link;
if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
struct io_timeout_data *io = link->async_data;
io_remove_next_linked(req);
link->timeout.head = NULL;
if (hrtimer_try_to_cancel(&io->timer) != -1) {
list_del(&link->timeout.list);
return link;
}
}
return NULL;
}
static void io_fail_links(struct io_kiocb *req)
__must_hold(&req->ctx->completion_lock)
{
struct io_kiocb *nxt, *link = req->link;
bool ignore_cqes = req->flags & REQ_F_SKIP_LINK_CQES;
req->link = NULL;
while (link) {
long res = -ECANCELED;
if (link->flags & REQ_F_FAIL)
res = link->cqe.res;
nxt = link->link;
link->link = NULL;
trace_io_uring_fail_link(req->ctx, req, req->cqe.user_data,
req->opcode, link);
if (ignore_cqes)
link->flags |= REQ_F_CQE_SKIP;
else
link->flags &= ~REQ_F_CQE_SKIP;
__io_req_complete_post(link, res, 0);
link = nxt;
}
}
static bool io_disarm_next(struct io_kiocb *req)
__must_hold(&req->ctx->completion_lock)
{
struct io_kiocb *link = NULL;
bool posted = false;
if (req->flags & REQ_F_ARM_LTIMEOUT) {
link = req->link;
req->flags &= ~REQ_F_ARM_LTIMEOUT;
if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
io_remove_next_linked(req);
io_req_tw_post_queue(link, -ECANCELED, 0);
posted = true;
}
} else if (req->flags & REQ_F_LINK_TIMEOUT) {
struct io_ring_ctx *ctx = req->ctx;
spin_lock_irq(&ctx->timeout_lock);
link = io_disarm_linked_timeout(req);
spin_unlock_irq(&ctx->timeout_lock);
if (link) {
posted = true;
io_req_tw_post_queue(link, -ECANCELED, 0);
}
}
if (unlikely((req->flags & REQ_F_FAIL) &&
!(req->flags & REQ_F_HARDLINK))) {
posted |= (req->link != NULL);
io_fail_links(req);
}
return posted;
}
static void __io_req_find_next_prep(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
bool posted;
spin_lock(&ctx->completion_lock);
posted = io_disarm_next(req);
io_commit_cqring(ctx);
spin_unlock(&ctx->completion_lock);
if (posted)
io_cqring_ev_posted(ctx);
}
static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
{
struct io_kiocb *nxt;
/*
* If LINK is set, we have dependent requests in this chain. If we
* didn't fail this request, queue the first one up, moving any other
* dependencies to the next request. In case of failure, fail the rest
* of the chain.
*/
if (unlikely(req->flags & IO_DISARM_MASK))
__io_req_find_next_prep(req);
nxt = req->link;
req->link = NULL;
return nxt;
}
static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
{
if (!ctx)
return;
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
if (*locked) {
io_submit_flush_completions(ctx);
mutex_unlock(&ctx->uring_lock);
*locked = false;
}
percpu_ref_put(&ctx->refs);
}
static inline void ctx_commit_and_unlock(struct io_ring_ctx *ctx)
{
io_commit_cqring(ctx);
spin_unlock(&ctx->completion_lock);
io_cqring_ev_posted(ctx);
}
static void handle_prev_tw_list(struct io_wq_work_node *node,
struct io_ring_ctx **ctx, bool *uring_locked)
{
if (*ctx && !*uring_locked)
spin_lock(&(*ctx)->completion_lock);
do {
struct io_wq_work_node *next = node->next;
struct io_kiocb *req = container_of(node, struct io_kiocb,
io_task_work.node);
prefetch(container_of(next, struct io_kiocb, io_task_work.node));
if (req->ctx != *ctx) {
if (unlikely(!*uring_locked && *ctx))
ctx_commit_and_unlock(*ctx);
ctx_flush_and_put(*ctx, uring_locked);
*ctx = req->ctx;
/* if not contended, grab and improve batching */
*uring_locked = mutex_trylock(&(*ctx)->uring_lock);
percpu_ref_get(&(*ctx)->refs);
if (unlikely(!*uring_locked))
spin_lock(&(*ctx)->completion_lock);
}
if (likely(*uring_locked))
req->io_task_work.func(req, uring_locked);
else
__io_req_complete_post(req, req->cqe.res,
io_put_kbuf_comp(req));
node = next;
} while (node);
if (unlikely(!*uring_locked))
ctx_commit_and_unlock(*ctx);
}
static void handle_tw_list(struct io_wq_work_node *node,
struct io_ring_ctx **ctx, bool *locked)
{
do {
struct io_wq_work_node *next = node->next;
struct io_kiocb *req = container_of(node, struct io_kiocb,
io_task_work.node);
prefetch(container_of(next, struct io_kiocb, io_task_work.node));
if (req->ctx != *ctx) {
ctx_flush_and_put(*ctx, locked);
*ctx = req->ctx;
/* if not contended, grab and improve batching */
*locked = mutex_trylock(&(*ctx)->uring_lock);
percpu_ref_get(&(*ctx)->refs);
}
req->io_task_work.func(req, locked);
node = next;
} while (node);
}
static void tctx_task_work(struct callback_head *cb)
{
bool uring_locked = false;
struct io_ring_ctx *ctx = NULL;
struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
task_work);
while (1) {
struct io_wq_work_node *node1, *node2;
spin_lock_irq(&tctx->task_lock);
node1 = tctx->prio_task_list.first;
node2 = tctx->task_list.first;
INIT_WQ_LIST(&tctx->task_list);
INIT_WQ_LIST(&tctx->prio_task_list);
if (!node2 && !node1)
tctx->task_running = false;
spin_unlock_irq(&tctx->task_lock);
if (!node2 && !node1)
break;
if (node1)
handle_prev_tw_list(node1, &ctx, &uring_locked);
if (node2)
handle_tw_list(node2, &ctx, &uring_locked);
cond_resched();
if (data_race(!tctx->task_list.first) &&
data_race(!tctx->prio_task_list.first) && uring_locked)
io_submit_flush_completions(ctx);
}
ctx_flush_and_put(ctx, &uring_locked);
/* relaxed read is enough as only the task itself sets ->in_idle */
if (unlikely(atomic_read(&tctx->in_idle)))
io_uring_drop_tctx_refs(current);
}
static void __io_req_task_work_add(struct io_kiocb *req,
struct io_uring_task *tctx,
struct io_wq_work_list *list)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_wq_work_node *node;
unsigned long flags;
bool running;
spin_lock_irqsave(&tctx->task_lock, flags);
wq_list_add_tail(&req->io_task_work.node, list);
running = tctx->task_running;
if (!running)
tctx->task_running = true;
spin_unlock_irqrestore(&tctx->task_lock, flags);
/* task_work already pending, we're done */
if (running)
return;
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
return;
spin_lock_irqsave(&tctx->task_lock, flags);
tctx->task_running = false;
node = wq_list_merge(&tctx->prio_task_list, &tctx->task_list);
spin_unlock_irqrestore(&tctx->task_lock, flags);
while (node) {
req = container_of(node, struct io_kiocb, io_task_work.node);
node = node->next;
if (llist_add(&req->io_task_work.fallback_node,
&req->ctx->fallback_llist))
schedule_delayed_work(&req->ctx->fallback_work, 1);
}
}
static void io_req_task_work_add(struct io_kiocb *req)
{
struct io_uring_task *tctx = req->task->io_uring;
__io_req_task_work_add(req, tctx, &tctx->task_list);
}
static void io_req_task_prio_work_add(struct io_kiocb *req)
{
struct io_uring_task *tctx = req->task->io_uring;
if (req->ctx->flags & IORING_SETUP_SQPOLL)
__io_req_task_work_add(req, tctx, &tctx->prio_task_list);
else
__io_req_task_work_add(req, tctx, &tctx->task_list);
}
static void io_req_tw_post(struct io_kiocb *req, bool *locked)
{
io_req_complete_post(req, req->cqe.res, req->cqe.flags);
}
static void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags)
{
req->cqe.res = res;
req->cqe.flags = cflags;
req->io_task_work.func = io_req_tw_post;
io_req_task_work_add(req);
}
static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
{
/* not needed for normal modes, but SQPOLL depends on it */
io_tw_lock(req->ctx, locked);
io_req_complete_failed(req, req->cqe.res);
}
static void io_req_task_submit(struct io_kiocb *req, bool *locked)
{
io_tw_lock(req->ctx, locked);
/* req->task == current here, checking PF_EXITING is safe */
if (likely(!(req->task->flags & PF_EXITING)))
io_queue_sqe(req);
else
io_req_complete_failed(req, -EFAULT);
}
static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
{
req->cqe.res = ret;
req->io_task_work.func = io_req_task_cancel;
io_req_task_work_add(req);
}
static void io_req_task_queue(struct io_kiocb *req)
{
req->io_task_work.func = io_req_task_submit;
io_req_task_work_add(req);
}
static void io_req_task_queue_reissue(struct io_kiocb *req)
{
req->io_task_work.func = io_queue_iowq;
io_req_task_work_add(req);
}
static void io_queue_next(struct io_kiocb *req)
{
struct io_kiocb *nxt = io_req_find_next(req);
if (nxt)
io_req_task_queue(nxt);
}
static void io_free_batch_list(struct io_ring_ctx *ctx,
struct io_wq_work_node *node)
__must_hold(&ctx->uring_lock)
{
struct task_struct *task = NULL;
int task_refs = 0;
do {
struct io_kiocb *req = container_of(node, struct io_kiocb,
comp_list);
if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
if (req->flags & REQ_F_REFCOUNT) {
node = req->comp_list.next;
if (!req_ref_put_and_test(req))
continue;
}
if ((req->flags & REQ_F_POLLED) && req->apoll) {
struct async_poll *apoll = req->apoll;
if (apoll->double_poll)
kfree(apoll->double_poll);
list_add(&apoll->poll.wait.entry,
&ctx->apoll_cache);
req->flags &= ~REQ_F_POLLED;
}
if (req->flags & IO_REQ_LINK_FLAGS)
io_queue_next(req);
if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
io_clean_op(req);
}
if (!(req->flags & REQ_F_FIXED_FILE))
io_put_file(req->file);
io_req_put_rsrc_locked(req, ctx);
if (req->task != task) {
if (task)
io_put_task(task, task_refs);
task = req->task;
task_refs = 0;
}
task_refs++;
node = req->comp_list.next;
io_req_add_to_cache(req, ctx);
} while (node);
if (task)
io_put_task(task, task_refs);
}
static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
__must_hold(&ctx->uring_lock)
{
struct io_wq_work_node *node, *prev;
struct io_submit_state *state = &ctx->submit_state;
if (state->flush_cqes) {
spin_lock(&ctx->completion_lock);
wq_list_for_each(node, prev, &state->compl_reqs) {
struct io_kiocb *req = container_of(node, struct io_kiocb,
comp_list);
if (!(req->flags & REQ_F_CQE_SKIP))
__io_fill_cqe_req(ctx, req);
}
io_commit_cqring(ctx);
spin_unlock(&ctx->completion_lock);
io_cqring_ev_posted(ctx);
state->flush_cqes = false;
}
io_free_batch_list(ctx, state->compl_reqs.first);
INIT_WQ_LIST(&state->compl_reqs);
}
/*
* Drop reference to request, return next in chain (if there is one) if this
* was the last reference to this request.
*/
static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
{
struct io_kiocb *nxt = NULL;
if (req_ref_put_and_test(req)) {
if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
nxt = io_req_find_next(req);
io_free_req(req);
}
return nxt;
}
static inline void io_put_req(struct io_kiocb *req)
{
if (req_ref_put_and_test(req)) {
io_queue_next(req);
io_free_req(req);
}
}
static unsigned io_cqring_events(struct io_ring_ctx *ctx)
{
/* See comment at the top of this file */
smp_rmb();
return __io_cqring_events(ctx);
}
static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
{
struct io_rings *rings = ctx->rings;
/* make sure SQ entry isn't read before tail */
return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
}
static inline bool io_run_task_work(void)
{
if (test_thread_flag(TIF_NOTIFY_SIGNAL) || task_work_pending(current)) {
__set_current_state(TASK_RUNNING);
clear_notify_signal();
if (task_work_pending(current))
task_work_run();
return true;
}
return false;
}
static int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
{
struct io_wq_work_node *pos, *start, *prev;
unsigned int poll_flags = BLK_POLL_NOSLEEP;
DEFINE_IO_COMP_BATCH(iob);
int nr_events = 0;
/*
* Only spin for completions if we don't have multiple devices hanging
* off our complete list.
*/
if (ctx->poll_multi_queue || force_nonspin)
poll_flags |= BLK_POLL_ONESHOT;
wq_list_for_each(pos, start, &ctx->iopoll_list) {
struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
struct kiocb *kiocb = &req->rw.kiocb;
int ret;
/*
* Move completed and retryable entries to our local lists.
* If we find a request that requires polling, break out
* and complete those lists first, if we have entries there.
*/
if (READ_ONCE(req->iopoll_completed))
break;
ret = kiocb->ki_filp->f_op->iopoll(kiocb, &iob, poll_flags);
if (unlikely(ret < 0))
return ret;
else if (ret)
poll_flags |= BLK_POLL_ONESHOT;
/* iopoll may have completed current req */
if (!rq_list_empty(iob.req_list) ||
READ_ONCE(req->iopoll_completed))
break;
}
if (!rq_list_empty(iob.req_list))
iob.complete(&iob);
else if (!pos)
return 0;
prev = start;
wq_list_for_each_resume(pos, prev) {
struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
/* order with io_complete_rw_iopoll(), e.g. ->result updates */
if (!smp_load_acquire(&req->iopoll_completed))
break;
nr_events++;
if (unlikely(req->flags & REQ_F_CQE_SKIP))
continue;
req->cqe.flags = io_put_kbuf(req, 0);
__io_fill_cqe_req(req->ctx, req);
}
if (unlikely(!nr_events))
return 0;
io_commit_cqring(ctx);
io_cqring_ev_posted_iopoll(ctx);
pos = start ? start->next : ctx->iopoll_list.first;
wq_list_cut(&ctx->iopoll_list, prev, start);
io_free_batch_list(ctx, pos);
return nr_events;
}
/*
* We can't just wait for polled events to come to us, we have to actively
* find and complete them.
*/
static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
{
if (!(ctx->flags & IORING_SETUP_IOPOLL))
return;
mutex_lock(&ctx->uring_lock);
while (!wq_list_empty(&ctx->iopoll_list)) {
/* let it sleep and repeat later if can't complete a request */
if (io_do_iopoll(ctx, true) == 0)
break;
/*
* Ensure we allow local-to-the-cpu processing to take place,
* in this case we need to ensure that we reap all events.
* Also let task_work, etc. to progress by releasing the mutex
*/
if (need_resched()) {
mutex_unlock(&ctx->uring_lock);
cond_resched();
mutex_lock(&ctx->uring_lock);
}
}
mutex_unlock(&ctx->uring_lock);
}
static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
{
unsigned int nr_events = 0;
int ret = 0;
unsigned long check_cq;
/*
* Don't enter poll loop if we already have events pending.
* If we do, we can potentially be spinning for commands that
* already triggered a CQE (eg in error).
*/
check_cq = READ_ONCE(ctx->check_cq);
if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
__io_cqring_overflow_flush(ctx, false);
if (io_cqring_events(ctx))
return 0;
/*
* Similarly do not spin if we have not informed the user of any
* dropped CQE.
*/
if (unlikely(check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)))
return -EBADR;
do {
/*
* If a submit got punted to a workqueue, we can have the
* application entering polling for a command before it gets
* issued. That app will hold the uring_lock for the duration
* of the poll right here, so we need to take a breather every
* now and then to ensure that the issue has a chance to add
* the poll to the issued list. Otherwise we can spin here
* forever, while the workqueue is stuck trying to acquire the
* very same mutex.
*/
if (wq_list_empty(&ctx->iopoll_list)) {
u32 tail = ctx->cached_cq_tail;
mutex_unlock(&ctx->uring_lock);
io_run_task_work();
mutex_lock(&ctx->uring_lock);
/* some requests don't go through iopoll_list */
if (tail != ctx->cached_cq_tail ||
wq_list_empty(&ctx->iopoll_list))
break;
}
ret = io_do_iopoll(ctx, !min);
if (ret < 0)
break;
nr_events += ret;
ret = 0;
} while (nr_events < min && !need_resched());
return ret;
}
static void kiocb_end_write(struct io_kiocb *req)
{
/*
* Tell lockdep we inherited freeze protection from submission
* thread.
*/
if (req->flags & REQ_F_ISREG) {
struct super_block *sb = file_inode(req->file)->i_sb;
__sb_writers_acquired(sb, SB_FREEZE_WRITE);
sb_end_write(sb);
}
}
#ifdef CONFIG_BLOCK
static bool io_resubmit_prep(struct io_kiocb *req)
{
struct io_async_rw *rw = req->async_data;
if (!req_has_async_data(req))
return !io_req_prep_async(req);
iov_iter_restore(&rw->s.iter, &rw->s.iter_state);
return true;
}
static bool io_rw_should_reissue(struct io_kiocb *req)
{
umode_t mode = file_inode(req->file)->i_mode;
struct io_ring_ctx *ctx = req->ctx;
if (!S_ISBLK(mode) && !S_ISREG(mode))
return false;
if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
!(ctx->flags & IORING_SETUP_IOPOLL)))
return false;
/*
* If ref is dying, we might be running poll reap from the exit work.
* Don't attempt to reissue from that path, just let it fail with
* -EAGAIN.
*/
if (percpu_ref_is_dying(&ctx->refs))
return false;
/*
* Play it safe and assume not safe to re-import and reissue if we're
* not in the original thread group (or in task context).
*/
if (!same_thread_group(req->task, current) || !in_task())
return false;
return true;
}
#else
static bool io_resubmit_prep(struct io_kiocb *req)
{
return false;
}
static bool io_rw_should_reissue(struct io_kiocb *req)
{
return false;
}
#endif
static bool __io_complete_rw_common(struct io_kiocb *req, long res)
{
if (req->rw.kiocb.ki_flags & IOCB_WRITE) {
kiocb_end_write(req);
fsnotify_modify(req->file);
} else {
fsnotify_access(req->file);
}
if (unlikely(res != req->cqe.res)) {
if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
io_rw_should_reissue(req)) {
req->flags |= REQ_F_REISSUE | REQ_F_PARTIAL_IO;
return true;
}
req_set_fail(req);
req->cqe.res = res;
}
return false;
}
static inline void io_req_task_complete(struct io_kiocb *req, bool *locked)
{
int res = req->cqe.res;
if (*locked) {
io_req_complete_state(req, res, io_put_kbuf(req, 0));
io_req_add_compl_list(req);
} else {
io_req_complete_post(req, res,
io_put_kbuf(req, IO_URING_F_UNLOCKED));
}
}
static void __io_complete_rw(struct io_kiocb *req, long res,
unsigned int issue_flags)
{
if (__io_complete_rw_common(req, res))
return;
__io_req_complete(req, issue_flags, req->cqe.res,
io_put_kbuf(req, issue_flags));
}
static void io_complete_rw(struct kiocb *kiocb, long res)
{
struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
if (__io_complete_rw_common(req, res))
return;
req->cqe.res = res;
req->io_task_work.func = io_req_task_complete;
io_req_task_prio_work_add(req);
}
static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
{
struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
if (kiocb->ki_flags & IOCB_WRITE)
kiocb_end_write(req);
if (unlikely(res != req->cqe.res)) {
if (res == -EAGAIN && io_rw_should_reissue(req)) {
req->flags |= REQ_F_REISSUE | REQ_F_PARTIAL_IO;
return;
}
req->cqe.res = res;
}
/* order with io_iopoll_complete() checking ->iopoll_completed */
smp_store_release(&req->iopoll_completed, 1);
}
/*
* After the iocb has been issued, it's safe to be found on the poll list.
* Adding the kiocb to the list AFTER submission ensures that we don't
* find it from a io_do_iopoll() thread before the issuer is done
* accessing the kiocb cookie.
*/
static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
/* workqueue context doesn't hold uring_lock, grab it now */
if (unlikely(needs_lock))
mutex_lock(&ctx->uring_lock);
/*
* Track whether we have multiple files in our lists. This will impact
* how we do polling eventually, not spinning if we're on potentially
* different devices.
*/
if (wq_list_empty(&ctx->iopoll_list)) {
ctx->poll_multi_queue = false;
} else if (!ctx->poll_multi_queue) {
struct io_kiocb *list_req;
list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
comp_list);
if (list_req->file != req->file)
ctx->poll_multi_queue = true;
}
/*
* For fast devices, IO may have already completed. If it has, add
* it to the front so we find it first.
*/
if (READ_ONCE(req->iopoll_completed))
wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
else
wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
if (unlikely(needs_lock)) {
/*
* If IORING_SETUP_SQPOLL is enabled, sqes are either handle
* in sq thread task context or in io worker task context. If
* current task context is sq thread, we don't need to check
* whether should wake up sq thread.
*/
if ((ctx->flags & IORING_SETUP_SQPOLL) &&
wq_has_sleeper(&ctx->sq_data->wait))
wake_up(&ctx->sq_data->wait);
mutex_unlock(&ctx->uring_lock);
}
}
static bool io_bdev_nowait(struct block_device *bdev)
{
return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
}
/*
* If we tracked the file through the SCM inflight mechanism, we could support
* any file. For now, just ensure that anything potentially problematic is done
* inline.
*/
static bool __io_file_supports_nowait(struct file *file, umode_t mode)
{
if (S_ISBLK(mode)) {
if (IS_ENABLED(CONFIG_BLOCK) &&
io_bdev_nowait(I_BDEV(file->f_mapping->host)))
return true;
return false;
}
if (S_ISSOCK(mode))
return true;
if (S_ISREG(mode)) {
if (IS_ENABLED(CONFIG_BLOCK) &&
io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
file->f_op != &io_uring_fops)
return true;
return false;
}
/* any ->read/write should understand O_NONBLOCK */
if (file->f_flags & O_NONBLOCK)
return true;
return file->f_mode & FMODE_NOWAIT;
}
/*
* If we tracked the file through the SCM inflight mechanism, we could support
* any file. For now, just ensure that anything potentially problematic is done
* inline.
*/
static unsigned int io_file_get_flags(struct file *file)
{
umode_t mode = file_inode(file)->i_mode;
unsigned int res = 0;
if (S_ISREG(mode))
res |= FFS_ISREG;
if (__io_file_supports_nowait(file, mode))
res |= FFS_NOWAIT;
if (io_file_need_scm(file))
res |= FFS_SCM;
return res;
}
static inline bool io_file_supports_nowait(struct io_kiocb *req)
{
return req->flags & REQ_F_SUPPORT_NOWAIT;
}
static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct kiocb *kiocb = &req->rw.kiocb;
unsigned ioprio;
int ret;
kiocb->ki_pos = READ_ONCE(sqe->off);
/* used for fixed read/write too - just read unconditionally */
req->buf_index = READ_ONCE(sqe->buf_index);
if (req->opcode == IORING_OP_READ_FIXED ||
req->opcode == IORING_OP_WRITE_FIXED) {
struct io_ring_ctx *ctx = req->ctx;
u16 index;
if (unlikely(req->buf_index >= ctx->nr_user_bufs))
return -EFAULT;
index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
req->imu = ctx->user_bufs[index];
io_req_set_rsrc_node(req, ctx, 0);
}
ioprio = READ_ONCE(sqe->ioprio);
if (ioprio) {
ret = ioprio_check_cap(ioprio);
if (ret)
return ret;
kiocb->ki_ioprio = ioprio;
} else {
kiocb->ki_ioprio = get_current_ioprio();
}
req->rw.addr = READ_ONCE(sqe->addr);
req->rw.len = READ_ONCE(sqe->len);
req->rw.flags = READ_ONCE(sqe->rw_flags);
return 0;
}
static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
{
switch (ret) {
case -EIOCBQUEUED:
break;
case -ERESTARTSYS:
case -ERESTARTNOINTR:
case -ERESTARTNOHAND:
case -ERESTART_RESTARTBLOCK:
/*
* We can't just restart the syscall, since previously
* submitted sqes may already be in progress. Just fail this
* IO with EINTR.
*/
ret = -EINTR;
fallthrough;
default:
kiocb->ki_complete(kiocb, ret);
}
}
static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
{
struct kiocb *kiocb = &req->rw.kiocb;
if (kiocb->ki_pos != -1)
return &kiocb->ki_pos;
if (!(req->file->f_mode & FMODE_STREAM)) {
req->flags |= REQ_F_CUR_POS;
kiocb->ki_pos = req->file->f_pos;
return &kiocb->ki_pos;
}
kiocb->ki_pos = 0;
return NULL;
}
static void kiocb_done(struct io_kiocb *req, ssize_t ret,
unsigned int issue_flags)
{
struct io_async_rw *io = req->async_data;
/* add previously done IO, if any */
if (req_has_async_data(req) && io->bytes_done > 0) {
if (ret < 0)
ret = io->bytes_done;
else
ret += io->bytes_done;
}
if (req->flags & REQ_F_CUR_POS)
req->file->f_pos = req->rw.kiocb.ki_pos;
if (ret >= 0 && (req->rw.kiocb.ki_complete == io_complete_rw))
__io_complete_rw(req, ret, issue_flags);
else
io_rw_done(&req->rw.kiocb, ret);
if (req->flags & REQ_F_REISSUE) {
req->flags &= ~REQ_F_REISSUE;
if (io_resubmit_prep(req))
io_req_task_queue_reissue(req);
else
io_req_task_queue_fail(req, ret);
}
}
static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
struct io_mapped_ubuf *imu)
{
size_t len = req->rw.len;
u64 buf_end, buf_addr = req->rw.addr;
size_t offset;
if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
return -EFAULT;
/* not inside the mapped region */
if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
return -EFAULT;
/*
* May not be a start of buffer, set size appropriately
* and advance us to the beginning.
*/
offset = buf_addr - imu->ubuf;
iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
if (offset) {
/*
* Don't use iov_iter_advance() here, as it's really slow for
* using the latter parts of a big fixed buffer - it iterates
* over each segment manually. We can cheat a bit here, because
* we know that:
*
* 1) it's a BVEC iter, we set it up
* 2) all bvecs are PAGE_SIZE in size, except potentially the
* first and last bvec
*
* So just find our index, and adjust the iterator afterwards.
* If the offset is within the first bvec (or the whole first
* bvec, just use iov_iter_advance(). This makes it easier
* since we can just skip the first segment, which may not
* be PAGE_SIZE aligned.
*/
const struct bio_vec *bvec = imu->bvec;
if (offset <= bvec->bv_len) {
iov_iter_advance(iter, offset);
} else {
unsigned long seg_skip;
/* skip first vec */
offset -= bvec->bv_len;
seg_skip = 1 + (offset >> PAGE_SHIFT);
iter->bvec = bvec + seg_skip;
iter->nr_segs -= seg_skip;
iter->count -= bvec->bv_len + offset;
iter->iov_offset = offset & ~PAGE_MASK;
}
}
return 0;
}
static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
unsigned int issue_flags)
{
if (WARN_ON_ONCE(!req->imu))
return -EFAULT;
return __io_import_fixed(req, rw, iter, req->imu);
}
static int io_buffer_add_list(struct io_ring_ctx *ctx,
struct io_buffer_list *bl, unsigned int bgid)
{
bl->bgid = bgid;
if (bgid < BGID_ARRAY)
return 0;
return xa_err(xa_store(&ctx->io_bl_xa, bgid, bl, GFP_KERNEL));
}
static void __user *io_provided_buffer_select(struct io_kiocb *req, size_t *len,
struct io_buffer_list *bl)
{
if (!list_empty(&bl->buf_list)) {
struct io_buffer *kbuf;
kbuf = list_first_entry(&bl->buf_list, struct io_buffer, list);
list_del(&kbuf->list);
if (*len > kbuf->len)
*len = kbuf->len;
req->flags |= REQ_F_BUFFER_SELECTED;
req->kbuf = kbuf;
req->buf_index = kbuf->bid;
return u64_to_user_ptr(kbuf->addr);
}
return NULL;
}
static void __user *io_ring_buffer_select(struct io_kiocb *req, size_t *len,
struct io_buffer_list *bl,
unsigned int issue_flags)
{
struct io_uring_buf_ring *br = bl->buf_ring;
struct io_uring_buf *buf;
__u16 head = bl->head;
if (unlikely(smp_load_acquire(&br->tail) == head))
return NULL;
head &= bl->mask;
if (head < IO_BUFFER_LIST_BUF_PER_PAGE) {
buf = &br->bufs[head];
} else {
int off = head & (IO_BUFFER_LIST_BUF_PER_PAGE - 1);
int index = head / IO_BUFFER_LIST_BUF_PER_PAGE;
buf = page_address(bl->buf_pages[index]);
buf += off;
}
if (*len > buf->len)
*len = buf->len;
req->flags |= REQ_F_BUFFER_RING;
req->buf_list = bl;
req->buf_index = buf->bid;
if (issue_flags & IO_URING_F_UNLOCKED || !file_can_poll(req->file)) {
/*
* If we came in unlocked, we have no choice but to consume the
* buffer here. This does mean it'll be pinned until the IO
* completes. But coming in unlocked means we're in io-wq
* context, hence there should be no further retry. For the
* locked case, the caller must ensure to call the commit when
* the transfer completes (or if we get -EAGAIN and must poll
* or retry).
*/
req->buf_list = NULL;
bl->head++;
}
return u64_to_user_ptr(buf->addr);
}
static void __user *io_buffer_select(struct io_kiocb *req, size_t *len,
unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer_list *bl;
void __user *ret = NULL;
io_ring_submit_lock(req->ctx, issue_flags);
bl = io_buffer_get_list(ctx, req->buf_index);
if (likely(bl)) {
if (bl->buf_nr_pages)
ret = io_ring_buffer_select(req, len, bl, issue_flags);
else
ret = io_provided_buffer_select(req, len, bl);
}
io_ring_submit_unlock(req->ctx, issue_flags);
return ret;
}
#ifdef CONFIG_COMPAT
static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
unsigned int issue_flags)
{
struct compat_iovec __user *uiov;
compat_ssize_t clen;
void __user *buf;
size_t len;
uiov = u64_to_user_ptr(req->rw.addr);
if (!access_ok(uiov, sizeof(*uiov)))
return -EFAULT;
if (__get_user(clen, &uiov->iov_len))
return -EFAULT;
if (clen < 0)
return -EINVAL;
len = clen;
buf = io_buffer_select(req, &len, issue_flags);
if (!buf)
return -ENOBUFS;
req->rw.addr = (unsigned long) buf;
iov[0].iov_base = buf;
req->rw.len = iov[0].iov_len = (compat_size_t) len;
return 0;
}
#endif
static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
unsigned int issue_flags)
{
struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
void __user *buf;
ssize_t len;
if (copy_from_user(iov, uiov, sizeof(*uiov)))
return -EFAULT;
len = iov[0].iov_len;
if (len < 0)
return -EINVAL;
buf = io_buffer_select(req, &len, issue_flags);
if (!buf)
return -ENOBUFS;
req->rw.addr = (unsigned long) buf;
iov[0].iov_base = buf;
req->rw.len = iov[0].iov_len = len;
return 0;
}
static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
unsigned int issue_flags)
{
if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) {
iov[0].iov_base = u64_to_user_ptr(req->rw.addr);
iov[0].iov_len = req->rw.len;
return 0;
}
if (req->rw.len != 1)
return -EINVAL;
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
return io_compat_import(req, iov, issue_flags);
#endif
return __io_iov_buffer_select(req, iov, issue_flags);
}
static inline bool io_do_buffer_select(struct io_kiocb *req)
{
if (!(req->flags & REQ_F_BUFFER_SELECT))
return false;
return !(req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING));
}
static struct iovec *__io_import_iovec(int rw, struct io_kiocb *req,
struct io_rw_state *s,
unsigned int issue_flags)
{
struct iov_iter *iter = &s->iter;
u8 opcode = req->opcode;
struct iovec *iovec;
void __user *buf;
size_t sqe_len;
ssize_t ret;
if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
ret = io_import_fixed(req, rw, iter, issue_flags);
if (ret)
return ERR_PTR(ret);
return NULL;
}
buf = u64_to_user_ptr(req->rw.addr);
sqe_len = req->rw.len;
if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
if (io_do_buffer_select(req)) {
buf = io_buffer_select(req, &sqe_len, issue_flags);
if (!buf)
return ERR_PTR(-ENOBUFS);
req->rw.addr = (unsigned long) buf;
req->rw.len = sqe_len;
}
ret = import_single_range(rw, buf, sqe_len, s->fast_iov, iter);
if (ret)
return ERR_PTR(ret);
return NULL;
}
iovec = s->fast_iov;
if (req->flags & REQ_F_BUFFER_SELECT) {
ret = io_iov_buffer_select(req, iovec, issue_flags);
if (ret)
return ERR_PTR(ret);
iov_iter_init(iter, rw, iovec, 1, iovec->iov_len);
return NULL;
}
ret = __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, &iovec, iter,
req->ctx->compat);
if (unlikely(ret < 0))
return ERR_PTR(ret);
return iovec;
}
static inline int io_import_iovec(int rw, struct io_kiocb *req,
struct iovec **iovec, struct io_rw_state *s,
unsigned int issue_flags)
{
*iovec = __io_import_iovec(rw, req, s, issue_flags);
if (unlikely(IS_ERR(*iovec)))
return PTR_ERR(*iovec);
iov_iter_save_state(&s->iter, &s->iter_state);
return 0;
}
static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
{
return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
}
/*
* For files that don't have ->read_iter() and ->write_iter(), handle them
* by looping over ->read() or ->write() manually.
*/
static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
{
struct kiocb *kiocb = &req->rw.kiocb;
struct file *file = req->file;
ssize_t ret = 0;
loff_t *ppos;
/*
* Don't support polled IO through this interface, and we can't
* support non-blocking either. For the latter, this just causes
* the kiocb to be handled from an async context.
*/
if (kiocb->ki_flags & IOCB_HIPRI)
return -EOPNOTSUPP;
if ((kiocb->ki_flags & IOCB_NOWAIT) &&
!(kiocb->ki_filp->f_flags & O_NONBLOCK))
return -EAGAIN;
ppos = io_kiocb_ppos(kiocb);
while (iov_iter_count(iter)) {
struct iovec iovec;
ssize_t nr;
if (!iov_iter_is_bvec(iter)) {
iovec = iov_iter_iovec(iter);
} else {
iovec.iov_base = u64_to_user_ptr(req->rw.addr);
iovec.iov_len = req->rw.len;
}
if (rw == READ) {
nr = file->f_op->read(file, iovec.iov_base,
iovec.iov_len, ppos);
} else {
nr = file->f_op->write(file, iovec.iov_base,
iovec.iov_len, ppos);
}
if (nr < 0) {
if (!ret)
ret = nr;
break;
}
ret += nr;
if (!iov_iter_is_bvec(iter)) {
iov_iter_advance(iter, nr);
} else {
req->rw.addr += nr;
req->rw.len -= nr;
if (!req->rw.len)
break;
}
if (nr != iovec.iov_len)
break;
}
return ret;
}
static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
const struct iovec *fast_iov, struct iov_iter *iter)
{
struct io_async_rw *rw = req->async_data;
memcpy(&rw->s.iter, iter, sizeof(*iter));
rw->free_iovec = iovec;
rw->bytes_done = 0;
/* can only be fixed buffers, no need to do anything */
if (iov_iter_is_bvec(iter))
return;
if (!iovec) {
unsigned iov_off = 0;
rw->s.iter.iov = rw->s.fast_iov;
if (iter->iov != fast_iov) {
iov_off = iter->iov - fast_iov;
rw->s.iter.iov += iov_off;
}
if (rw->s.fast_iov != fast_iov)
memcpy(rw->s.fast_iov + iov_off, fast_iov + iov_off,
sizeof(struct iovec) * iter->nr_segs);
} else {
req->flags |= REQ_F_NEED_CLEANUP;
}
}
static inline bool io_alloc_async_data(struct io_kiocb *req)
{
WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
if (req->async_data) {
req->flags |= REQ_F_ASYNC_DATA;
return false;
}
return true;
}
static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
struct io_rw_state *s, bool force)
{
if (!force && !io_op_defs[req->opcode].needs_async_setup)
return 0;
if (!req_has_async_data(req)) {
struct io_async_rw *iorw;
if (io_alloc_async_data(req)) {
kfree(iovec);
return -ENOMEM;
}
io_req_map_rw(req, iovec, s->fast_iov, &s->iter);
iorw = req->async_data;
/* we've copied and mapped the iter, ensure state is saved */
iov_iter_save_state(&iorw->s.iter, &iorw->s.iter_state);
}
return 0;
}
static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
{
struct io_async_rw *iorw = req->async_data;
struct iovec *iov;
int ret;
/* submission path, ->uring_lock should already be taken */
ret = io_import_iovec(rw, req, &iov, &iorw->s, 0);
if (unlikely(ret < 0))
return ret;
iorw->bytes_done = 0;
iorw->free_iovec = iov;
if (iov)
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_readv_prep_async(struct io_kiocb *req)
{
return io_rw_prep_async(req, READ);
}
static int io_writev_prep_async(struct io_kiocb *req)
{
return io_rw_prep_async(req, WRITE);
}
/*
* This is our waitqueue callback handler, registered through __folio_lock_async()
* when we initially tried to do the IO with the iocb armed our waitqueue.
* This gets called when the page is unlocked, and we generally expect that to
* happen when the page IO is completed and the page is now uptodate. This will
* queue a task_work based retry of the operation, attempting to copy the data
* again. If the latter fails because the page was NOT uptodate, then we will
* do a thread based blocking retry of the operation. That's the unexpected
* slow path.
*/
static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
int sync, void *arg)
{
struct wait_page_queue *wpq;
struct io_kiocb *req = wait->private;
struct wait_page_key *key = arg;
wpq = container_of(wait, struct wait_page_queue, wait);
if (!wake_page_match(wpq, key))
return 0;
req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
list_del_init(&wait->entry);
io_req_task_queue(req);
return 1;
}
/*
* This controls whether a given IO request should be armed for async page
* based retry. If we return false here, the request is handed to the async
* worker threads for retry. If we're doing buffered reads on a regular file,
* we prepare a private wait_page_queue entry and retry the operation. This
* will either succeed because the page is now uptodate and unlocked, or it
* will register a callback when the page is unlocked at IO completion. Through
* that callback, io_uring uses task_work to setup a retry of the operation.
* That retry will attempt the buffered read again. The retry will generally
* succeed, or in rare cases where it fails, we then fall back to using the
* async worker threads for a blocking retry.
*/
static bool io_rw_should_retry(struct io_kiocb *req)
{
struct io_async_rw *rw = req->async_data;
struct wait_page_queue *wait = &rw->wpq;
struct kiocb *kiocb = &req->rw.kiocb;
/* never retry for NOWAIT, we just complete with -EAGAIN */
if (req->flags & REQ_F_NOWAIT)
return false;
/* Only for buffered IO */
if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
return false;
/*
* just use poll if we can, and don't attempt if the fs doesn't
* support callback based unlocks
*/
if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
return false;
wait->wait.func = io_async_buf_func;
wait->wait.private = req;
wait->wait.flags = 0;
INIT_LIST_HEAD(&wait->wait.entry);
kiocb->ki_flags |= IOCB_WAITQ;
kiocb->ki_flags &= ~IOCB_NOWAIT;
kiocb->ki_waitq = wait;
return true;
}
static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
{
if (likely(req->file->f_op->read_iter))
return call_read_iter(req->file, &req->rw.kiocb, iter);
else if (req->file->f_op->read)
return loop_rw_iter(READ, req, iter);
else
return -EINVAL;
}
static bool need_read_all(struct io_kiocb *req)
{
return req->flags & REQ_F_ISREG ||
S_ISBLK(file_inode(req->file)->i_mode);
}
static int io_rw_init_file(struct io_kiocb *req, fmode_t mode)
{
struct kiocb *kiocb = &req->rw.kiocb;
struct io_ring_ctx *ctx = req->ctx;
struct file *file = req->file;
int ret;
if (unlikely(!file || !(file->f_mode & mode)))
return -EBADF;
if (!io_req_ffs_set(req))
req->flags |= io_file_get_flags(file) << REQ_F_SUPPORT_NOWAIT_BIT;
kiocb->ki_flags = iocb_flags(file);
ret = kiocb_set_rw_flags(kiocb, req->rw.flags);
if (unlikely(ret))
return ret;
/*
* If the file is marked O_NONBLOCK, still allow retry for it if it
* supports async. Otherwise it's impossible to use O_NONBLOCK files
* reliably. If not, or it IOCB_NOWAIT is set, don't retry.
*/
if ((kiocb->ki_flags & IOCB_NOWAIT) ||
((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req)))
req->flags |= REQ_F_NOWAIT;
if (ctx->flags & IORING_SETUP_IOPOLL) {
if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
return -EOPNOTSUPP;
kiocb->private = NULL;
kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
kiocb->ki_complete = io_complete_rw_iopoll;
req->iopoll_completed = 0;
} else {
if (kiocb->ki_flags & IOCB_HIPRI)
return -EINVAL;
kiocb->ki_complete = io_complete_rw;
}
return 0;
}
static int io_read(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_rw_state __s, *s = &__s;
struct iovec *iovec;
struct kiocb *kiocb = &req->rw.kiocb;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
struct io_async_rw *rw;
ssize_t ret, ret2;
loff_t *ppos;
if (!req_has_async_data(req)) {
ret = io_import_iovec(READ, req, &iovec, s, issue_flags);
if (unlikely(ret < 0))
return ret;
} else {
rw = req->async_data;
s = &rw->s;
/*
* Safe and required to re-import if we're using provided
* buffers, as we dropped the selected one before retry.
*/
if (io_do_buffer_select(req)) {
ret = io_import_iovec(READ, req, &iovec, s, issue_flags);
if (unlikely(ret < 0))
return ret;
}
/*
* We come here from an earlier attempt, restore our state to
* match in case it doesn't. It's cheap enough that we don't
* need to make this conditional.
*/
iov_iter_restore(&s->iter, &s->iter_state);
iovec = NULL;
}
ret = io_rw_init_file(req, FMODE_READ);
if (unlikely(ret)) {
kfree(iovec);
return ret;
}
req->cqe.res = iov_iter_count(&s->iter);
if (force_nonblock) {
/* If the file doesn't support async, just async punt */
if (unlikely(!io_file_supports_nowait(req))) {
ret = io_setup_async_rw(req, iovec, s, true);
return ret ?: -EAGAIN;
}
kiocb->ki_flags |= IOCB_NOWAIT;
} else {
/* Ensure we clear previously set non-block flag */
kiocb->ki_flags &= ~IOCB_NOWAIT;
}
ppos = io_kiocb_update_pos(req);
ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
if (unlikely(ret)) {
kfree(iovec);
return ret;
}
ret = io_iter_do_read(req, &s->iter);
if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
req->flags &= ~REQ_F_REISSUE;
/* if we can poll, just do that */
if (req->opcode == IORING_OP_READ && file_can_poll(req->file))
return -EAGAIN;
/* IOPOLL retry should happen for io-wq threads */
if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
goto done;
/* no retry on NONBLOCK nor RWF_NOWAIT */
if (req->flags & REQ_F_NOWAIT)
goto done;
ret = 0;
} else if (ret == -EIOCBQUEUED) {
goto out_free;
} else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
(req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
/* read all, failed, already did sync or don't want to retry */
goto done;
}
/*
* Don't depend on the iter state matching what was consumed, or being
* untouched in case of error. Restore it and we'll advance it
* manually if we need to.
*/
iov_iter_restore(&s->iter, &s->iter_state);
ret2 = io_setup_async_rw(req, iovec, s, true);
if (ret2)
return ret2;
iovec = NULL;
rw = req->async_data;
s = &rw->s;
/*
* Now use our persistent iterator and state, if we aren't already.
* We've restored and mapped the iter to match.
*/
do {
/*
* We end up here because of a partial read, either from
* above or inside this loop. Advance the iter by the bytes
* that were consumed.
*/
iov_iter_advance(&s->iter, ret);
if (!iov_iter_count(&s->iter))
break;
rw->bytes_done += ret;
iov_iter_save_state(&s->iter, &s->iter_state);
/* if we can retry, do so with the callbacks armed */
if (!io_rw_should_retry(req)) {
kiocb->ki_flags &= ~IOCB_WAITQ;
return -EAGAIN;
}
/*
* Now retry read with the IOCB_WAITQ parts set in the iocb. If
* we get -EIOCBQUEUED, then we'll get a notification when the
* desired page gets unlocked. We can also get a partial read
* here, and if we do, then just retry at the new offset.
*/
ret = io_iter_do_read(req, &s->iter);
if (ret == -EIOCBQUEUED)
return 0;
/* we got some bytes, but not all. retry. */
kiocb->ki_flags &= ~IOCB_WAITQ;
iov_iter_restore(&s->iter, &s->iter_state);
} while (ret > 0);
done:
kiocb_done(req, ret, issue_flags);
out_free:
/* it's faster to check here then delegate to kfree */
if (iovec)
kfree(iovec);
return 0;
}
static int io_write(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_rw_state __s, *s = &__s;
struct iovec *iovec;
struct kiocb *kiocb = &req->rw.kiocb;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
ssize_t ret, ret2;
loff_t *ppos;
if (!req_has_async_data(req)) {
ret = io_import_iovec(WRITE, req, &iovec, s, issue_flags);
if (unlikely(ret < 0))
return ret;
} else {
struct io_async_rw *rw = req->async_data;
s = &rw->s;
iov_iter_restore(&s->iter, &s->iter_state);
iovec = NULL;
}
ret = io_rw_init_file(req, FMODE_WRITE);
if (unlikely(ret)) {
kfree(iovec);
return ret;
}
req->cqe.res = iov_iter_count(&s->iter);
if (force_nonblock) {
/* If the file doesn't support async, just async punt */
if (unlikely(!io_file_supports_nowait(req)))
goto copy_iov;
/* file path doesn't support NOWAIT for non-direct_IO */
if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
(req->flags & REQ_F_ISREG))
goto copy_iov;
kiocb->ki_flags |= IOCB_NOWAIT;
} else {
/* Ensure we clear previously set non-block flag */
kiocb->ki_flags &= ~IOCB_NOWAIT;
}
ppos = io_kiocb_update_pos(req);
ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
if (unlikely(ret))
goto out_free;
/*
* Open-code file_start_write here to grab freeze protection,
* which will be released by another thread in
* io_complete_rw(). Fool lockdep by telling it the lock got
* released so that it doesn't complain about the held lock when
* we return to userspace.
*/
if (req->flags & REQ_F_ISREG) {
sb_start_write(file_inode(req->file)->i_sb);
__sb_writers_release(file_inode(req->file)->i_sb,
SB_FREEZE_WRITE);
}
kiocb->ki_flags |= IOCB_WRITE;
if (likely(req->file->f_op->write_iter))
ret2 = call_write_iter(req->file, kiocb, &s->iter);
else if (req->file->f_op->write)
ret2 = loop_rw_iter(WRITE, req, &s->iter);
else
ret2 = -EINVAL;
if (req->flags & REQ_F_REISSUE) {
req->flags &= ~REQ_F_REISSUE;
ret2 = -EAGAIN;
}
/*
* Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
* retry them without IOCB_NOWAIT.
*/
if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
ret2 = -EAGAIN;
/* no retry on NONBLOCK nor RWF_NOWAIT */
if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
goto done;
if (!force_nonblock || ret2 != -EAGAIN) {
/* IOPOLL retry should happen for io-wq threads */
if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
goto copy_iov;
done:
kiocb_done(req, ret2, issue_flags);
} else {
copy_iov:
iov_iter_restore(&s->iter, &s->iter_state);
ret = io_setup_async_rw(req, iovec, s, false);
return ret ?: -EAGAIN;
}
out_free:
/* it's reportedly faster than delegating the null check to kfree() */
if (iovec)
kfree(iovec);
return ret;
}
static int io_renameat_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_rename *ren = &req->rename;
const char __user *oldf, *newf;
if (sqe->buf_index || sqe->splice_fd_in)
return -EINVAL;
if (unlikely(req->flags & REQ_F_FIXED_FILE))
return -EBADF;
ren->old_dfd = READ_ONCE(sqe->fd);
oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
ren->new_dfd = READ_ONCE(sqe->len);
ren->flags = READ_ONCE(sqe->rename_flags);
ren->oldpath = getname(oldf);
if (IS_ERR(ren->oldpath))
return PTR_ERR(ren->oldpath);
ren->newpath = getname(newf);
if (IS_ERR(ren->newpath)) {
putname(ren->oldpath);
return PTR_ERR(ren->newpath);
}
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_rename *ren = &req->rename;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
ren->newpath, ren->flags);
req->flags &= ~REQ_F_NEED_CLEANUP;
io_req_complete(req, ret);
return 0;
}
static inline void __io_xattr_finish(struct io_kiocb *req)
{
struct io_xattr *ix = &req->xattr;
if (ix->filename)
putname(ix->filename);
kfree(ix->ctx.kname);
kvfree(ix->ctx.kvalue);
}
static void io_xattr_finish(struct io_kiocb *req, int ret)
{
req->flags &= ~REQ_F_NEED_CLEANUP;
__io_xattr_finish(req);
io_req_complete(req, ret);
}
static int __io_getxattr_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_xattr *ix = &req->xattr;
const char __user *name;
int ret;
if (unlikely(req->flags & REQ_F_FIXED_FILE))
return -EBADF;
ix->filename = NULL;
ix->ctx.kvalue = NULL;
name = u64_to_user_ptr(READ_ONCE(sqe->addr));
ix->ctx.cvalue = u64_to_user_ptr(READ_ONCE(sqe->addr2));
ix->ctx.size = READ_ONCE(sqe->len);
ix->ctx.flags = READ_ONCE(sqe->xattr_flags);
if (ix->ctx.flags)
return -EINVAL;
ix->ctx.kname = kmalloc(sizeof(*ix->ctx.kname), GFP_KERNEL);
if (!ix->ctx.kname)
return -ENOMEM;
ret = strncpy_from_user(ix->ctx.kname->name, name,
sizeof(ix->ctx.kname->name));
if (!ret || ret == sizeof(ix->ctx.kname->name))
ret = -ERANGE;
if (ret < 0) {
kfree(ix->ctx.kname);
return ret;
}
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_fgetxattr_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
return __io_getxattr_prep(req, sqe);
}
static int io_getxattr_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_xattr *ix = &req->xattr;
const char __user *path;
int ret;
ret = __io_getxattr_prep(req, sqe);
if (ret)
return ret;
path = u64_to_user_ptr(READ_ONCE(sqe->addr3));
ix->filename = getname_flags(path, LOOKUP_FOLLOW, NULL);
if (IS_ERR(ix->filename)) {
ret = PTR_ERR(ix->filename);
ix->filename = NULL;
}
return ret;
}
static int io_fgetxattr(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_xattr *ix = &req->xattr;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = do_getxattr(mnt_user_ns(req->file->f_path.mnt),
req->file->f_path.dentry,
&ix->ctx);
io_xattr_finish(req, ret);
return 0;
}
static int io_getxattr(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_xattr *ix = &req->xattr;
unsigned int lookup_flags = LOOKUP_FOLLOW;
struct path path;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
retry:
ret = filename_lookup(AT_FDCWD, ix->filename, lookup_flags, &path, NULL);
if (!ret) {
ret = do_getxattr(mnt_user_ns(path.mnt),
path.dentry,
&ix->ctx);
path_put(&path);
if (retry_estale(ret, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
}
io_xattr_finish(req, ret);
return 0;
}
static int __io_setxattr_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_xattr *ix = &req->xattr;
const char __user *name;
int ret;
if (unlikely(req->flags & REQ_F_FIXED_FILE))
return -EBADF;
ix->filename = NULL;
name = u64_to_user_ptr(READ_ONCE(sqe->addr));
ix->ctx.cvalue = u64_to_user_ptr(READ_ONCE(sqe->addr2));
ix->ctx.kvalue = NULL;
ix->ctx.size = READ_ONCE(sqe->len);
ix->ctx.flags = READ_ONCE(sqe->xattr_flags);
ix->ctx.kname = kmalloc(sizeof(*ix->ctx.kname), GFP_KERNEL);
if (!ix->ctx.kname)
return -ENOMEM;
ret = setxattr_copy(name, &ix->ctx);
if (ret) {
kfree(ix->ctx.kname);
return ret;
}
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_setxattr_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_xattr *ix = &req->xattr;
const char __user *path;
int ret;
ret = __io_setxattr_prep(req, sqe);
if (ret)
return ret;
path = u64_to_user_ptr(READ_ONCE(sqe->addr3));
ix->filename = getname_flags(path, LOOKUP_FOLLOW, NULL);
if (IS_ERR(ix->filename)) {
ret = PTR_ERR(ix->filename);
ix->filename = NULL;
}
return ret;
}
static int io_fsetxattr_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
return __io_setxattr_prep(req, sqe);
}
static int __io_setxattr(struct io_kiocb *req, unsigned int issue_flags,
struct path *path)
{
struct io_xattr *ix = &req->xattr;
int ret;
ret = mnt_want_write(path->mnt);
if (!ret) {
ret = do_setxattr(mnt_user_ns(path->mnt), path->dentry, &ix->ctx);
mnt_drop_write(path->mnt);
}
return ret;
}
static int io_fsetxattr(struct io_kiocb *req, unsigned int issue_flags)
{
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = __io_setxattr(req, issue_flags, &req->file->f_path);
io_xattr_finish(req, ret);
return 0;
}
static int io_setxattr(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_xattr *ix = &req->xattr;
unsigned int lookup_flags = LOOKUP_FOLLOW;
struct path path;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
retry:
ret = filename_lookup(AT_FDCWD, ix->filename, lookup_flags, &path, NULL);
if (!ret) {
ret = __io_setxattr(req, issue_flags, &path);
path_put(&path);
if (retry_estale(ret, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
}
io_xattr_finish(req, ret);
return 0;
}
static int io_unlinkat_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_unlink *un = &req->unlink;
const char __user *fname;
if (sqe->off || sqe->len || sqe->buf_index || sqe->splice_fd_in)
return -EINVAL;
if (unlikely(req->flags & REQ_F_FIXED_FILE))
return -EBADF;
un->dfd = READ_ONCE(sqe->fd);
un->flags = READ_ONCE(sqe->unlink_flags);
if (un->flags & ~AT_REMOVEDIR)
return -EINVAL;
fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
un->filename = getname(fname);
if (IS_ERR(un->filename))
return PTR_ERR(un->filename);
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_unlink *un = &req->unlink;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
if (un->flags & AT_REMOVEDIR)
ret = do_rmdir(un->dfd, un->filename);
else
ret = do_unlinkat(un->dfd, un->filename);
req->flags &= ~REQ_F_NEED_CLEANUP;
io_req_complete(req, ret);
return 0;
}
static int io_mkdirat_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_mkdir *mkd = &req->mkdir;
const char __user *fname;
if (sqe->off || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
return -EINVAL;
if (unlikely(req->flags & REQ_F_FIXED_FILE))
return -EBADF;
mkd->dfd = READ_ONCE(sqe->fd);
mkd->mode = READ_ONCE(sqe->len);
fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
mkd->filename = getname(fname);
if (IS_ERR(mkd->filename))
return PTR_ERR(mkd->filename);
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_mkdirat(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_mkdir *mkd = &req->mkdir;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
req->flags &= ~REQ_F_NEED_CLEANUP;
io_req_complete(req, ret);
return 0;
}
static int io_symlinkat_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_symlink *sl = &req->symlink;
const char __user *oldpath, *newpath;
if (sqe->len || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
return -EINVAL;
if (unlikely(req->flags & REQ_F_FIXED_FILE))
return -EBADF;
sl->new_dfd = READ_ONCE(sqe->fd);
oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
sl->oldpath = getname(oldpath);
if (IS_ERR(sl->oldpath))
return PTR_ERR(sl->oldpath);
sl->newpath = getname(newpath);
if (IS_ERR(sl->newpath)) {
putname(sl->oldpath);
return PTR_ERR(sl->newpath);
}
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_symlinkat(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_symlink *sl = &req->symlink;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
req->flags &= ~REQ_F_NEED_CLEANUP;
io_req_complete(req, ret);
return 0;
}
static int io_linkat_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_hardlink *lnk = &req->hardlink;
const char __user *oldf, *newf;
if (sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
return -EINVAL;
if (unlikely(req->flags & REQ_F_FIXED_FILE))
return -EBADF;
lnk->old_dfd = READ_ONCE(sqe->fd);
lnk->new_dfd = READ_ONCE(sqe->len);
oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
lnk->flags = READ_ONCE(sqe->hardlink_flags);
lnk->oldpath = getname(oldf);
if (IS_ERR(lnk->oldpath))
return PTR_ERR(lnk->oldpath);
lnk->newpath = getname(newf);
if (IS_ERR(lnk->newpath)) {
putname(lnk->oldpath);
return PTR_ERR(lnk->newpath);
}
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_linkat(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_hardlink *lnk = &req->hardlink;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
lnk->newpath, lnk->flags);
req->flags &= ~REQ_F_NEED_CLEANUP;
io_req_complete(req, ret);
return 0;
}
static void io_uring_cmd_work(struct io_kiocb *req, bool *locked)
{
req->uring_cmd.task_work_cb(&req->uring_cmd);
}
void io_uring_cmd_complete_in_task(struct io_uring_cmd *ioucmd,
void (*task_work_cb)(struct io_uring_cmd *))
{
struct io_kiocb *req = container_of(ioucmd, struct io_kiocb, uring_cmd);
req->uring_cmd.task_work_cb = task_work_cb;
req->io_task_work.func = io_uring_cmd_work;
io_req_task_work_add(req);
}
EXPORT_SYMBOL_GPL(io_uring_cmd_complete_in_task);
static inline void io_req_set_cqe32_extra(struct io_kiocb *req,
u64 extra1, u64 extra2)
{
req->extra1 = extra1;
req->extra2 = extra2;
req->flags |= REQ_F_CQE32_INIT;
}
/*
* Called by consumers of io_uring_cmd, if they originally returned
* -EIOCBQUEUED upon receiving the command.
*/
void io_uring_cmd_done(struct io_uring_cmd *ioucmd, ssize_t ret, ssize_t res2)
{
struct io_kiocb *req = container_of(ioucmd, struct io_kiocb, uring_cmd);
if (ret < 0)
req_set_fail(req);
if (req->ctx->flags & IORING_SETUP_CQE32)
io_req_set_cqe32_extra(req, res2, 0);
io_req_complete(req, ret);
}
EXPORT_SYMBOL_GPL(io_uring_cmd_done);
static int io_uring_cmd_prep_async(struct io_kiocb *req)
{
size_t cmd_size;
cmd_size = uring_cmd_pdu_size(req->ctx->flags & IORING_SETUP_SQE128);
memcpy(req->async_data, req->uring_cmd.cmd, cmd_size);
return 0;
}
static int io_uring_cmd_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_uring_cmd *ioucmd = &req->uring_cmd;
if (sqe->rw_flags)
return -EINVAL;
ioucmd->cmd = sqe->cmd;
ioucmd->cmd_op = READ_ONCE(sqe->cmd_op);
return 0;
}
static int io_uring_cmd(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_uring_cmd *ioucmd = &req->uring_cmd;
struct io_ring_ctx *ctx = req->ctx;
struct file *file = req->file;
int ret;
if (!req->file->f_op->uring_cmd)
return -EOPNOTSUPP;
if (ctx->flags & IORING_SETUP_SQE128)
issue_flags |= IO_URING_F_SQE128;
if (ctx->flags & IORING_SETUP_CQE32)
issue_flags |= IO_URING_F_CQE32;
if (ctx->flags & IORING_SETUP_IOPOLL)
issue_flags |= IO_URING_F_IOPOLL;
if (req_has_async_data(req))
ioucmd->cmd = req->async_data;
ret = file->f_op->uring_cmd(ioucmd, issue_flags);
if (ret == -EAGAIN) {
if (!req_has_async_data(req)) {
if (io_alloc_async_data(req))
return -ENOMEM;
io_uring_cmd_prep_async(req);
}
return -EAGAIN;
}
if (ret != -EIOCBQUEUED)
io_uring_cmd_done(ioucmd, ret, 0);
return 0;
}
static int __io_splice_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_splice *sp = &req->splice;
unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
sp->len = READ_ONCE(sqe->len);
sp->flags = READ_ONCE(sqe->splice_flags);
if (unlikely(sp->flags & ~valid_flags))
return -EINVAL;
sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
return 0;
}
static int io_tee_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
return -EINVAL;
return __io_splice_prep(req, sqe);
}
static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_splice *sp = &req->splice;
struct file *out = sp->file_out;
unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
struct file *in;
long ret = 0;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
if (sp->flags & SPLICE_F_FD_IN_FIXED)
in = io_file_get_fixed(req, sp->splice_fd_in, issue_flags);
else
in = io_file_get_normal(req, sp->splice_fd_in);
if (!in) {
ret = -EBADF;
goto done;
}
if (sp->len)
ret = do_tee(in, out, sp->len, flags);
if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
io_put_file(in);
done:
if (ret != sp->len)
req_set_fail(req);
__io_req_complete(req, 0, ret, 0);
return 0;
}
static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_splice *sp = &req->splice;
sp->off_in = READ_ONCE(sqe->splice_off_in);
sp->off_out = READ_ONCE(sqe->off);
return __io_splice_prep(req, sqe);
}
static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_splice *sp = &req->splice;
struct file *out = sp->file_out;
unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
loff_t *poff_in, *poff_out;
struct file *in;
long ret = 0;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
if (sp->flags & SPLICE_F_FD_IN_FIXED)
in = io_file_get_fixed(req, sp->splice_fd_in, issue_flags);
else
in = io_file_get_normal(req, sp->splice_fd_in);
if (!in) {
ret = -EBADF;
goto done;
}
poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
if (sp->len)
ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
io_put_file(in);
done:
if (ret != sp->len)
req_set_fail(req);
__io_req_complete(req, 0, ret, 0);
return 0;
}
static int io_nop_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
return 0;
}
/*
* IORING_OP_NOP just posts a completion event, nothing else.
*/
static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
{
__io_req_complete(req, issue_flags, 0, 0);
return 0;
}
static int io_msg_ring_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
if (unlikely(sqe->addr || sqe->rw_flags || sqe->splice_fd_in ||
sqe->buf_index || sqe->personality))
return -EINVAL;
req->msg.user_data = READ_ONCE(sqe->off);
req->msg.len = READ_ONCE(sqe->len);
return 0;
}
static int io_msg_ring(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_ring_ctx *target_ctx;
struct io_msg *msg = &req->msg;
bool filled;
int ret;
ret = -EBADFD;
if (req->file->f_op != &io_uring_fops)
goto done;
ret = -EOVERFLOW;
target_ctx = req->file->private_data;
spin_lock(&target_ctx->completion_lock);
filled = io_fill_cqe_aux(target_ctx, msg->user_data, msg->len, 0);
io_commit_cqring(target_ctx);
spin_unlock(&target_ctx->completion_lock);
if (filled) {
io_cqring_ev_posted(target_ctx);
ret = 0;
}
done:
if (ret < 0)
req_set_fail(req);
__io_req_complete(req, issue_flags, ret, 0);
/* put file to avoid an attempt to IOPOLL the req */
io_put_file(req->file);
req->file = NULL;
return 0;
}
static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
if (unlikely(sqe->addr || sqe->buf_index || sqe->splice_fd_in))
return -EINVAL;
req->sync.flags = READ_ONCE(sqe->fsync_flags);
if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
return -EINVAL;
req->sync.off = READ_ONCE(sqe->off);
req->sync.len = READ_ONCE(sqe->len);
return 0;
}
static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
{
loff_t end = req->sync.off + req->sync.len;
int ret;
/* fsync always requires a blocking context */
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = vfs_fsync_range(req->file, req->sync.off,
end > 0 ? end : LLONG_MAX,
req->sync.flags & IORING_FSYNC_DATASYNC);
io_req_complete(req, ret);
return 0;
}
static int io_fallocate_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
if (sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in)
return -EINVAL;
req->sync.off = READ_ONCE(sqe->off);
req->sync.len = READ_ONCE(sqe->addr);
req->sync.mode = READ_ONCE(sqe->len);
return 0;
}
static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
{
int ret;
/* fallocate always requiring blocking context */
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
req->sync.len);
if (ret >= 0)
fsnotify_modify(req->file);
io_req_complete(req, ret);
return 0;
}
static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
const char __user *fname;
int ret;
if (unlikely(sqe->buf_index))
return -EINVAL;
if (unlikely(req->flags & REQ_F_FIXED_FILE))
return -EBADF;
/* open.how should be already initialised */
if (!(req->open.how.flags & O_PATH) && force_o_largefile())
req->open.how.flags |= O_LARGEFILE;
req->open.dfd = READ_ONCE(sqe->fd);
fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
req->open.filename = getname(fname);
if (IS_ERR(req->open.filename)) {
ret = PTR_ERR(req->open.filename);
req->open.filename = NULL;
return ret;
}
req->open.file_slot = READ_ONCE(sqe->file_index);
if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
return -EINVAL;
req->open.nofile = rlimit(RLIMIT_NOFILE);
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
u64 mode = READ_ONCE(sqe->len);
u64 flags = READ_ONCE(sqe->open_flags);
req->open.how = build_open_how(flags, mode);
return __io_openat_prep(req, sqe);
}
static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct open_how __user *how;
size_t len;
int ret;
how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
len = READ_ONCE(sqe->len);
if (len < OPEN_HOW_SIZE_VER0)
return -EINVAL;
ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
len);
if (ret)
return ret;
return __io_openat_prep(req, sqe);
}
static int io_file_bitmap_get(struct io_ring_ctx *ctx)
{
struct io_file_table *table = &ctx->file_table;
unsigned long nr = ctx->nr_user_files;
int ret;
do {
ret = find_next_zero_bit(table->bitmap, nr, table->alloc_hint);
if (ret != nr)
return ret;
if (!table->alloc_hint)
break;
nr = table->alloc_hint;
table->alloc_hint = 0;
} while (1);
return -ENFILE;
}
/*
* Note when io_fixed_fd_install() returns error value, it will ensure
* fput() is called correspondingly.
*/
static int io_fixed_fd_install(struct io_kiocb *req, unsigned int issue_flags,
struct file *file, unsigned int file_slot)
{
bool alloc_slot = file_slot == IORING_FILE_INDEX_ALLOC;
struct io_ring_ctx *ctx = req->ctx;
int ret;
io_ring_submit_lock(ctx, issue_flags);
if (alloc_slot) {
ret = io_file_bitmap_get(ctx);
if (unlikely(ret < 0))
goto err;
file_slot = ret;
} else {
file_slot--;
}
ret = io_install_fixed_file(req, file, issue_flags, file_slot);
if (!ret && alloc_slot)
ret = file_slot;
err:
io_ring_submit_unlock(ctx, issue_flags);
if (unlikely(ret < 0))
fput(file);
return ret;
}
static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
{
struct open_flags op;
struct file *file;
bool resolve_nonblock, nonblock_set;
bool fixed = !!req->open.file_slot;
int ret;
ret = build_open_flags(&req->open.how, &op);
if (ret)
goto err;
nonblock_set = op.open_flag & O_NONBLOCK;
resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
if (issue_flags & IO_URING_F_NONBLOCK) {
/*
* Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
* it'll always -EAGAIN
*/
if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
return -EAGAIN;
op.lookup_flags |= LOOKUP_CACHED;
op.open_flag |= O_NONBLOCK;
}
if (!fixed) {
ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
if (ret < 0)
goto err;
}
file = do_filp_open(req->open.dfd, req->open.filename, &op);
if (IS_ERR(file)) {
/*
* We could hang on to this 'fd' on retrying, but seems like
* marginal gain for something that is now known to be a slower
* path. So just put it, and we'll get a new one when we retry.
*/
if (!fixed)
put_unused_fd(ret);
ret = PTR_ERR(file);
/* only retry if RESOLVE_CACHED wasn't already set by application */
if (ret == -EAGAIN &&
(!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
return -EAGAIN;
goto err;
}
if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
file->f_flags &= ~O_NONBLOCK;
fsnotify_open(file);
if (!fixed)
fd_install(ret, file);
else
ret = io_fixed_fd_install(req, issue_flags, file,
req->open.file_slot);
err:
putname(req->open.filename);
req->flags &= ~REQ_F_NEED_CLEANUP;
if (ret < 0)
req_set_fail(req);
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
{
return io_openat2(req, issue_flags);
}
static int io_remove_buffers_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_provide_buf *p = &req->pbuf;
u64 tmp;
if (sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
sqe->splice_fd_in)
return -EINVAL;
tmp = READ_ONCE(sqe->fd);
if (!tmp || tmp > USHRT_MAX)
return -EINVAL;
memset(p, 0, sizeof(*p));
p->nbufs = tmp;
p->bgid = READ_ONCE(sqe->buf_group);
return 0;
}
static int __io_remove_buffers(struct io_ring_ctx *ctx,
struct io_buffer_list *bl, unsigned nbufs)
{
unsigned i = 0;
/* shouldn't happen */
if (!nbufs)
return 0;
if (bl->buf_nr_pages) {
int j;
i = bl->buf_ring->tail - bl->head;
for (j = 0; j < bl->buf_nr_pages; j++)
unpin_user_page(bl->buf_pages[j]);
kvfree(bl->buf_pages);
bl->buf_pages = NULL;
bl->buf_nr_pages = 0;
/* make sure it's seen as empty */
INIT_LIST_HEAD(&bl->buf_list);
return i;
}
/* the head kbuf is the list itself */
while (!list_empty(&bl->buf_list)) {
struct io_buffer *nxt;
nxt = list_first_entry(&bl->buf_list, struct io_buffer, list);
list_del(&nxt->list);
if (++i == nbufs)
return i;
cond_resched();
}
i++;
return i;
}
static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_provide_buf *p = &req->pbuf;
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer_list *bl;
int ret = 0;
io_ring_submit_lock(ctx, issue_flags);
ret = -ENOENT;
bl = io_buffer_get_list(ctx, p->bgid);
if (bl) {
ret = -EINVAL;
/* can't use provide/remove buffers command on mapped buffers */
if (!bl->buf_nr_pages)
ret = __io_remove_buffers(ctx, bl, p->nbufs);
}
if (ret < 0)
req_set_fail(req);
/* complete before unlock, IOPOLL may need the lock */
__io_req_complete(req, issue_flags, ret, 0);
io_ring_submit_unlock(ctx, issue_flags);
return 0;
}
static int io_provide_buffers_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
unsigned long size, tmp_check;
struct io_provide_buf *p = &req->pbuf;
u64 tmp;
if (sqe->rw_flags || sqe->splice_fd_in)
return -EINVAL;
tmp = READ_ONCE(sqe->fd);
if (!tmp || tmp > USHRT_MAX)
return -E2BIG;
p->nbufs = tmp;
p->addr = READ_ONCE(sqe->addr);
p->len = READ_ONCE(sqe->len);
if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
&size))
return -EOVERFLOW;
if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
return -EOVERFLOW;
size = (unsigned long)p->len * p->nbufs;
if (!access_ok(u64_to_user_ptr(p->addr), size))
return -EFAULT;
p->bgid = READ_ONCE(sqe->buf_group);
tmp = READ_ONCE(sqe->off);
if (tmp > USHRT_MAX)
return -E2BIG;
p->bid = tmp;
return 0;
}
static int io_refill_buffer_cache(struct io_ring_ctx *ctx)
{
struct io_buffer *buf;
struct page *page;
int bufs_in_page;
/*
* Completions that don't happen inline (eg not under uring_lock) will
* add to ->io_buffers_comp. If we don't have any free buffers, check
* the completion list and splice those entries first.
*/
if (!list_empty_careful(&ctx->io_buffers_comp)) {
spin_lock(&ctx->completion_lock);
if (!list_empty(&ctx->io_buffers_comp)) {
list_splice_init(&ctx->io_buffers_comp,
&ctx->io_buffers_cache);
spin_unlock(&ctx->completion_lock);
return 0;
}
spin_unlock(&ctx->completion_lock);
}
/*
* No free buffers and no completion entries either. Allocate a new
* page worth of buffer entries and add those to our freelist.
*/
page = alloc_page(GFP_KERNEL_ACCOUNT);
if (!page)
return -ENOMEM;
list_add(&page->lru, &ctx->io_buffers_pages);
buf = page_address(page);
bufs_in_page = PAGE_SIZE / sizeof(*buf);
while (bufs_in_page) {
list_add_tail(&buf->list, &ctx->io_buffers_cache);
buf++;
bufs_in_page--;
}
return 0;
}
static int io_add_buffers(struct io_ring_ctx *ctx, struct io_provide_buf *pbuf,
struct io_buffer_list *bl)
{
struct io_buffer *buf;
u64 addr = pbuf->addr;
int i, bid = pbuf->bid;
for (i = 0; i < pbuf->nbufs; i++) {
if (list_empty(&ctx->io_buffers_cache) &&
io_refill_buffer_cache(ctx))
break;
buf = list_first_entry(&ctx->io_buffers_cache, struct io_buffer,
list);
list_move_tail(&buf->list, &bl->buf_list);
buf->addr = addr;
buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
buf->bid = bid;
buf->bgid = pbuf->bgid;
addr += pbuf->len;
bid++;
cond_resched();
}
return i ? 0 : -ENOMEM;
}
static __cold int io_init_bl_list(struct io_ring_ctx *ctx)
{
int i;
ctx->io_bl = kcalloc(BGID_ARRAY, sizeof(struct io_buffer_list),
GFP_KERNEL);
if (!ctx->io_bl)
return -ENOMEM;
for (i = 0; i < BGID_ARRAY; i++) {
INIT_LIST_HEAD(&ctx->io_bl[i].buf_list);
ctx->io_bl[i].bgid = i;
}
return 0;
}
static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_provide_buf *p = &req->pbuf;
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer_list *bl;
int ret = 0;
io_ring_submit_lock(ctx, issue_flags);
if (unlikely(p->bgid < BGID_ARRAY && !ctx->io_bl)) {
ret = io_init_bl_list(ctx);
if (ret)
goto err;
}
bl = io_buffer_get_list(ctx, p->bgid);
if (unlikely(!bl)) {
bl = kzalloc(sizeof(*bl), GFP_KERNEL);
if (!bl) {
ret = -ENOMEM;
goto err;
}
INIT_LIST_HEAD(&bl->buf_list);
ret = io_buffer_add_list(ctx, bl, p->bgid);
if (ret) {
kfree(bl);
goto err;
}
}
/* can't add buffers via this command for a mapped buffer ring */
if (bl->buf_nr_pages) {
ret = -EINVAL;
goto err;
}
ret = io_add_buffers(ctx, p, bl);
err:
if (ret < 0)
req_set_fail(req);
/* complete before unlock, IOPOLL may need the lock */
__io_req_complete(req, issue_flags, ret, 0);
io_ring_submit_unlock(ctx, issue_flags);
return 0;
}
static int io_epoll_ctl_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
#if defined(CONFIG_EPOLL)
if (sqe->buf_index || sqe->splice_fd_in)
return -EINVAL;
req->epoll.epfd = READ_ONCE(sqe->fd);
req->epoll.op = READ_ONCE(sqe->len);
req->epoll.fd = READ_ONCE(sqe->off);
if (ep_op_has_event(req->epoll.op)) {
struct epoll_event __user *ev;
ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
return -EFAULT;
}
return 0;
#else
return -EOPNOTSUPP;
#endif
}
static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
{
#if defined(CONFIG_EPOLL)
struct io_epoll *ie = &req->epoll;
int ret;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
if (force_nonblock && ret == -EAGAIN)
return -EAGAIN;
if (ret < 0)
req_set_fail(req);
__io_req_complete(req, issue_flags, ret, 0);
return 0;
#else
return -EOPNOTSUPP;
#endif
}
static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
#if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
if (sqe->buf_index || sqe->off || sqe->splice_fd_in)
return -EINVAL;
req->madvise.addr = READ_ONCE(sqe->addr);
req->madvise.len = READ_ONCE(sqe->len);
req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
return 0;
#else
return -EOPNOTSUPP;
#endif
}
static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
{
#if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
struct io_madvise *ma = &req->madvise;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
io_req_complete(req, ret);
return 0;
#else
return -EOPNOTSUPP;
#endif
}
static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
if (sqe->buf_index || sqe->addr || sqe->splice_fd_in)
return -EINVAL;
req->fadvise.offset = READ_ONCE(sqe->off);
req->fadvise.len = READ_ONCE(sqe->len);
req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
return 0;
}
static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_fadvise *fa = &req->fadvise;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK) {
switch (fa->advice) {
case POSIX_FADV_NORMAL:
case POSIX_FADV_RANDOM:
case POSIX_FADV_SEQUENTIAL:
break;
default:
return -EAGAIN;
}
}
ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
if (ret < 0)
req_set_fail(req);
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
const char __user *path;
if (sqe->buf_index || sqe->splice_fd_in)
return -EINVAL;
if (req->flags & REQ_F_FIXED_FILE)
return -EBADF;
req->statx.dfd = READ_ONCE(sqe->fd);
req->statx.mask = READ_ONCE(sqe->len);
path = u64_to_user_ptr(READ_ONCE(sqe->addr));
req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
req->statx.flags = READ_ONCE(sqe->statx_flags);
req->statx.filename = getname_flags(path,
getname_statx_lookup_flags(req->statx.flags),
NULL);
if (IS_ERR(req->statx.filename)) {
int ret = PTR_ERR(req->statx.filename);
req->statx.filename = NULL;
return ret;
}
req->flags |= REQ_F_NEED_CLEANUP;
return 0;
}
static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_statx *ctx = &req->statx;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
ctx->buffer);
io_req_complete(req, ret);
return 0;
}
static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
if (sqe->off || sqe->addr || sqe->len || sqe->rw_flags || sqe->buf_index)
return -EINVAL;
if (req->flags & REQ_F_FIXED_FILE)
return -EBADF;
req->close.fd = READ_ONCE(sqe->fd);
req->close.file_slot = READ_ONCE(sqe->file_index);
if (req->close.file_slot && req->close.fd)
return -EINVAL;
return 0;
}
static int io_close(struct io_kiocb *req, unsigned int issue_flags)
{
struct files_struct *files = current->files;
struct io_close *close = &req->close;
struct fdtable *fdt;
struct file *file;
int ret = -EBADF;
if (req->close.file_slot) {
ret = io_close_fixed(req, issue_flags);
goto err;
}
spin_lock(&files->file_lock);
fdt = files_fdtable(files);
if (close->fd >= fdt->max_fds) {
spin_unlock(&files->file_lock);
goto err;
}
file = rcu_dereference_protected(fdt->fd[close->fd],
lockdep_is_held(&files->file_lock));
if (!file || file->f_op == &io_uring_fops) {
spin_unlock(&files->file_lock);
goto err;
}
/* if the file has a flush method, be safe and punt to async */
if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
spin_unlock(&files->file_lock);
return -EAGAIN;
}
file = __close_fd_get_file(close->fd);
spin_unlock(&files->file_lock);
if (!file)
goto err;
/* No ->flush() or already async, safely close from here */
ret = filp_close(file, current->files);
err:
if (ret < 0)
req_set_fail(req);
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
if (unlikely(sqe->addr || sqe->buf_index || sqe->splice_fd_in))
return -EINVAL;
req->sync.off = READ_ONCE(sqe->off);
req->sync.len = READ_ONCE(sqe->len);
req->sync.flags = READ_ONCE(sqe->sync_range_flags);
return 0;
}
static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
{
int ret;
/* sync_file_range always requires a blocking context */
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
ret = sync_file_range(req->file, req->sync.off, req->sync.len,
req->sync.flags);
io_req_complete(req, ret);
return 0;
}
#if defined(CONFIG_NET)
static int io_shutdown_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
if (unlikely(sqe->off || sqe->addr || sqe->rw_flags ||
sqe->buf_index || sqe->splice_fd_in))
return -EINVAL;
req->shutdown.how = READ_ONCE(sqe->len);
return 0;
}
static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
{
struct socket *sock;
int ret;
if (issue_flags & IO_URING_F_NONBLOCK)
return -EAGAIN;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
ret = __sys_shutdown_sock(sock, req->shutdown.how);
io_req_complete(req, ret);
return 0;
}
static bool io_net_retry(struct socket *sock, int flags)
{
if (!(flags & MSG_WAITALL))
return false;
return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET;
}
static int io_setup_async_msg(struct io_kiocb *req,
struct io_async_msghdr *kmsg)
{
struct io_async_msghdr *async_msg = req->async_data;
if (async_msg)
return -EAGAIN;
if (io_alloc_async_data(req)) {
kfree(kmsg->free_iov);
return -ENOMEM;
}
async_msg = req->async_data;
req->flags |= REQ_F_NEED_CLEANUP;
memcpy(async_msg, kmsg, sizeof(*kmsg));
async_msg->msg.msg_name = &async_msg->addr;
/* if were using fast_iov, set it to the new one */
if (!async_msg->free_iov)
async_msg->msg.msg_iter.iov = async_msg->fast_iov;
return -EAGAIN;
}
static int io_sendmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
iomsg->msg.msg_name = &iomsg->addr;
iomsg->free_iov = iomsg->fast_iov;
return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
req->sr_msg.msg_flags, &iomsg->free_iov);
}
static int io_sendmsg_prep_async(struct io_kiocb *req)
{
int ret;
ret = io_sendmsg_copy_hdr(req, req->async_data);
if (!ret)
req->flags |= REQ_F_NEED_CLEANUP;
return ret;
}
static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_sr_msg *sr = &req->sr_msg;
if (unlikely(sqe->file_index || sqe->addr2))
return -EINVAL;
sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
sr->len = READ_ONCE(sqe->len);
sr->flags = READ_ONCE(sqe->ioprio);
if (sr->flags & ~IORING_RECVSEND_POLL_FIRST)
return -EINVAL;
sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
if (sr->msg_flags & MSG_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
sr->msg_flags |= MSG_CMSG_COMPAT;
#endif
sr->done_io = 0;
return 0;
}
static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_async_msghdr iomsg, *kmsg;
struct io_sr_msg *sr = &req->sr_msg;
struct socket *sock;
unsigned flags;
int min_ret = 0;
int ret;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (req_has_async_data(req)) {
kmsg = req->async_data;
} else {
ret = io_sendmsg_copy_hdr(req, &iomsg);
if (ret)
return ret;
kmsg = &iomsg;
}
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return io_setup_async_msg(req, kmsg);
flags = sr->msg_flags;
if (issue_flags & IO_URING_F_NONBLOCK)
flags |= MSG_DONTWAIT;
if (flags & MSG_WAITALL)
min_ret = iov_iter_count(&kmsg->msg.msg_iter);
ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
if (ret < min_ret) {
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return io_setup_async_msg(req, kmsg);
if (ret == -ERESTARTSYS)
ret = -EINTR;
if (ret > 0 && io_net_retry(sock, flags)) {
sr->done_io += ret;
req->flags |= REQ_F_PARTIAL_IO;
return io_setup_async_msg(req, kmsg);
}
req_set_fail(req);
}
/* fast path, check for non-NULL to avoid function call */
if (kmsg->free_iov)
kfree(kmsg->free_iov);
req->flags &= ~REQ_F_NEED_CLEANUP;
if (ret >= 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int io_send(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = &req->sr_msg;
struct msghdr msg;
struct iovec iov;
struct socket *sock;
unsigned flags;
int min_ret = 0;
int ret;
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return -EAGAIN;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
if (unlikely(ret))
return ret;
msg.msg_name = NULL;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_namelen = 0;
flags = sr->msg_flags;
if (issue_flags & IO_URING_F_NONBLOCK)
flags |= MSG_DONTWAIT;
if (flags & MSG_WAITALL)
min_ret = iov_iter_count(&msg.msg_iter);
msg.msg_flags = flags;
ret = sock_sendmsg(sock, &msg);
if (ret < min_ret) {
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return -EAGAIN;
if (ret == -ERESTARTSYS)
ret = -EINTR;
if (ret > 0 && io_net_retry(sock, flags)) {
sr->len -= ret;
sr->buf += ret;
sr->done_io += ret;
req->flags |= REQ_F_PARTIAL_IO;
return -EAGAIN;
}
req_set_fail(req);
}
if (ret >= 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
struct io_sr_msg *sr = &req->sr_msg;
struct iovec __user *uiov;
size_t iov_len;
int ret;
ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
&iomsg->uaddr, &uiov, &iov_len);
if (ret)
return ret;
if (req->flags & REQ_F_BUFFER_SELECT) {
if (iov_len > 1)
return -EINVAL;
if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
return -EFAULT;
sr->len = iomsg->fast_iov[0].iov_len;
iomsg->free_iov = NULL;
} else {
iomsg->free_iov = iomsg->fast_iov;
ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
&iomsg->free_iov, &iomsg->msg.msg_iter,
false);
if (ret > 0)
ret = 0;
}
return ret;
}
#ifdef CONFIG_COMPAT
static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
struct io_sr_msg *sr = &req->sr_msg;
struct compat_iovec __user *uiov;
compat_uptr_t ptr;
compat_size_t len;
int ret;
ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
&ptr, &len);
if (ret)
return ret;
uiov = compat_ptr(ptr);
if (req->flags & REQ_F_BUFFER_SELECT) {
compat_ssize_t clen;
if (len > 1)
return -EINVAL;
if (!access_ok(uiov, sizeof(*uiov)))
return -EFAULT;
if (__get_user(clen, &uiov->iov_len))
return -EFAULT;
if (clen < 0)
return -EINVAL;
sr->len = clen;
iomsg->free_iov = NULL;
} else {
iomsg->free_iov = iomsg->fast_iov;
ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
UIO_FASTIOV, &iomsg->free_iov,
&iomsg->msg.msg_iter, true);
if (ret < 0)
return ret;
}
return 0;
}
#endif
static int io_recvmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
iomsg->msg.msg_name = &iomsg->addr;
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
return __io_compat_recvmsg_copy_hdr(req, iomsg);
#endif
return __io_recvmsg_copy_hdr(req, iomsg);
}
static int io_recvmsg_prep_async(struct io_kiocb *req)
{
int ret;
ret = io_recvmsg_copy_hdr(req, req->async_data);
if (!ret)
req->flags |= REQ_F_NEED_CLEANUP;
return ret;
}
static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_sr_msg *sr = &req->sr_msg;
if (unlikely(sqe->file_index || sqe->addr2))
return -EINVAL;
sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
sr->len = READ_ONCE(sqe->len);
sr->flags = READ_ONCE(sqe->ioprio);
if (sr->flags & ~IORING_RECVSEND_POLL_FIRST)
return -EINVAL;
sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
if (sr->msg_flags & MSG_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
sr->msg_flags |= MSG_CMSG_COMPAT;
#endif
sr->done_io = 0;
return 0;
}
static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_async_msghdr iomsg, *kmsg;
struct io_sr_msg *sr = &req->sr_msg;
struct socket *sock;
unsigned int cflags;
unsigned flags;
int ret, min_ret = 0;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (req_has_async_data(req)) {
kmsg = req->async_data;
} else {
ret = io_recvmsg_copy_hdr(req, &iomsg);
if (ret)
return ret;
kmsg = &iomsg;
}
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return io_setup_async_msg(req, kmsg);
if (io_do_buffer_select(req)) {
void __user *buf;
buf = io_buffer_select(req, &sr->len, issue_flags);
if (!buf)
return -ENOBUFS;
kmsg->fast_iov[0].iov_base = buf;
kmsg->fast_iov[0].iov_len = sr->len;
iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov, 1,
sr->len);
}
flags = sr->msg_flags;
if (force_nonblock)
flags |= MSG_DONTWAIT;
if (flags & MSG_WAITALL)
min_ret = iov_iter_count(&kmsg->msg.msg_iter);
kmsg->msg.msg_get_inq = 1;
ret = __sys_recvmsg_sock(sock, &kmsg->msg, sr->umsg, kmsg->uaddr, flags);
if (ret < min_ret) {
if (ret == -EAGAIN && force_nonblock)
return io_setup_async_msg(req, kmsg);
if (ret == -ERESTARTSYS)
ret = -EINTR;
if (ret > 0 && io_net_retry(sock, flags)) {
sr->done_io += ret;
req->flags |= REQ_F_PARTIAL_IO;
return io_setup_async_msg(req, kmsg);
}
req_set_fail(req);
} else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
req_set_fail(req);
}
/* fast path, check for non-NULL to avoid function call */
if (kmsg->free_iov)
kfree(kmsg->free_iov);
req->flags &= ~REQ_F_NEED_CLEANUP;
if (ret >= 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
cflags = io_put_kbuf(req, issue_flags);
if (kmsg->msg.msg_inq)
cflags |= IORING_CQE_F_SOCK_NONEMPTY;
__io_req_complete(req, issue_flags, ret, cflags);
return 0;
}
static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = &req->sr_msg;
struct msghdr msg;
struct socket *sock;
struct iovec iov;
unsigned int cflags;
unsigned flags;
int ret, min_ret = 0;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return -EAGAIN;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (io_do_buffer_select(req)) {
void __user *buf;
buf = io_buffer_select(req, &sr->len, issue_flags);
if (!buf)
return -ENOBUFS;
sr->buf = buf;
}
ret = import_single_range(READ, sr->buf, sr->len, &iov, &msg.msg_iter);
if (unlikely(ret))
goto out_free;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_control = NULL;
msg.msg_get_inq = 1;
msg.msg_flags = 0;
msg.msg_controllen = 0;
msg.msg_iocb = NULL;
flags = sr->msg_flags;
if (force_nonblock)
flags |= MSG_DONTWAIT;
if (flags & MSG_WAITALL)
min_ret = iov_iter_count(&msg.msg_iter);
ret = sock_recvmsg(sock, &msg, flags);
if (ret < min_ret) {
if (ret == -EAGAIN && force_nonblock)
return -EAGAIN;
if (ret == -ERESTARTSYS)
ret = -EINTR;
if (ret > 0 && io_net_retry(sock, flags)) {
sr->len -= ret;
sr->buf += ret;
sr->done_io += ret;
req->flags |= REQ_F_PARTIAL_IO;
return -EAGAIN;
}
req_set_fail(req);
} else if ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
out_free:
req_set_fail(req);
}
if (ret >= 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
cflags = io_put_kbuf(req, issue_flags);
if (msg.msg_inq)
cflags |= IORING_CQE_F_SOCK_NONEMPTY;
__io_req_complete(req, issue_flags, ret, cflags);
return 0;
}
static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_accept *accept = &req->accept;
unsigned flags;
if (sqe->len || sqe->buf_index)
return -EINVAL;
accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
accept->flags = READ_ONCE(sqe->accept_flags);
accept->nofile = rlimit(RLIMIT_NOFILE);
flags = READ_ONCE(sqe->ioprio);
if (flags & ~IORING_ACCEPT_MULTISHOT)
return -EINVAL;
accept->file_slot = READ_ONCE(sqe->file_index);
if (accept->file_slot) {
if (accept->flags & SOCK_CLOEXEC)
return -EINVAL;
if (flags & IORING_ACCEPT_MULTISHOT &&
accept->file_slot != IORING_FILE_INDEX_ALLOC)
return -EINVAL;
}
if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return -EINVAL;
if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
if (flags & IORING_ACCEPT_MULTISHOT)
req->flags |= REQ_F_APOLL_MULTISHOT;
return 0;
}
static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_accept *accept = &req->accept;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
bool fixed = !!accept->file_slot;
struct file *file;
int ret, fd;
retry:
if (!fixed) {
fd = __get_unused_fd_flags(accept->flags, accept->nofile);
if (unlikely(fd < 0))
return fd;
}
file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
accept->flags);
if (IS_ERR(file)) {
if (!fixed)
put_unused_fd(fd);
ret = PTR_ERR(file);
if (ret == -EAGAIN && force_nonblock) {
/*
* if it's multishot and polled, we don't need to
* return EAGAIN to arm the poll infra since it
* has already been done
*/
if ((req->flags & IO_APOLL_MULTI_POLLED) ==
IO_APOLL_MULTI_POLLED)
ret = 0;
return ret;
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
} else if (!fixed) {
fd_install(fd, file);
ret = fd;
} else {
ret = io_fixed_fd_install(req, issue_flags, file,
accept->file_slot);
}
if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
if (ret >= 0) {
bool filled;
spin_lock(&ctx->completion_lock);
filled = io_fill_cqe_aux(ctx, req->cqe.user_data, ret,
IORING_CQE_F_MORE);
io_commit_cqring(ctx);
spin_unlock(&ctx->completion_lock);
if (filled) {
io_cqring_ev_posted(ctx);
goto retry;
}
ret = -ECANCELED;
}
return ret;
}
static int io_socket_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_socket *sock = &req->sock;
if (sqe->addr || sqe->rw_flags || sqe->buf_index)
return -EINVAL;
sock->domain = READ_ONCE(sqe->fd);
sock->type = READ_ONCE(sqe->off);
sock->protocol = READ_ONCE(sqe->len);
sock->file_slot = READ_ONCE(sqe->file_index);
sock->nofile = rlimit(RLIMIT_NOFILE);
sock->flags = sock->type & ~SOCK_TYPE_MASK;
if (sock->file_slot && (sock->flags & SOCK_CLOEXEC))
return -EINVAL;
if (sock->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return -EINVAL;
return 0;
}
static int io_socket(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_socket *sock = &req->sock;
bool fixed = !!sock->file_slot;
struct file *file;
int ret, fd;
if (!fixed) {
fd = __get_unused_fd_flags(sock->flags, sock->nofile);
if (unlikely(fd < 0))
return fd;
}
file = __sys_socket_file(sock->domain, sock->type, sock->protocol);
if (IS_ERR(file)) {
if (!fixed)
put_unused_fd(fd);
ret = PTR_ERR(file);
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return -EAGAIN;
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
} else if (!fixed) {
fd_install(fd, file);
ret = fd;
} else {
ret = io_fixed_fd_install(req, issue_flags, file,
sock->file_slot);
}
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int io_connect_prep_async(struct io_kiocb *req)
{
struct io_async_connect *io = req->async_data;
struct io_connect *conn = &req->connect;
return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
}
static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_connect *conn = &req->connect;
if (sqe->len || sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in)
return -EINVAL;
conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
conn->addr_len = READ_ONCE(sqe->addr2);
return 0;
}
static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_async_connect __io, *io;
unsigned file_flags;
int ret;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
if (req_has_async_data(req)) {
io = req->async_data;
} else {
ret = move_addr_to_kernel(req->connect.addr,
req->connect.addr_len,
&__io.address);
if (ret)
goto out;
io = &__io;
}
file_flags = force_nonblock ? O_NONBLOCK : 0;
ret = __sys_connect_file(req->file, &io->address,
req->connect.addr_len, file_flags);
if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
if (req_has_async_data(req))
return -EAGAIN;
if (io_alloc_async_data(req)) {
ret = -ENOMEM;
goto out;
}
memcpy(req->async_data, &__io, sizeof(__io));
return -EAGAIN;
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
out:
if (ret < 0)
req_set_fail(req);
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
#else /* !CONFIG_NET */
#define IO_NETOP_FN(op) \
static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
{ \
return -EOPNOTSUPP; \
}
#define IO_NETOP_PREP(op) \
IO_NETOP_FN(op) \
static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
{ \
return -EOPNOTSUPP; \
} \
#define IO_NETOP_PREP_ASYNC(op) \
IO_NETOP_PREP(op) \
static int io_##op##_prep_async(struct io_kiocb *req) \
{ \
return -EOPNOTSUPP; \
}
IO_NETOP_PREP_ASYNC(sendmsg);
IO_NETOP_PREP_ASYNC(recvmsg);
IO_NETOP_PREP_ASYNC(connect);
IO_NETOP_PREP(accept);
IO_NETOP_PREP(socket);
IO_NETOP_PREP(shutdown);
IO_NETOP_FN(send);
IO_NETOP_FN(recv);
#endif /* CONFIG_NET */
struct io_poll_table {
struct poll_table_struct pt;
struct io_kiocb *req;
int nr_entries;
int error;
};
#define IO_POLL_CANCEL_FLAG BIT(31)
#define IO_POLL_REF_MASK GENMASK(30, 0)
/*
* If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
* bump it and acquire ownership. It's disallowed to modify requests while not
* owning it, that prevents from races for enqueueing task_work's and b/w
* arming poll and wakeups.
*/
static inline bool io_poll_get_ownership(struct io_kiocb *req)
{
return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
}
static void io_poll_mark_cancelled(struct io_kiocb *req)
{
atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
}
static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
{
/* pure poll stashes this in ->async_data, poll driven retry elsewhere */
if (req->opcode == IORING_OP_POLL_ADD)
return req->async_data;
return req->apoll->double_poll;
}
static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
{
if (req->opcode == IORING_OP_POLL_ADD)
return &req->poll;
return &req->apoll->poll;
}
static void io_poll_req_insert(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
struct hlist_head *list;
list = &ctx->cancel_hash[hash_long(req->cqe.user_data, ctx->cancel_hash_bits)];
hlist_add_head(&req->hash_node, list);
}
static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
wait_queue_func_t wake_func)
{
poll->head = NULL;
#define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
/* mask in events that we always want/need */
poll->events = events | IO_POLL_UNMASK;
INIT_LIST_HEAD(&poll->wait.entry);
init_waitqueue_func_entry(&poll->wait, wake_func);
}
static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
{
struct wait_queue_head *head = smp_load_acquire(&poll->head);
if (head) {
spin_lock_irq(&head->lock);
list_del_init(&poll->wait.entry);
poll->head = NULL;
spin_unlock_irq(&head->lock);
}
}
static void io_poll_remove_entries(struct io_kiocb *req)
{
/*
* Nothing to do if neither of those flags are set. Avoid dipping
* into the poll/apoll/double cachelines if we can.
*/
if (!(req->flags & (REQ_F_SINGLE_POLL | REQ_F_DOUBLE_POLL)))
return;
/*
* While we hold the waitqueue lock and the waitqueue is nonempty,
* wake_up_pollfree() will wait for us. However, taking the waitqueue
* lock in the first place can race with the waitqueue being freed.
*
* We solve this as eventpoll does: by taking advantage of the fact that
* all users of wake_up_pollfree() will RCU-delay the actual free. If
* we enter rcu_read_lock() and see that the pointer to the queue is
* non-NULL, we can then lock it without the memory being freed out from
* under us.
*
* Keep holding rcu_read_lock() as long as we hold the queue lock, in
* case the caller deletes the entry from the queue, leaving it empty.
* In that case, only RCU prevents the queue memory from being freed.
*/
rcu_read_lock();
if (req->flags & REQ_F_SINGLE_POLL)
io_poll_remove_entry(io_poll_get_single(req));
if (req->flags & REQ_F_DOUBLE_POLL)
io_poll_remove_entry(io_poll_get_double(req));
rcu_read_unlock();
}
static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags);
/*
* All poll tw should go through this. Checks for poll events, manages
* references, does rewait, etc.
*
* Returns a negative error on failure. >0 when no action require, which is
* either spurious wakeup or multishot CQE is served. 0 when it's done with
* the request, then the mask is stored in req->cqe.res.
*/
static int io_poll_check_events(struct io_kiocb *req, bool *locked)
{
struct io_ring_ctx *ctx = req->ctx;
int v, ret;
/* req->task == current here, checking PF_EXITING is safe */
if (unlikely(req->task->flags & PF_EXITING))
return -ECANCELED;
do {
v = atomic_read(&req->poll_refs);
/* tw handler should be the owner, and so have some references */
if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
return 0;
if (v & IO_POLL_CANCEL_FLAG)
return -ECANCELED;
if (!req->cqe.res) {
struct poll_table_struct pt = { ._key = req->apoll_events };
req->cqe.res = vfs_poll(req->file, &pt) & req->apoll_events;
}
if ((unlikely(!req->cqe.res)))
continue;
if (req->apoll_events & EPOLLONESHOT)
return 0;
/* multishot, just fill a CQE and proceed */
if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
__poll_t mask = mangle_poll(req->cqe.res &
req->apoll_events);
bool filled;
spin_lock(&ctx->completion_lock);
filled = io_fill_cqe_aux(ctx, req->cqe.user_data,
mask, IORING_CQE_F_MORE);
io_commit_cqring(ctx);
spin_unlock(&ctx->completion_lock);
if (filled) {
io_cqring_ev_posted(ctx);
continue;
}
return -ECANCELED;
}
io_tw_lock(req->ctx, locked);
if (unlikely(req->task->flags & PF_EXITING))
return -EFAULT;
ret = io_issue_sqe(req,
IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
if (ret)
return ret;
/*
* Release all references, retry if someone tried to restart
* task_work while we were executing it.
*/
} while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs));
return 1;
}
static void io_poll_task_func(struct io_kiocb *req, bool *locked)
{
struct io_ring_ctx *ctx = req->ctx;
int ret;
ret = io_poll_check_events(req, locked);
if (ret > 0)
return;
if (!ret) {
req->cqe.res = mangle_poll(req->cqe.res & req->poll.events);
} else {
req->cqe.res = ret;
req_set_fail(req);
}
io_poll_remove_entries(req);
spin_lock(&ctx->completion_lock);
hash_del(&req->hash_node);
__io_req_complete_post(req, req->cqe.res, 0);
io_commit_cqring(ctx);
spin_unlock(&ctx->completion_lock);
io_cqring_ev_posted(ctx);
}
static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
{
struct io_ring_ctx *ctx = req->ctx;
int ret;
ret = io_poll_check_events(req, locked);
if (ret > 0)
return;
io_poll_remove_entries(req);
spin_lock(&ctx->completion_lock);
hash_del(&req->hash_node);
spin_unlock(&ctx->completion_lock);
if (!ret)
io_req_task_submit(req, locked);
else
io_req_complete_failed(req, ret);
}
static void __io_poll_execute(struct io_kiocb *req, int mask,
__poll_t __maybe_unused events)
{
req->cqe.res = mask;
/*
* This is useful for poll that is armed on behalf of another
* request, and where the wakeup path could be on a different
* CPU. We want to avoid pulling in req->apoll->events for that
* case.
*/
if (req->opcode == IORING_OP_POLL_ADD)
req->io_task_work.func = io_poll_task_func;
else
req->io_task_work.func = io_apoll_task_func;
trace_io_uring_task_add(req->ctx, req, req->cqe.user_data, req->opcode, mask);
io_req_task_work_add(req);
}
static inline void io_poll_execute(struct io_kiocb *req, int res,
__poll_t events)
{
if (io_poll_get_ownership(req))
__io_poll_execute(req, res, events);
}
static void io_poll_cancel_req(struct io_kiocb *req)
{
io_poll_mark_cancelled(req);
/* kick tw, which should complete the request */
io_poll_execute(req, 0, 0);
}
#define wqe_to_req(wait) ((void *)((unsigned long) (wait)->private & ~1))
#define wqe_is_double(wait) ((unsigned long) (wait)->private & 1)
#define IO_ASYNC_POLL_COMMON (EPOLLONESHOT | EPOLLPRI)
static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
void *key)
{
struct io_kiocb *req = wqe_to_req(wait);
struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
wait);
__poll_t mask = key_to_poll(key);
if (unlikely(mask & POLLFREE)) {
io_poll_mark_cancelled(req);
/* we have to kick tw in case it's not already */
io_poll_execute(req, 0, poll->events);
/*
* If the waitqueue is being freed early but someone is already
* holds ownership over it, we have to tear down the request as
* best we can. That means immediately removing the request from
* its waitqueue and preventing all further accesses to the
* waitqueue via the request.
*/
list_del_init(&poll->wait.entry);
/*
* Careful: this *must* be the last step, since as soon
* as req->head is NULL'ed out, the request can be
* completed and freed, since aio_poll_complete_work()
* will no longer need to take the waitqueue lock.
*/
smp_store_release(&poll->head, NULL);
return 1;
}
/* for instances that support it check for an event match first */
if (mask && !(mask & (poll->events & ~IO_ASYNC_POLL_COMMON)))
return 0;
if (io_poll_get_ownership(req)) {
/* optional, saves extra locking for removal in tw handler */
if (mask && poll->events & EPOLLONESHOT) {
list_del_init(&poll->wait.entry);
poll->head = NULL;
if (wqe_is_double(wait))
req->flags &= ~REQ_F_DOUBLE_POLL;
else
req->flags &= ~REQ_F_SINGLE_POLL;
}
__io_poll_execute(req, mask, poll->events);
}
return 1;
}
static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
struct wait_queue_head *head,
struct io_poll_iocb **poll_ptr)
{
struct io_kiocb *req = pt->req;
unsigned long wqe_private = (unsigned long) req;
/*
* The file being polled uses multiple waitqueues for poll handling
* (e.g. one for read, one for write). Setup a separate io_poll_iocb
* if this happens.
*/
if (unlikely(pt->nr_entries)) {
struct io_poll_iocb *first = poll;
/* double add on the same waitqueue head, ignore */
if (first->head == head)
return;
/* already have a 2nd entry, fail a third attempt */
if (*poll_ptr) {
if ((*poll_ptr)->head == head)
return;
pt->error = -EINVAL;
return;
}
poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
if (!poll) {
pt->error = -ENOMEM;
return;
}
/* mark as double wq entry */
wqe_private |= 1;
req->flags |= REQ_F_DOUBLE_POLL;
io_init_poll_iocb(poll, first->events, first->wait.func);
*poll_ptr = poll;
if (req->opcode == IORING_OP_POLL_ADD)
req->flags |= REQ_F_ASYNC_DATA;
}
req->flags |= REQ_F_SINGLE_POLL;
pt->nr_entries++;
poll->head = head;
poll->wait.private = (void *) wqe_private;
if (poll->events & EPOLLEXCLUSIVE)
add_wait_queue_exclusive(head, &poll->wait);
else
add_wait_queue(head, &poll->wait);
}
static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
struct poll_table_struct *p)
{
struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
__io_queue_proc(&pt->req->poll, pt, head,
(struct io_poll_iocb **) &pt->req->async_data);
}
static int __io_arm_poll_handler(struct io_kiocb *req,
struct io_poll_iocb *poll,
struct io_poll_table *ipt, __poll_t mask)
{
struct io_ring_ctx *ctx = req->ctx;
int v;
INIT_HLIST_NODE(&req->hash_node);
req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
io_init_poll_iocb(poll, mask, io_poll_wake);
poll->file = req->file;
req->apoll_events = poll->events;
ipt->pt._key = mask;
ipt->req = req;
ipt->error = 0;
ipt->nr_entries = 0;
/*
* Take the ownership to delay any tw execution up until we're done
* with poll arming. see io_poll_get_ownership().
*/
atomic_set(&req->poll_refs, 1);
mask = vfs_poll(req->file, &ipt->pt) & poll->events;
if (mask && (poll->events & EPOLLONESHOT)) {
io_poll_remove_entries(req);
/* no one else has access to the req, forget about the ref */
return mask;
}
if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
io_poll_remove_entries(req);
if (!ipt->error)
ipt->error = -EINVAL;
return 0;
}
spin_lock(&ctx->completion_lock);
io_poll_req_insert(req);
spin_unlock(&ctx->completion_lock);
if (mask) {
/* can't multishot if failed, just queue the event we've got */
if (unlikely(ipt->error || !ipt->nr_entries)) {
poll->events |= EPOLLONESHOT;
req->apoll_events |= EPOLLONESHOT;
ipt->error = 0;
}
__io_poll_execute(req, mask, poll->events);
return 0;
}
/*
* Release ownership. If someone tried to queue a tw while it was
* locked, kick it off for them.
*/
v = atomic_dec_return(&req->poll_refs);
if (unlikely(v & IO_POLL_REF_MASK))
__io_poll_execute(req, 0, poll->events);
return 0;
}
static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
struct poll_table_struct *p)
{
struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
struct async_poll *apoll = pt->req->apoll;
__io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
}
enum {
IO_APOLL_OK,
IO_APOLL_ABORTED,
IO_APOLL_READY
};
static int io_arm_poll_handler(struct io_kiocb *req, unsigned issue_flags)
{
const struct io_op_def *def = &io_op_defs[req->opcode];
struct io_ring_ctx *ctx = req->ctx;
struct async_poll *apoll;
struct io_poll_table ipt;
__poll_t mask = POLLPRI | POLLERR;
int ret;
if (!def->pollin && !def->pollout)
return IO_APOLL_ABORTED;
if (!file_can_poll(req->file))
return IO_APOLL_ABORTED;
if ((req->flags & (REQ_F_POLLED|REQ_F_PARTIAL_IO)) == REQ_F_POLLED)
return IO_APOLL_ABORTED;
if (!(req->flags & REQ_F_APOLL_MULTISHOT))
mask |= EPOLLONESHOT;
if (def->pollin) {
mask |= EPOLLIN | EPOLLRDNORM;
/* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
if ((req->opcode == IORING_OP_RECVMSG) &&
(req->sr_msg.msg_flags & MSG_ERRQUEUE))
mask &= ~EPOLLIN;
} else {
mask |= EPOLLOUT | EPOLLWRNORM;
}
if (def->poll_exclusive)
mask |= EPOLLEXCLUSIVE;
if (req->flags & REQ_F_POLLED) {
apoll = req->apoll;
kfree(apoll->double_poll);
} else if (!(issue_flags & IO_URING_F_UNLOCKED) &&
!list_empty(&ctx->apoll_cache)) {
apoll = list_first_entry(&ctx->apoll_cache, struct async_poll,
poll.wait.entry);
list_del_init(&apoll->poll.wait.entry);
} else {
apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
if (unlikely(!apoll))
return IO_APOLL_ABORTED;
}
apoll->double_poll = NULL;
req->apoll = apoll;
req->flags |= REQ_F_POLLED;
ipt.pt._qproc = io_async_queue_proc;
io_kbuf_recycle(req, issue_flags);
ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
if (ret || ipt.error)
return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
trace_io_uring_poll_arm(ctx, req, req->cqe.user_data, req->opcode,
mask, apoll->poll.events);
return IO_APOLL_OK;
}
/*
* Returns true if we found and killed one or more poll requests
*/
static __cold bool io_poll_remove_all(struct io_ring_ctx *ctx,
struct task_struct *tsk, bool cancel_all)
{
struct hlist_node *tmp;
struct io_kiocb *req;
bool found = false;
int i;
spin_lock(&ctx->completion_lock);
for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
struct hlist_head *list;
list = &ctx->cancel_hash[i];
hlist_for_each_entry_safe(req, tmp, list, hash_node) {
if (io_match_task_safe(req, tsk, cancel_all)) {
hlist_del_init(&req->hash_node);
io_poll_cancel_req(req);
found = true;
}
}
}
spin_unlock(&ctx->completion_lock);
return found;
}
static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, bool poll_only,
struct io_cancel_data *cd)
__must_hold(&ctx->completion_lock)
{
struct hlist_head *list;
struct io_kiocb *req;
list = &ctx->cancel_hash[hash_long(cd->data, ctx->cancel_hash_bits)];
hlist_for_each_entry(req, list, hash_node) {
if (cd->data != req->cqe.user_data)
continue;
if (poll_only && req->opcode != IORING_OP_POLL_ADD)
continue;
if (cd->flags & IORING_ASYNC_CANCEL_ALL) {
if (cd->seq == req->work.cancel_seq)
continue;
req->work.cancel_seq = cd->seq;
}
return req;
}
return NULL;
}
static struct io_kiocb *io_poll_file_find(struct io_ring_ctx *ctx,
struct io_cancel_data *cd)
__must_hold(&ctx->completion_lock)
{
struct io_kiocb *req;
int i;
for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
struct hlist_head *list;
list = &ctx->cancel_hash[i];
hlist_for_each_entry(req, list, hash_node) {
if (!(cd->flags & IORING_ASYNC_CANCEL_ANY) &&
req->file != cd->file)
continue;
if (cd->seq == req->work.cancel_seq)
continue;
req->work.cancel_seq = cd->seq;
return req;
}
}
return NULL;
}
static bool io_poll_disarm(struct io_kiocb *req)
__must_hold(&ctx->completion_lock)
{
if (!io_poll_get_ownership(req))
return false;
io_poll_remove_entries(req);
hash_del(&req->hash_node);
return true;
}
static int io_poll_cancel(struct io_ring_ctx *ctx, struct io_cancel_data *cd)
__must_hold(&ctx->completion_lock)
{
struct io_kiocb *req;
if (cd->flags & (IORING_ASYNC_CANCEL_FD|IORING_ASYNC_CANCEL_ANY))
req = io_poll_file_find(ctx, cd);
else
req = io_poll_find(ctx, false, cd);
if (!req)
return -ENOENT;
io_poll_cancel_req(req);
return 0;
}
static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
unsigned int flags)
{
u32 events;
events = READ_ONCE(sqe->poll32_events);
#ifdef __BIG_ENDIAN
events = swahw32(events);
#endif
if (!(flags & IORING_POLL_ADD_MULTI))
events |= EPOLLONESHOT;
return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
}
static int io_poll_remove_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_poll_update *upd = &req->poll_update;
u32 flags;
if (sqe->buf_index || sqe->splice_fd_in)
return -EINVAL;
flags = READ_ONCE(sqe->len);
if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
IORING_POLL_ADD_MULTI))
return -EINVAL;
/* meaningless without update */
if (flags == IORING_POLL_ADD_MULTI)
return -EINVAL;
upd->old_user_data = READ_ONCE(sqe->addr);
upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
upd->new_user_data = READ_ONCE(sqe->off);
if (!upd->update_user_data && upd->new_user_data)
return -EINVAL;
if (upd->update_events)
upd->events = io_poll_parse_events(sqe, flags);
else if (sqe->poll32_events)
return -EINVAL;
return 0;
}
static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_poll_iocb *poll = &req->poll;
u32 flags;
if (sqe->buf_index || sqe->off || sqe->addr)
return -EINVAL;
flags = READ_ONCE(sqe->len);
if (flags & ~IORING_POLL_ADD_MULTI)
return -EINVAL;
if ((flags & IORING_POLL_ADD_MULTI) && (req->flags & REQ_F_CQE_SKIP))
return -EINVAL;
io_req_set_refcount(req);
poll->events = io_poll_parse_events(sqe, flags);
return 0;
}
static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_poll_iocb *poll = &req->poll;
struct io_poll_table ipt;
int ret;
ipt.pt._qproc = io_poll_queue_proc;
ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
if (!ret && ipt.error)
req_set_fail(req);
ret = ret ?: ipt.error;
if (ret)
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int io_poll_remove(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_cancel_data cd = { .data = req->poll_update.old_user_data, };
struct io_ring_ctx *ctx = req->ctx;
struct io_kiocb *preq;
int ret2, ret = 0;
bool locked;
spin_lock(&ctx->completion_lock);
preq = io_poll_find(ctx, true, &cd);
if (!preq || !io_poll_disarm(preq)) {
spin_unlock(&ctx->completion_lock);
ret = preq ? -EALREADY : -ENOENT;
goto out;
}
spin_unlock(&ctx->completion_lock);
if (req->poll_update.update_events || req->poll_update.update_user_data) {
/* only mask one event flags, keep behavior flags */
if (req->poll_update.update_events) {
preq->poll.events &= ~0xffff;
preq->poll.events |= req->poll_update.events & 0xffff;
preq->poll.events |= IO_POLL_UNMASK;
}
if (req->poll_update.update_user_data)
preq->cqe.user_data = req->poll_update.new_user_data;
ret2 = io_poll_add(preq, issue_flags);
/* successfully updated, don't complete poll request */
if (!ret2)
goto out;
}
req_set_fail(preq);
preq->cqe.res = -ECANCELED;
locked = !(issue_flags & IO_URING_F_UNLOCKED);
io_req_task_complete(preq, &locked);
out:
if (ret < 0)
req_set_fail(req);
/* complete update request, we're done with it */
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
{
struct io_timeout_data *data = container_of(timer,
struct io_timeout_data, timer);
struct io_kiocb *req = data->req;
struct io_ring_ctx *ctx = req->ctx;
unsigned long flags;
spin_lock_irqsave(&ctx->timeout_lock, flags);
list_del_init(&req->timeout.list);
atomic_set(&req->ctx->cq_timeouts,
atomic_read(&req->ctx->cq_timeouts) + 1);
spin_unlock_irqrestore(&ctx->timeout_lock, flags);
if (!(data->flags & IORING_TIMEOUT_ETIME_SUCCESS))
req_set_fail(req);
req->cqe.res = -ETIME;
req->io_task_work.func = io_req_task_complete;
io_req_task_work_add(req);
return HRTIMER_NORESTART;
}
static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
struct io_cancel_data *cd)
__must_hold(&ctx->timeout_lock)
{
struct io_timeout_data *io;
struct io_kiocb *req;
bool found = false;
list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
if (!(cd->flags & IORING_ASYNC_CANCEL_ANY) &&
cd->data != req->cqe.user_data)
continue;
if (cd->flags & (IORING_ASYNC_CANCEL_ALL|IORING_ASYNC_CANCEL_ANY)) {
if (cd->seq == req->work.cancel_seq)
continue;
req->work.cancel_seq = cd->seq;
}
found = true;
break;
}
if (!found)
return ERR_PTR(-ENOENT);
io = req->async_data;
if (hrtimer_try_to_cancel(&io->timer) == -1)
return ERR_PTR(-EALREADY);
list_del_init(&req->timeout.list);
return req;
}
static int io_timeout_cancel(struct io_ring_ctx *ctx, struct io_cancel_data *cd)
__must_hold(&ctx->completion_lock)
{
struct io_kiocb *req;
spin_lock_irq(&ctx->timeout_lock);
req = io_timeout_extract(ctx, cd);
spin_unlock_irq(&ctx->timeout_lock);
if (IS_ERR(req))
return PTR_ERR(req);
io_req_task_queue_fail(req, -ECANCELED);
return 0;
}
static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
{
switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
case IORING_TIMEOUT_BOOTTIME:
return CLOCK_BOOTTIME;
case IORING_TIMEOUT_REALTIME:
return CLOCK_REALTIME;
default:
/* can't happen, vetted at prep time */
WARN_ON_ONCE(1);
fallthrough;
case 0:
return CLOCK_MONOTONIC;
}
}
static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
struct timespec64 *ts, enum hrtimer_mode mode)
__must_hold(&ctx->timeout_lock)
{
struct io_timeout_data *io;
struct io_kiocb *req;
bool found = false;
list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
found = user_data == req->cqe.user_data;
if (found)
break;
}
if (!found)
return -ENOENT;
io = req->async_data;
if (hrtimer_try_to_cancel(&io->timer) == -1)
return -EALREADY;
hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
io->timer.function = io_link_timeout_fn;
hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
return 0;
}
static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
struct timespec64 *ts, enum hrtimer_mode mode)
__must_hold(&ctx->timeout_lock)
{
struct io_cancel_data cd = { .data = user_data, };
struct io_kiocb *req = io_timeout_extract(ctx, &cd);
struct io_timeout_data *data;
if (IS_ERR(req))
return PTR_ERR(req);
req->timeout.off = 0; /* noseq */
data = req->async_data;
list_add_tail(&req->timeout.list, &ctx->timeout_list);
hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
data->timer.function = io_timeout_fn;
hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
return 0;
}
static int io_timeout_remove_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_timeout_rem *tr = &req->timeout_rem;
if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
return -EINVAL;
if (sqe->buf_index || sqe->len || sqe->splice_fd_in)
return -EINVAL;
tr->ltimeout = false;
tr->addr = READ_ONCE(sqe->addr);
tr->flags = READ_ONCE(sqe->timeout_flags);
if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
return -EINVAL;
if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
tr->ltimeout = true;
if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
return -EINVAL;
if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
return -EFAULT;
if (tr->ts.tv_sec < 0 || tr->ts.tv_nsec < 0)
return -EINVAL;
} else if (tr->flags) {
/* timeout removal doesn't support flags */
return -EINVAL;
}
return 0;
}
static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
{
return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
: HRTIMER_MODE_REL;
}
/*
* Remove or update an existing timeout command
*/
static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_timeout_rem *tr = &req->timeout_rem;
struct io_ring_ctx *ctx = req->ctx;
int ret;
if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
struct io_cancel_data cd = { .data = tr->addr, };
spin_lock(&ctx->completion_lock);
ret = io_timeout_cancel(ctx, &cd);
spin_unlock(&ctx->completion_lock);
} else {
enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
spin_lock_irq(&ctx->timeout_lock);
if (tr->ltimeout)
ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
else
ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
spin_unlock_irq(&ctx->timeout_lock);
}
if (ret < 0)
req_set_fail(req);
io_req_complete_post(req, ret, 0);
return 0;
}
static int __io_timeout_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe,
bool is_timeout_link)
{
struct io_timeout_data *data;
unsigned flags;
u32 off = READ_ONCE(sqe->off);
if (sqe->buf_index || sqe->len != 1 || sqe->splice_fd_in)
return -EINVAL;
if (off && is_timeout_link)
return -EINVAL;
flags = READ_ONCE(sqe->timeout_flags);
if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK |
IORING_TIMEOUT_ETIME_SUCCESS))
return -EINVAL;
/* more than one clock specified is invalid, obviously */
if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
return -EINVAL;
INIT_LIST_HEAD(&req->timeout.list);
req->timeout.off = off;
if (unlikely(off && !req->ctx->off_timeout_used))
req->ctx->off_timeout_used = true;
if (WARN_ON_ONCE(req_has_async_data(req)))
return -EFAULT;
if (io_alloc_async_data(req))
return -ENOMEM;
data = req->async_data;
data->req = req;
data->flags = flags;
if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
return -EFAULT;
if (data->ts.tv_sec < 0 || data->ts.tv_nsec < 0)
return -EINVAL;
INIT_LIST_HEAD(&req->timeout.list);
data->mode = io_translate_timeout_mode(flags);
hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
if (is_timeout_link) {
struct io_submit_link *link = &req->ctx->submit_state.link;
if (!link->head)
return -EINVAL;
if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
return -EINVAL;
req->timeout.head = link->last;
link->last->flags |= REQ_F_ARM_LTIMEOUT;
}
return 0;
}
static int io_timeout_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
return __io_timeout_prep(req, sqe, false);
}
static int io_link_timeout_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
return __io_timeout_prep(req, sqe, true);
}
static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_timeout_data *data = req->async_data;
struct list_head *entry;
u32 tail, off = req->timeout.off;
spin_lock_irq(&ctx->timeout_lock);
/*
* sqe->off holds how many events that need to occur for this
* timeout event to be satisfied. If it isn't set, then this is
* a pure timeout request, sequence isn't used.
*/
if (io_is_timeout_noseq(req)) {
entry = ctx->timeout_list.prev;
goto add;
}
tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
req->timeout.target_seq = tail + off;
/* Update the last seq here in case io_flush_timeouts() hasn't.
* This is safe because ->completion_lock is held, and submissions
* and completions are never mixed in the same ->completion_lock section.
*/
ctx->cq_last_tm_flush = tail;
/*
* Insertion sort, ensuring the first entry in the list is always
* the one we need first.
*/
list_for_each_prev(entry, &ctx->timeout_list) {
struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
timeout.list);
if (io_is_timeout_noseq(nxt))
continue;
/* nxt.seq is behind @tail, otherwise would've been completed */
if (off >= nxt->timeout.target_seq - tail)
break;
}
add:
list_add(&req->timeout.list, entry);
data->timer.function = io_timeout_fn;
hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
spin_unlock_irq(&ctx->timeout_lock);
return 0;
}
static bool io_cancel_cb(struct io_wq_work *work, void *data)
{
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
struct io_cancel_data *cd = data;
if (req->ctx != cd->ctx)
return false;
if (cd->flags & IORING_ASYNC_CANCEL_ANY) {
;
} else if (cd->flags & IORING_ASYNC_CANCEL_FD) {
if (req->file != cd->file)
return false;
} else {
if (req->cqe.user_data != cd->data)
return false;
}
if (cd->flags & (IORING_ASYNC_CANCEL_ALL|IORING_ASYNC_CANCEL_ANY)) {
if (cd->seq == req->work.cancel_seq)
return false;
req->work.cancel_seq = cd->seq;
}
return true;
}
static int io_async_cancel_one(struct io_uring_task *tctx,
struct io_cancel_data *cd)
{
enum io_wq_cancel cancel_ret;
int ret = 0;
bool all;
if (!tctx || !tctx->io_wq)
return -ENOENT;
all = cd->flags & (IORING_ASYNC_CANCEL_ALL|IORING_ASYNC_CANCEL_ANY);
cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, cd, all);
switch (cancel_ret) {
case IO_WQ_CANCEL_OK:
ret = 0;
break;
case IO_WQ_CANCEL_RUNNING:
ret = -EALREADY;
break;
case IO_WQ_CANCEL_NOTFOUND:
ret = -ENOENT;
break;
}
return ret;
}
static int io_try_cancel(struct io_kiocb *req, struct io_cancel_data *cd)
{
struct io_ring_ctx *ctx = req->ctx;
int ret;
WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
ret = io_async_cancel_one(req->task->io_uring, cd);
/*
* Fall-through even for -EALREADY, as we may have poll armed
* that need unarming.
*/
if (!ret)
return 0;
spin_lock(&ctx->completion_lock);
ret = io_poll_cancel(ctx, cd);
if (ret != -ENOENT)
goto out;
if (!(cd->flags & IORING_ASYNC_CANCEL_FD))
ret = io_timeout_cancel(ctx, cd);
out:
spin_unlock(&ctx->completion_lock);
return ret;
}
#define CANCEL_FLAGS (IORING_ASYNC_CANCEL_ALL | IORING_ASYNC_CANCEL_FD | \
IORING_ASYNC_CANCEL_ANY)
static int io_async_cancel_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
if (unlikely(req->flags & REQ_F_BUFFER_SELECT))
return -EINVAL;
if (sqe->off || sqe->len || sqe->splice_fd_in)
return -EINVAL;
req->cancel.addr = READ_ONCE(sqe->addr);
req->cancel.flags = READ_ONCE(sqe->cancel_flags);
if (req->cancel.flags & ~CANCEL_FLAGS)
return -EINVAL;
if (req->cancel.flags & IORING_ASYNC_CANCEL_FD) {
if (req->cancel.flags & IORING_ASYNC_CANCEL_ANY)
return -EINVAL;
req->cancel.fd = READ_ONCE(sqe->fd);
}
return 0;
}
static int __io_async_cancel(struct io_cancel_data *cd, struct io_kiocb *req,
unsigned int issue_flags)
{
bool all = cd->flags & (IORING_ASYNC_CANCEL_ALL|IORING_ASYNC_CANCEL_ANY);
struct io_ring_ctx *ctx = cd->ctx;
struct io_tctx_node *node;
int ret, nr = 0;
do {
ret = io_try_cancel(req, cd);
if (ret == -ENOENT)
break;
if (!all)
return ret;
nr++;
} while (1);
/* slow path, try all io-wq's */
io_ring_submit_lock(ctx, issue_flags);
ret = -ENOENT;
list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
struct io_uring_task *tctx = node->task->io_uring;
ret = io_async_cancel_one(tctx, cd);
if (ret != -ENOENT) {
if (!all)
break;
nr++;
}
}
io_ring_submit_unlock(ctx, issue_flags);
return all ? nr : ret;
}
static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_cancel_data cd = {
.ctx = req->ctx,
.data = req->cancel.addr,
.flags = req->cancel.flags,
.seq = atomic_inc_return(&req->ctx->cancel_seq),
};
int ret;
if (cd.flags & IORING_ASYNC_CANCEL_FD) {
if (req->flags & REQ_F_FIXED_FILE)
req->file = io_file_get_fixed(req, req->cancel.fd,
issue_flags);
else
req->file = io_file_get_normal(req, req->cancel.fd);
if (!req->file) {
ret = -EBADF;
goto done;
}
cd.file = req->file;
}
ret = __io_async_cancel(&cd, req, issue_flags);
done:
if (ret < 0)
req_set_fail(req);
io_req_complete_post(req, ret, 0);
return 0;
}
static int io_files_update_prep(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
return -EINVAL;
if (sqe->rw_flags || sqe->splice_fd_in)
return -EINVAL;
req->rsrc_update.offset = READ_ONCE(sqe->off);
req->rsrc_update.nr_args = READ_ONCE(sqe->len);
if (!req->rsrc_update.nr_args)
return -EINVAL;
req->rsrc_update.arg = READ_ONCE(sqe->addr);
return 0;
}
static int io_files_update_with_index_alloc(struct io_kiocb *req,
unsigned int issue_flags)
{
__s32 __user *fds = u64_to_user_ptr(req->rsrc_update.arg);
unsigned int done;
struct file *file;
int ret, fd;
for (done = 0; done < req->rsrc_update.nr_args; done++) {
if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
ret = -EFAULT;
break;
}
file = fget(fd);
if (!file) {
ret = -EBADF;
break;
}
ret = io_fixed_fd_install(req, issue_flags, file,
IORING_FILE_INDEX_ALLOC);
if (ret < 0)
break;
if (copy_to_user(&fds[done], &ret, sizeof(ret))) {
__io_close_fixed(req, issue_flags, ret);
ret = -EFAULT;
break;
}
}
if (done)
return done;
return ret;
}
static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_uring_rsrc_update2 up;
int ret;
up.offset = req->rsrc_update.offset;
up.data = req->rsrc_update.arg;
up.nr = 0;
up.tags = 0;
up.resv = 0;
up.resv2 = 0;
if (req->rsrc_update.offset == IORING_FILE_INDEX_ALLOC) {
ret = io_files_update_with_index_alloc(req, issue_flags);
} else {
io_ring_submit_lock(ctx, issue_flags);
ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
&up, req->rsrc_update.nr_args);
io_ring_submit_unlock(ctx, issue_flags);
}
if (ret < 0)
req_set_fail(req);
__io_req_complete(req, issue_flags, ret, 0);
return 0;
}
static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
switch (req->opcode) {
case IORING_OP_NOP:
return io_nop_prep(req, sqe);
case IORING_OP_READV:
case IORING_OP_READ_FIXED:
case IORING_OP_READ:
case IORING_OP_WRITEV:
case IORING_OP_WRITE_FIXED:
case IORING_OP_WRITE:
return io_prep_rw(req, sqe);
case IORING_OP_POLL_ADD:
return io_poll_add_prep(req, sqe);
case IORING_OP_POLL_REMOVE:
return io_poll_remove_prep(req, sqe);
case IORING_OP_FSYNC:
return io_fsync_prep(req, sqe);
case IORING_OP_SYNC_FILE_RANGE:
return io_sfr_prep(req, sqe);
case IORING_OP_SENDMSG:
case IORING_OP_SEND:
return io_sendmsg_prep(req, sqe);
case IORING_OP_RECVMSG:
case IORING_OP_RECV:
return io_recvmsg_prep(req, sqe);
case IORING_OP_CONNECT:
return io_connect_prep(req, sqe);
case IORING_OP_TIMEOUT:
return io_timeout_prep(req, sqe);
case IORING_OP_TIMEOUT_REMOVE:
return io_timeout_remove_prep(req, sqe);
case IORING_OP_ASYNC_CANCEL:
return io_async_cancel_prep(req, sqe);
case IORING_OP_LINK_TIMEOUT:
return io_link_timeout_prep(req, sqe);
case IORING_OP_ACCEPT:
return io_accept_prep(req, sqe);
case IORING_OP_FALLOCATE:
return io_fallocate_prep(req, sqe);
case IORING_OP_OPENAT:
return io_openat_prep(req, sqe);
case IORING_OP_CLOSE:
return io_close_prep(req, sqe);
case IORING_OP_FILES_UPDATE:
return io_files_update_prep(req, sqe);
case IORING_OP_STATX:
return io_statx_prep(req, sqe);
case IORING_OP_FADVISE:
return io_fadvise_prep(req, sqe);
case IORING_OP_MADVISE:
return io_madvise_prep(req, sqe);
case IORING_OP_OPENAT2:
return io_openat2_prep(req, sqe);
case IORING_OP_EPOLL_CTL:
return io_epoll_ctl_prep(req, sqe);
case IORING_OP_SPLICE:
return io_splice_prep(req, sqe);
case IORING_OP_PROVIDE_BUFFERS:
return io_provide_buffers_prep(req, sqe);
case IORING_OP_REMOVE_BUFFERS:
return io_remove_buffers_prep(req, sqe);
case IORING_OP_TEE:
return io_tee_prep(req, sqe);
case IORING_OP_SHUTDOWN:
return io_shutdown_prep(req, sqe);
case IORING_OP_RENAMEAT:
return io_renameat_prep(req, sqe);
case IORING_OP_UNLINKAT:
return io_unlinkat_prep(req, sqe);
case IORING_OP_MKDIRAT:
return io_mkdirat_prep(req, sqe);
case IORING_OP_SYMLINKAT:
return io_symlinkat_prep(req, sqe);
case IORING_OP_LINKAT:
return io_linkat_prep(req, sqe);
case IORING_OP_MSG_RING:
return io_msg_ring_prep(req, sqe);
case IORING_OP_FSETXATTR:
return io_fsetxattr_prep(req, sqe);
case IORING_OP_SETXATTR:
return io_setxattr_prep(req, sqe);
case IORING_OP_FGETXATTR:
return io_fgetxattr_prep(req, sqe);
case IORING_OP_GETXATTR:
return io_getxattr_prep(req, sqe);
case IORING_OP_SOCKET:
return io_socket_prep(req, sqe);
case IORING_OP_URING_CMD:
return io_uring_cmd_prep(req, sqe);
}
printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
req->opcode);
return -EINVAL;
}
static int io_req_prep_async(struct io_kiocb *req)
{
const struct io_op_def *def = &io_op_defs[req->opcode];
/* assign early for deferred execution for non-fixed file */
if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
req->file = io_file_get_normal(req, req->cqe.fd);
if (!def->needs_async_setup)
return 0;
if (WARN_ON_ONCE(req_has_async_data(req)))
return -EFAULT;
if (io_alloc_async_data(req))
return -EAGAIN;
switch (req->opcode) {
case IORING_OP_READV:
return io_readv_prep_async(req);
case IORING_OP_WRITEV:
return io_writev_prep_async(req);
case IORING_OP_SENDMSG:
return io_sendmsg_prep_async(req);
case IORING_OP_RECVMSG:
return io_recvmsg_prep_async(req);
case IORING_OP_CONNECT:
return io_connect_prep_async(req);
case IORING_OP_URING_CMD:
return io_uring_cmd_prep_async(req);
}
printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
req->opcode);
return -EFAULT;
}
static u32 io_get_sequence(struct io_kiocb *req)
{
u32 seq = req->ctx->cached_sq_head;
struct io_kiocb *cur;
/* need original cached_sq_head, but it was increased for each req */
io_for_each_link(cur, req)
seq--;
return seq;
}
static __cold void io_drain_req(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_defer_entry *de;
int ret;
u32 seq = io_get_sequence(req);
/* Still need defer if there is pending req in defer list. */
spin_lock(&ctx->completion_lock);
if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
spin_unlock(&ctx->completion_lock);
queue:
ctx->drain_active = false;
io_req_task_queue(req);
return;
}
spin_unlock(&ctx->completion_lock);
ret = io_req_prep_async(req);
if (ret) {
fail:
io_req_complete_failed(req, ret);
return;
}
io_prep_async_link(req);
de = kmalloc(sizeof(*de), GFP_KERNEL);
if (!de) {
ret = -ENOMEM;
goto fail;
}
spin_lock(&ctx->completion_lock);
if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
spin_unlock(&ctx->completion_lock);
kfree(de);
goto queue;
}
trace_io_uring_defer(ctx, req, req->cqe.user_data, req->opcode);
de->req = req;
de->seq = seq;
list_add_tail(&de->list, &ctx->defer_list);
spin_unlock(&ctx->completion_lock);
}
static void io_clean_op(struct io_kiocb *req)
{
if (req->flags & REQ_F_BUFFER_SELECTED) {
spin_lock(&req->ctx->completion_lock);
io_put_kbuf_comp(req);
spin_unlock(&req->ctx->completion_lock);
}
if (req->flags & REQ_F_NEED_CLEANUP) {
switch (req->opcode) {
case IORING_OP_READV:
case IORING_OP_READ_FIXED:
case IORING_OP_READ:
case IORING_OP_WRITEV:
case IORING_OP_WRITE_FIXED:
case IORING_OP_WRITE: {
struct io_async_rw *io = req->async_data;
kfree(io->free_iovec);
break;
}
case IORING_OP_RECVMSG:
case IORING_OP_SENDMSG: {
struct io_async_msghdr *io = req->async_data;
kfree(io->free_iov);
break;
}
case IORING_OP_OPENAT:
case IORING_OP_OPENAT2:
if (req->open.filename)
putname(req->open.filename);
break;
case IORING_OP_RENAMEAT:
putname(req->rename.oldpath);
putname(req->rename.newpath);
break;
case IORING_OP_UNLINKAT:
putname(req->unlink.filename);
break;
case IORING_OP_MKDIRAT:
putname(req->mkdir.filename);
break;
case IORING_OP_SYMLINKAT:
putname(req->symlink.oldpath);
putname(req->symlink.newpath);
break;
case IORING_OP_LINKAT:
putname(req->hardlink.oldpath);
putname(req->hardlink.newpath);
break;
case IORING_OP_STATX:
if (req->statx.filename)
putname(req->statx.filename);
break;
case IORING_OP_SETXATTR:
case IORING_OP_FSETXATTR:
case IORING_OP_GETXATTR:
case IORING_OP_FGETXATTR:
__io_xattr_finish(req);
break;
}
}
if ((req->flags & REQ_F_POLLED) && req->apoll) {
kfree(req->apoll->double_poll);
kfree(req->apoll);
req->apoll = NULL;
}
if (req->flags & REQ_F_INFLIGHT) {
struct io_uring_task *tctx = req->task->io_uring;
atomic_dec(&tctx->inflight_tracked);
}
if (req->flags & REQ_F_CREDS)
put_cred(req->creds);
if (req->flags & REQ_F_ASYNC_DATA) {
kfree(req->async_data);
req->async_data = NULL;
}
req->flags &= ~IO_REQ_CLEAN_FLAGS;
}
static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
{
if (req->file || !io_op_defs[req->opcode].needs_file)
return true;
if (req->flags & REQ_F_FIXED_FILE)
req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
else
req->file = io_file_get_normal(req, req->cqe.fd);
return !!req->file;
}
static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
{
const struct io_op_def *def = &io_op_defs[req->opcode];
const struct cred *creds = NULL;
int ret;
if (unlikely(!io_assign_file(req, issue_flags)))
return -EBADF;
if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
creds = override_creds(req->creds);
if (!def->audit_skip)
audit_uring_entry(req->opcode);
switch (req->opcode) {
case IORING_OP_NOP:
ret = io_nop(req, issue_flags);
break;
case IORING_OP_READV:
case IORING_OP_READ_FIXED:
case IORING_OP_READ:
ret = io_read(req, issue_flags);
break;
case IORING_OP_WRITEV:
case IORING_OP_WRITE_FIXED:
case IORING_OP_WRITE:
ret = io_write(req, issue_flags);
break;
case IORING_OP_FSYNC:
ret = io_fsync(req, issue_flags);
break;
case IORING_OP_POLL_ADD:
ret = io_poll_add(req, issue_flags);
break;
case IORING_OP_POLL_REMOVE:
ret = io_poll_remove(req, issue_flags);
break;
case IORING_OP_SYNC_FILE_RANGE:
ret = io_sync_file_range(req, issue_flags);
break;
case IORING_OP_SENDMSG:
ret = io_sendmsg(req, issue_flags);
break;
case IORING_OP_SEND:
ret = io_send(req, issue_flags);
break;
case IORING_OP_RECVMSG:
ret = io_recvmsg(req, issue_flags);
break;
case IORING_OP_RECV:
ret = io_recv(req, issue_flags);
break;
case IORING_OP_TIMEOUT:
ret = io_timeout(req, issue_flags);
break;
case IORING_OP_TIMEOUT_REMOVE:
ret = io_timeout_remove(req, issue_flags);
break;
case IORING_OP_ACCEPT:
ret = io_accept(req, issue_flags);
break;
case IORING_OP_CONNECT:
ret = io_connect(req, issue_flags);
break;
case IORING_OP_ASYNC_CANCEL:
ret = io_async_cancel(req, issue_flags);
break;
case IORING_OP_FALLOCATE:
ret = io_fallocate(req, issue_flags);
break;
case IORING_OP_OPENAT:
ret = io_openat(req, issue_flags);
break;
case IORING_OP_CLOSE:
ret = io_close(req, issue_flags);
break;
case IORING_OP_FILES_UPDATE:
ret = io_files_update(req, issue_flags);
break;
case IORING_OP_STATX:
ret = io_statx(req, issue_flags);
break;
case IORING_OP_FADVISE:
ret = io_fadvise(req, issue_flags);
break;
case IORING_OP_MADVISE:
ret = io_madvise(req, issue_flags);
break;
case IORING_OP_OPENAT2:
ret = io_openat2(req, issue_flags);
break;
case IORING_OP_EPOLL_CTL:
ret = io_epoll_ctl(req, issue_flags);
break;
case IORING_OP_SPLICE:
ret = io_splice(req, issue_flags);
break;
case IORING_OP_PROVIDE_BUFFERS:
ret = io_provide_buffers(req, issue_flags);
break;
case IORING_OP_REMOVE_BUFFERS:
ret = io_remove_buffers(req, issue_flags);
break;
case IORING_OP_TEE:
ret = io_tee(req, issue_flags);
break;
case IORING_OP_SHUTDOWN:
ret = io_shutdown(req, issue_flags);
break;
case IORING_OP_RENAMEAT:
ret = io_renameat(req, issue_flags);
break;
case IORING_OP_UNLINKAT:
ret = io_unlinkat(req, issue_flags);
break;
case IORING_OP_MKDIRAT:
ret = io_mkdirat(req, issue_flags);
break;
case IORING_OP_SYMLINKAT:
ret = io_symlinkat(req, issue_flags);
break;
case IORING_OP_LINKAT:
ret = io_linkat(req, issue_flags);
break;
case IORING_OP_MSG_RING:
ret = io_msg_ring(req, issue_flags);
break;
case IORING_OP_FSETXATTR:
ret = io_fsetxattr(req, issue_flags);
break;
case IORING_OP_SETXATTR:
ret = io_setxattr(req, issue_flags);
break;
case IORING_OP_FGETXATTR:
ret = io_fgetxattr(req, issue_flags);
break;
case IORING_OP_GETXATTR:
ret = io_getxattr(req, issue_flags);
break;
case IORING_OP_SOCKET:
ret = io_socket(req, issue_flags);
break;
case IORING_OP_URING_CMD:
ret = io_uring_cmd(req, issue_flags);
break;
default:
ret = -EINVAL;
break;
}
if (!def->audit_skip)
audit_uring_exit(!ret, ret);
if (creds)
revert_creds(creds);
if (ret)
return ret;
/* If the op doesn't have a file, we're not polling for it */
if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file)
io_iopoll_req_issued(req, issue_flags);
return 0;
}
static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
{
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
req = io_put_req_find_next(req);
return req ? &req->work : NULL;
}
static void io_wq_submit_work(struct io_wq_work *work)
{
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
const struct io_op_def *def = &io_op_defs[req->opcode];
unsigned int issue_flags = IO_URING_F_UNLOCKED;
bool needs_poll = false;
int ret = 0, err = -ECANCELED;
/* one will be dropped by ->io_free_work() after returning to io-wq */
if (!(req->flags & REQ_F_REFCOUNT))
__io_req_set_refcount(req, 2);
else
req_ref_get(req);
io_arm_ltimeout(req);
/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
if (work->flags & IO_WQ_WORK_CANCEL) {
fail:
io_req_task_queue_fail(req, err);
return;
}
if (!io_assign_file(req, issue_flags)) {
err = -EBADF;
work->flags |= IO_WQ_WORK_CANCEL;
goto fail;
}
if (req->flags & REQ_F_FORCE_ASYNC) {
bool opcode_poll = def->pollin || def->pollout;
if (opcode_poll && file_can_poll(req->file)) {
needs_poll = true;
issue_flags |= IO_URING_F_NONBLOCK;
}
}
do {
ret = io_issue_sqe(req, issue_flags);
if (ret != -EAGAIN)
break;
/*
* We can get EAGAIN for iopolled IO even though we're
* forcing a sync submission from here, since we can't
* wait for request slots on the block side.
*/
if (!needs_poll) {
if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
break;
cond_resched();
continue;
}
if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
return;
/* aborted or ready, in either case retry blocking */
needs_poll = false;
issue_flags &= ~IO_URING_F_NONBLOCK;
} while (1);
/* avoid locking problems by failing it from a clean context */
if (ret)
io_req_task_queue_fail(req, ret);
}
static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
unsigned i)
{
return &table->files[i];
}
static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
int index)
{
struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
return (struct file *) (slot->file_ptr & FFS_MASK);
}
static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
{
unsigned long file_ptr = (unsigned long) file;
file_ptr |= io_file_get_flags(file);
file_slot->file_ptr = file_ptr;
}
static inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct file *file = NULL;
unsigned long file_ptr;
io_ring_submit_lock(ctx, issue_flags);
if (unlikely((unsigned int)fd >= ctx->nr_user_files))
goto out;
fd = array_index_nospec(fd, ctx->nr_user_files);
file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
file = (struct file *) (file_ptr & FFS_MASK);
file_ptr &= ~FFS_MASK;
/* mask in overlapping REQ_F and FFS bits */
req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
io_req_set_rsrc_node(req, ctx, 0);
WARN_ON_ONCE(file && !test_bit(fd, ctx->file_table.bitmap));
out:
io_ring_submit_unlock(ctx, issue_flags);
return file;
}
static struct file *io_file_get_normal(struct io_kiocb *req, int fd)
{
struct file *file = fget(fd);
trace_io_uring_file_get(req->ctx, req, req->cqe.user_data, fd);
/* we don't allow fixed io_uring files */
if (file && file->f_op == &io_uring_fops)
io_req_track_inflight(req);
return file;
}
static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
{
struct io_kiocb *prev = req->timeout.prev;
int ret = -ENOENT;
if (prev) {
if (!(req->task->flags & PF_EXITING)) {
struct io_cancel_data cd = {
.ctx = req->ctx,
.data = prev->cqe.user_data,
};
ret = io_try_cancel(req, &cd);
}
io_req_complete_post(req, ret ?: -ETIME, 0);
io_put_req(prev);
} else {
io_req_complete_post(req, -ETIME, 0);
}
}
static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
{
struct io_timeout_data *data = container_of(timer,
struct io_timeout_data, timer);
struct io_kiocb *prev, *req = data->req;
struct io_ring_ctx *ctx = req->ctx;
unsigned long flags;
spin_lock_irqsave(&ctx->timeout_lock, flags);
prev = req->timeout.head;
req->timeout.head = NULL;
/*
* We don't expect the list to be empty, that will only happen if we
* race with the completion of the linked work.
*/
if (prev) {
io_remove_next_linked(prev);
if (!req_ref_inc_not_zero(prev))
prev = NULL;
}
list_del(&req->timeout.list);
req->timeout.prev = prev;
spin_unlock_irqrestore(&ctx->timeout_lock, flags);
req->io_task_work.func = io_req_task_link_timeout;
io_req_task_work_add(req);
return HRTIMER_NORESTART;
}
static void io_queue_linked_timeout(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
spin_lock_irq(&ctx->timeout_lock);
/*
* If the back reference is NULL, then our linked request finished
* before we got a chance to setup the timer
*/
if (req->timeout.head) {
struct io_timeout_data *data = req->async_data;
data->timer.function = io_link_timeout_fn;
hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
data->mode);
list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
}
spin_unlock_irq(&ctx->timeout_lock);
/* drop submission reference */
io_put_req(req);
}
static void io_queue_async(struct io_kiocb *req, int ret)
__must_hold(&req->ctx->uring_lock)
{
struct io_kiocb *linked_timeout;
if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
io_req_complete_failed(req, ret);
return;
}
linked_timeout = io_prep_linked_timeout(req);
switch (io_arm_poll_handler(req, 0)) {
case IO_APOLL_READY:
io_req_task_queue(req);
break;
case IO_APOLL_ABORTED:
/*
* Queued up for async execution, worker will release
* submit reference when the iocb is actually submitted.
*/
io_kbuf_recycle(req, 0);
io_queue_iowq(req, NULL);
break;
case IO_APOLL_OK:
break;
}
if (linked_timeout)
io_queue_linked_timeout(linked_timeout);
}
static inline void io_queue_sqe(struct io_kiocb *req)
__must_hold(&req->ctx->uring_lock)
{
int ret;
ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
if (req->flags & REQ_F_COMPLETE_INLINE) {
io_req_add_compl_list(req);
return;
}
/*
* We async punt it if the file wasn't marked NOWAIT, or if the file
* doesn't support non-blocking read/write attempts
*/
if (likely(!ret))
io_arm_ltimeout(req);
else
io_queue_async(req, ret);
}
static void io_queue_sqe_fallback(struct io_kiocb *req)
__must_hold(&req->ctx->uring_lock)
{
if (unlikely(req->flags & REQ_F_FAIL)) {
/*
* We don't submit, fail them all, for that replace hardlinks
* with normal links. Extra REQ_F_LINK is tolerated.
*/
req->flags &= ~REQ_F_HARDLINK;
req->flags |= REQ_F_LINK;
io_req_complete_failed(req, req->cqe.res);
} else if (unlikely(req->ctx->drain_active)) {
io_drain_req(req);
} else {
int ret = io_req_prep_async(req);
if (unlikely(ret))
io_req_complete_failed(req, ret);
else
io_queue_iowq(req, NULL);
}
}
/*
* Check SQE restrictions (opcode and flags).
*
* Returns 'true' if SQE is allowed, 'false' otherwise.
*/
static inline bool io_check_restriction(struct io_ring_ctx *ctx,
struct io_kiocb *req,
unsigned int sqe_flags)
{
if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
return false;
if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
ctx->restrictions.sqe_flags_required)
return false;
if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
ctx->restrictions.sqe_flags_required))
return false;
return true;
}
static void io_init_req_drain(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_kiocb *head = ctx->submit_state.link.head;
ctx->drain_active = true;
if (head) {
/*
* If we need to drain a request in the middle of a link, drain
* the head request and the next request/link after the current
* link. Considering sequential execution of links,
* REQ_F_IO_DRAIN will be maintained for every request of our
* link.
*/
head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
ctx->drain_next = true;
}
}
static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
const struct io_uring_sqe *sqe)
__must_hold(&ctx->uring_lock)
{
const struct io_op_def *def;
unsigned int sqe_flags;
int personality;
u8 opcode;
/* req is partially pre-initialised, see io_preinit_req() */
req->opcode = opcode = READ_ONCE(sqe->opcode);
/* same numerical values with corresponding REQ_F_*, safe to copy */
req->flags = sqe_flags = READ_ONCE(sqe->flags);
req->cqe.user_data = READ_ONCE(sqe->user_data);
req->file = NULL;
req->rsrc_node = NULL;
req->task = current;
if (unlikely(opcode >= IORING_OP_LAST)) {
req->opcode = 0;
return -EINVAL;
}
def = &io_op_defs[opcode];
if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
/* enforce forwards compatibility on users */
if (sqe_flags & ~SQE_VALID_FLAGS)
return -EINVAL;
if (sqe_flags & IOSQE_BUFFER_SELECT) {
if (!def->buffer_select)
return -EOPNOTSUPP;
req->buf_index = READ_ONCE(sqe->buf_group);
}
if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
ctx->drain_disabled = true;
if (sqe_flags & IOSQE_IO_DRAIN) {
if (ctx->drain_disabled)
return -EOPNOTSUPP;
io_init_req_drain(req);
}
}
if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
return -EACCES;
/* knock it to the slow queue path, will be drained there */
if (ctx->drain_active)
req->flags |= REQ_F_FORCE_ASYNC;
/* if there is no link, we're at "next" request and need to drain */
if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
ctx->drain_next = false;
ctx->drain_active = true;
req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
}
}
if (!def->ioprio && sqe->ioprio)
return -EINVAL;
if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
return -EINVAL;
if (def->needs_file) {
struct io_submit_state *state = &ctx->submit_state;
req->cqe.fd = READ_ONCE(sqe->fd);
/*
* Plug now if we have more than 2 IO left after this, and the
* target is potentially a read/write to block based storage.
*/
if (state->need_plug && def->plug) {
state->plug_started = true;
state->need_plug = false;
blk_start_plug_nr_ios(&state->plug, state->submit_nr);
}
}
personality = READ_ONCE(sqe->personality);
if (personality) {
int ret;
req->creds = xa_load(&ctx->personalities, personality);
if (!req->creds)
return -EINVAL;
get_cred(req->creds);
ret = security_uring_override_creds(req->creds);
if (ret) {
put_cred(req->creds);
return ret;
}
req->flags |= REQ_F_CREDS;
}
return io_req_prep(req, sqe);
}
static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
struct io_kiocb *req, int ret)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_submit_link *link = &ctx->submit_state.link;
struct io_kiocb *head = link->head;
trace_io_uring_req_failed(sqe, ctx, req, ret);
/*
* Avoid breaking links in the middle as it renders links with SQPOLL
* unusable. Instead of failing eagerly, continue assembling the link if
* applicable and mark the head with REQ_F_FAIL. The link flushing code
* should find the flag and handle the rest.
*/
req_fail_link_node(req, ret);
if (head && !(head->flags & REQ_F_FAIL))
req_fail_link_node(head, -ECANCELED);
if (!(req->flags & IO_REQ_LINK_FLAGS)) {
if (head) {
link->last->link = req;
link->head = NULL;
req = head;
}
io_queue_sqe_fallback(req);
return ret;
}
if (head)
link->last->link = req;
else
link->head = req;
link->last = req;
return 0;
}
static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
const struct io_uring_sqe *sqe)
__must_hold(&ctx->uring_lock)
{
struct io_submit_link *link = &ctx->submit_state.link;
int ret;
ret = io_init_req(ctx, req, sqe);
if (unlikely(ret))
return io_submit_fail_init(sqe, req, ret);
/* don't need @sqe from now on */
trace_io_uring_submit_sqe(ctx, req, req->cqe.user_data, req->opcode,
req->flags, true,
ctx->flags & IORING_SETUP_SQPOLL);
/*
* If we already have a head request, queue this one for async
* submittal once the head completes. If we don't have a head but
* IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
* submitted sync once the chain is complete. If none of those
* conditions are true (normal request), then just queue it.
*/
if (unlikely(link->head)) {
ret = io_req_prep_async(req);
if (unlikely(ret))
return io_submit_fail_init(sqe, req, ret);
trace_io_uring_link(ctx, req, link->head);
link->last->link = req;
link->last = req;
if (req->flags & IO_REQ_LINK_FLAGS)
return 0;
/* last request of the link, flush it */
req = link->head;
link->head = NULL;
if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
goto fallback;
} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
if (req->flags & IO_REQ_LINK_FLAGS) {
link->head = req;
link->last = req;
} else {
fallback:
io_queue_sqe_fallback(req);
}
return 0;
}
io_queue_sqe(req);
return 0;
}
/*
* Batched submission is done, ensure local IO is flushed out.
*/
static void io_submit_state_end(struct io_ring_ctx *ctx)
{
struct io_submit_state *state = &ctx->submit_state;
if (unlikely(state->link.head))
io_queue_sqe_fallback(state->link.head);
/* flush only after queuing links as they can generate completions */
io_submit_flush_completions(ctx);
if (state->plug_started)
blk_finish_plug(&state->plug);
}
/*
* Start submission side cache.
*/
static void io_submit_state_start(struct io_submit_state *state,
unsigned int max_ios)
{
state->plug_started = false;
state->need_plug = max_ios > 2;
state->submit_nr = max_ios;
/* set only head, no need to init link_last in advance */
state->link.head = NULL;
}
static void io_commit_sqring(struct io_ring_ctx *ctx)
{
struct io_rings *rings = ctx->rings;
/*
* Ensure any loads from the SQEs are done at this point,
* since once we write the new head, the application could
* write new data to them.
*/
smp_store_release(&rings->sq.head, ctx->cached_sq_head);
}
/*
* Fetch an sqe, if one is available. Note this returns a pointer to memory
* that is mapped by userspace. This means that care needs to be taken to
* ensure that reads are stable, as we cannot rely on userspace always
* being a good citizen. If members of the sqe are validated and then later
* used, it's important that those reads are done through READ_ONCE() to
* prevent a re-load down the line.
*/
static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
{
unsigned head, mask = ctx->sq_entries - 1;
unsigned sq_idx = ctx->cached_sq_head++ & mask;
/*
* The cached sq head (or cq tail) serves two purposes:
*
* 1) allows us to batch the cost of updating the user visible
* head updates.
* 2) allows the kernel side to track the head on its own, even
* though the application is the one updating it.
*/
head = READ_ONCE(ctx->sq_array[sq_idx]);
if (likely(head < ctx->sq_entries)) {
/* double index for 128-byte SQEs, twice as long */
if (ctx->flags & IORING_SETUP_SQE128)
head <<= 1;
return &ctx->sq_sqes[head];
}
/* drop invalid entries */
ctx->cq_extra--;
WRITE_ONCE(ctx->rings->sq_dropped,
READ_ONCE(ctx->rings->sq_dropped) + 1);
return NULL;
}
static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
__must_hold(&ctx->uring_lock)
{
unsigned int entries = io_sqring_entries(ctx);
unsigned int left;
int ret;
if (unlikely(!entries))
return 0;
/* make sure SQ entry isn't read before tail */
ret = left = min3(nr, ctx->sq_entries, entries);
io_get_task_refs(left);
io_submit_state_start(&ctx->submit_state, left);
do {
const struct io_uring_sqe *sqe;
struct io_kiocb *req;
if (unlikely(!io_alloc_req_refill(ctx)))
break;
req = io_alloc_req(ctx);
sqe = io_get_sqe(ctx);
if (unlikely(!sqe)) {
io_req_add_to_cache(req, ctx);
break;
}
/*
* Continue submitting even for sqe failure if the
* ring was setup with IORING_SETUP_SUBMIT_ALL
*/
if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
!(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
left--;
break;
}
} while (--left);
if (unlikely(left)) {
ret -= left;
/* try again if it submitted nothing and can't allocate a req */
if (!ret && io_req_cache_empty(ctx))
ret = -EAGAIN;
current->io_uring->cached_refs += left;
}
io_submit_state_end(ctx);
/* Commit SQ ring head once we've consumed and submitted all SQEs */
io_commit_sqring(ctx);
return ret;
}
static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
{
return READ_ONCE(sqd->state);
}
static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
{
unsigned int to_submit;
int ret = 0;
to_submit = io_sqring_entries(ctx);
/* if we're handling multiple rings, cap submit size for fairness */
if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
if (!wq_list_empty(&ctx->iopoll_list) || to_submit) {
const struct cred *creds = NULL;
if (ctx->sq_creds != current_cred())
creds = override_creds(ctx->sq_creds);
mutex_lock(&ctx->uring_lock);
if (!wq_list_empty(&ctx->iopoll_list))
io_do_iopoll(ctx, true);
/*
* Don't submit if refs are dying, good for io_uring_register(),
* but also it is relied upon by io_ring_exit_work()
*/
if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
!(ctx->flags & IORING_SETUP_R_DISABLED))
ret = io_submit_sqes(ctx, to_submit);
mutex_unlock(&ctx->uring_lock);
if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
wake_up(&ctx->sqo_sq_wait);
if (creds)
revert_creds(creds);
}
return ret;
}
static __cold void io_sqd_update_thread_idle(struct io_sq_data *sqd)
{
struct io_ring_ctx *ctx;
unsigned sq_thread_idle = 0;
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
sqd->sq_thread_idle = sq_thread_idle;
}
static bool io_sqd_handle_event(struct io_sq_data *sqd)
{
bool did_sig = false;
struct ksignal ksig;
if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
signal_pending(current)) {
mutex_unlock(&sqd->lock);
if (signal_pending(current))
did_sig = get_signal(&ksig);
cond_resched();
mutex_lock(&sqd->lock);
}
return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
}
static int io_sq_thread(void *data)
{
struct io_sq_data *sqd = data;
struct io_ring_ctx *ctx;
unsigned long timeout = 0;
char buf[TASK_COMM_LEN];
DEFINE_WAIT(wait);
snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
set_task_comm(current, buf);
if (sqd->sq_cpu != -1)
set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
else
set_cpus_allowed_ptr(current, cpu_online_mask);
current->flags |= PF_NO_SETAFFINITY;
audit_alloc_kernel(current);
mutex_lock(&sqd->lock);
while (1) {
bool cap_entries, sqt_spin = false;
if (io_sqd_events_pending(sqd) || signal_pending(current)) {
if (io_sqd_handle_event(sqd))
break;
timeout = jiffies + sqd->sq_thread_idle;
}
cap_entries = !list_is_singular(&sqd->ctx_list);
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
int ret = __io_sq_thread(ctx, cap_entries);
if (!sqt_spin && (ret > 0 || !wq_list_empty(&ctx->iopoll_list)))
sqt_spin = true;
}
if (io_run_task_work())
sqt_spin = true;
if (sqt_spin || !time_after(jiffies, timeout)) {
cond_resched();
if (sqt_spin)
timeout = jiffies + sqd->sq_thread_idle;
continue;
}
prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
if (!io_sqd_events_pending(sqd) && !task_work_pending(current)) {
bool needs_sched = true;
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
atomic_or(IORING_SQ_NEED_WAKEUP,
&ctx->rings->sq_flags);
if ((ctx->flags & IORING_SETUP_IOPOLL) &&
!wq_list_empty(&ctx->iopoll_list)) {
needs_sched = false;
break;
}
/*
* Ensure the store of the wakeup flag is not
* reordered with the load of the SQ tail
*/
smp_mb__after_atomic();
if (io_sqring_entries(ctx)) {
needs_sched = false;
break;
}
}
if (needs_sched) {
mutex_unlock(&sqd->lock);
schedule();
mutex_lock(&sqd->lock);
}
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
atomic_andnot(IORING_SQ_NEED_WAKEUP,
&ctx->rings->sq_flags);
}
finish_wait(&sqd->wait, &wait);
timeout = jiffies + sqd->sq_thread_idle;
}
io_uring_cancel_generic(true, sqd);
sqd->thread = NULL;
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
atomic_or(IORING_SQ_NEED_WAKEUP, &ctx->rings->sq_flags);
io_run_task_work();
mutex_unlock(&sqd->lock);
audit_free(current);
complete(&sqd->exited);
do_exit(0);
}
struct io_wait_queue {
struct wait_queue_entry wq;
struct io_ring_ctx *ctx;
unsigned cq_tail;
unsigned nr_timeouts;
};
static inline bool io_should_wake(struct io_wait_queue *iowq)
{
struct io_ring_ctx *ctx = iowq->ctx;
int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
/*
* Wake up if we have enough events, or if a timeout occurred since we
* started waiting. For timeouts, we always want to return to userspace,
* regardless of event count.
*/
return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
}
static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
int wake_flags, void *key)
{
struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
wq);
/*
* Cannot safely flush overflowed CQEs from here, ensure we wake up
* the task, and the next invocation will do it.
*/
if (io_should_wake(iowq) ||
test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &iowq->ctx->check_cq))
return autoremove_wake_function(curr, mode, wake_flags, key);
return -1;
}
static int io_run_task_work_sig(void)
{
if (io_run_task_work())
return 1;
if (test_thread_flag(TIF_NOTIFY_SIGNAL))
return -ERESTARTSYS;
if (task_sigpending(current))
return -EINTR;
return 0;
}
/* when returns >0, the caller should retry */
static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
struct io_wait_queue *iowq,
ktime_t timeout)
{
int ret;
unsigned long check_cq;
/* make sure we run task_work before checking for signals */
ret = io_run_task_work_sig();
if (ret || io_should_wake(iowq))
return ret;
check_cq = READ_ONCE(ctx->check_cq);
/* let the caller flush overflows, retry */
if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
return 1;
if (unlikely(check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)))
return -EBADR;
if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
return -ETIME;
return 1;
}
/*
* Wait until events become available, if we don't already have some. The
* application must reap them itself, as they reside on the shared cq ring.
*/
static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
const sigset_t __user *sig, size_t sigsz,
struct __kernel_timespec __user *uts)
{
struct io_wait_queue iowq;
struct io_rings *rings = ctx->rings;
ktime_t timeout = KTIME_MAX;
int ret;
do {
io_cqring_overflow_flush(ctx);
if (io_cqring_events(ctx) >= min_events)
return 0;
if (!io_run_task_work())
break;
} while (1);
if (sig) {
#ifdef CONFIG_COMPAT
if (in_compat_syscall())
ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
sigsz);
else
#endif
ret = set_user_sigmask(sig, sigsz);
if (ret)
return ret;
}
if (uts) {
struct timespec64 ts;
if (get_timespec64(&ts, uts))
return -EFAULT;
timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
}
init_waitqueue_func_entry(&iowq.wq, io_wake_function);
iowq.wq.private = current;
INIT_LIST_HEAD(&iowq.wq.entry);
iowq.ctx = ctx;
iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
trace_io_uring_cqring_wait(ctx, min_events);
do {
/* if we can't even flush overflow, don't wait for more */
if (!io_cqring_overflow_flush(ctx)) {
ret = -EBUSY;
break;
}
prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
TASK_INTERRUPTIBLE);
ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
cond_resched();
} while (ret > 0);
finish_wait(&ctx->cq_wait, &iowq.wq);
restore_saved_sigmask_unless(ret == -EINTR);
return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
}
static void io_free_page_table(void **table, size_t size)
{
unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
for (i = 0; i < nr_tables; i++)
kfree(table[i]);
kfree(table);
}
static __cold void **io_alloc_page_table(size_t size)
{
unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
size_t init_size = size;
void **table;
table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
if (!table)
return NULL;
for (i = 0; i < nr_tables; i++) {
unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
if (!table[i]) {
io_free_page_table(table, init_size);
return NULL;
}
size -= this_size;
}
return table;
}
static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
{
percpu_ref_exit(&ref_node->refs);
kfree(ref_node);
}
static __cold void io_rsrc_node_ref_zero(struct percpu_ref *ref)
{
struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
struct io_ring_ctx *ctx = node->rsrc_data->ctx;
unsigned long flags;
bool first_add = false;
unsigned long delay = HZ;
spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
node->done = true;
/* if we are mid-quiesce then do not delay */
if (node->rsrc_data->quiesce)
delay = 0;
while (!list_empty(&ctx->rsrc_ref_list)) {
node = list_first_entry(&ctx->rsrc_ref_list,
struct io_rsrc_node, node);
/* recycle ref nodes in order */
if (!node->done)
break;
list_del(&node->node);
first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
}
spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
if (first_add)
mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
}
static struct io_rsrc_node *io_rsrc_node_alloc(void)
{
struct io_rsrc_node *ref_node;
ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
if (!ref_node)
return NULL;
if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
0, GFP_KERNEL)) {
kfree(ref_node);
return NULL;
}
INIT_LIST_HEAD(&ref_node->node);
INIT_LIST_HEAD(&ref_node->rsrc_list);
ref_node->done = false;
return ref_node;
}
static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
struct io_rsrc_data *data_to_kill)
__must_hold(&ctx->uring_lock)
{
WARN_ON_ONCE(!ctx->rsrc_backup_node);
WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
io_rsrc_refs_drop(ctx);
if (data_to_kill) {
struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
rsrc_node->rsrc_data = data_to_kill;
spin_lock_irq(&ctx->rsrc_ref_lock);
list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
spin_unlock_irq(&ctx->rsrc_ref_lock);
atomic_inc(&data_to_kill->refs);
percpu_ref_kill(&rsrc_node->refs);
ctx->rsrc_node = NULL;
}
if (!ctx->rsrc_node) {
ctx->rsrc_node = ctx->rsrc_backup_node;
ctx->rsrc_backup_node = NULL;
}
}
static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
{
if (ctx->rsrc_backup_node)
return 0;
ctx->rsrc_backup_node = io_rsrc_node_alloc();
return ctx->rsrc_backup_node ? 0 : -ENOMEM;
}
static __cold int io_rsrc_ref_quiesce(struct io_rsrc_data *data,
struct io_ring_ctx *ctx)
{
int ret;
/* As we may drop ->uring_lock, other task may have started quiesce */
if (data->quiesce)
return -ENXIO;
data->quiesce = true;
do {
ret = io_rsrc_node_switch_start(ctx);
if (ret)
break;
io_rsrc_node_switch(ctx, data);
/* kill initial ref, already quiesced if zero */
if (atomic_dec_and_test(&data->refs))
break;
mutex_unlock(&ctx->uring_lock);
flush_delayed_work(&ctx->rsrc_put_work);
ret = wait_for_completion_interruptible(&data->done);
if (!ret) {
mutex_lock(&ctx->uring_lock);
if (atomic_read(&data->refs) > 0) {
/*
* it has been revived by another thread while
* we were unlocked
*/
mutex_unlock(&ctx->uring_lock);
} else {
break;
}
}
atomic_inc(&data->refs);
/* wait for all works potentially completing data->done */
flush_delayed_work(&ctx->rsrc_put_work);
reinit_completion(&data->done);
ret = io_run_task_work_sig();
mutex_lock(&ctx->uring_lock);
} while (ret >= 0);
data->quiesce = false;
return ret;
}
static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
{
unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
return &data->tags[table_idx][off];
}
static void io_rsrc_data_free(struct io_rsrc_data *data)
{
size_t size = data->nr * sizeof(data->tags[0][0]);
if (data->tags)
io_free_page_table((void **)data->tags, size);
kfree(data);
}
static __cold int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
u64 __user *utags, unsigned nr,
struct io_rsrc_data **pdata)
{
struct io_rsrc_data *data;
int ret = -ENOMEM;
unsigned i;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
if (!data->tags) {
kfree(data);
return -ENOMEM;
}
data->nr = nr;
data->ctx = ctx;
data->do_put = do_put;
if (utags) {
ret = -EFAULT;
for (i = 0; i < nr; i++) {
u64 *tag_slot = io_get_tag_slot(data, i);
if (copy_from_user(tag_slot, &utags[i],
sizeof(*tag_slot)))
goto fail;
}
}
atomic_set(&data->refs, 1);
init_completion(&data->done);
*pdata = data;
return 0;
fail:
io_rsrc_data_free(data);
return ret;
}
static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
{
table->files = kvcalloc(nr_files, sizeof(table->files[0]),
GFP_KERNEL_ACCOUNT);
if (unlikely(!table->files))
return false;
table->bitmap = bitmap_zalloc(nr_files, GFP_KERNEL_ACCOUNT);
if (unlikely(!table->bitmap)) {
kvfree(table->files);
return false;
}
return true;
}
static void io_free_file_tables(struct io_file_table *table)
{
kvfree(table->files);
bitmap_free(table->bitmap);
table->files = NULL;
table->bitmap = NULL;
}
static inline void io_file_bitmap_set(struct io_file_table *table, int bit)
{
WARN_ON_ONCE(test_bit(bit, table->bitmap));
__set_bit(bit, table->bitmap);
table->alloc_hint = bit + 1;
}
static inline void io_file_bitmap_clear(struct io_file_table *table, int bit)
{
__clear_bit(bit, table->bitmap);
table->alloc_hint = bit;
}
static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
{
#if !defined(IO_URING_SCM_ALL)
int i;
for (i = 0; i < ctx->nr_user_files; i++) {
struct file *file = io_file_from_index(ctx, i);
if (!file)
continue;
if (io_fixed_file_slot(&ctx->file_table, i)->file_ptr & FFS_SCM)
continue;
io_file_bitmap_clear(&ctx->file_table, i);
fput(file);
}
#endif
#if defined(CONFIG_UNIX)
if (ctx->ring_sock) {
struct sock *sock = ctx->ring_sock->sk;
struct sk_buff *skb;
while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
kfree_skb(skb);
}
#endif
io_free_file_tables(&ctx->file_table);
io_rsrc_data_free(ctx->file_data);
ctx->file_data = NULL;
ctx->nr_user_files = 0;
}
static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
{
unsigned nr = ctx->nr_user_files;
int ret;
if (!ctx->file_data)
return -ENXIO;
/*
* Quiesce may unlock ->uring_lock, and while it's not held
* prevent new requests using the table.
*/
ctx->nr_user_files = 0;
ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
ctx->nr_user_files = nr;
if (!ret)
__io_sqe_files_unregister(ctx);
return ret;
}
static void io_sq_thread_unpark(struct io_sq_data *sqd)
__releases(&sqd->lock)
{
WARN_ON_ONCE(sqd->thread == current);
/*
* Do the dance but not conditional clear_bit() because it'd race with
* other threads incrementing park_pending and setting the bit.
*/
clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
if (atomic_dec_return(&sqd->park_pending))
set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
mutex_unlock(&sqd->lock);
}
static void io_sq_thread_park(struct io_sq_data *sqd)
__acquires(&sqd->lock)
{
WARN_ON_ONCE(sqd->thread == current);
atomic_inc(&sqd->park_pending);
set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
mutex_lock(&sqd->lock);
if (sqd->thread)
wake_up_process(sqd->thread);
}
static void io_sq_thread_stop(struct io_sq_data *sqd)
{
WARN_ON_ONCE(sqd->thread == current);
WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
mutex_lock(&sqd->lock);
if (sqd->thread)
wake_up_process(sqd->thread);
mutex_unlock(&sqd->lock);
wait_for_completion(&sqd->exited);
}
static void io_put_sq_data(struct io_sq_data *sqd)
{
if (refcount_dec_and_test(&sqd->refs)) {
WARN_ON_ONCE(atomic_read(&sqd->park_pending));
io_sq_thread_stop(sqd);
kfree(sqd);
}
}
static void io_sq_thread_finish(struct io_ring_ctx *ctx)
{
struct io_sq_data *sqd = ctx->sq_data;
if (sqd) {
io_sq_thread_park(sqd);
list_del_init(&ctx->sqd_list);
io_sqd_update_thread_idle(sqd);
io_sq_thread_unpark(sqd);
io_put_sq_data(sqd);
ctx->sq_data = NULL;
}
}
static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
{
struct io_ring_ctx *ctx_attach;
struct io_sq_data *sqd;
struct fd f;
f = fdget(p->wq_fd);
if (!f.file)
return ERR_PTR(-ENXIO);
if (f.file->f_op != &io_uring_fops) {
fdput(f);
return ERR_PTR(-EINVAL);
}
ctx_attach = f.file->private_data;
sqd = ctx_attach->sq_data;
if (!sqd) {
fdput(f);
return ERR_PTR(-EINVAL);
}
if (sqd->task_tgid != current->tgid) {
fdput(f);
return ERR_PTR(-EPERM);
}
refcount_inc(&sqd->refs);
fdput(f);
return sqd;
}
static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
bool *attached)
{
struct io_sq_data *sqd;
*attached = false;
if (p->flags & IORING_SETUP_ATTACH_WQ) {
sqd = io_attach_sq_data(p);
if (!IS_ERR(sqd)) {
*attached = true;
return sqd;
}
/* fall through for EPERM case, setup new sqd/task */
if (PTR_ERR(sqd) != -EPERM)
return sqd;
}
sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
if (!sqd)
return ERR_PTR(-ENOMEM);
atomic_set(&sqd->park_pending, 0);
refcount_set(&sqd->refs, 1);
INIT_LIST_HEAD(&sqd->ctx_list);
mutex_init(&sqd->lock);
init_waitqueue_head(&sqd->wait);
init_completion(&sqd->exited);
return sqd;
}
/*
* Ensure the UNIX gc is aware of our file set, so we are certain that
* the io_uring can be safely unregistered on process exit, even if we have
* loops in the file referencing. We account only files that can hold other
* files because otherwise they can't form a loop and so are not interesting
* for GC.
*/
static int io_scm_file_account(struct io_ring_ctx *ctx, struct file *file)
{
#if defined(CONFIG_UNIX)
struct sock *sk = ctx->ring_sock->sk;
struct sk_buff_head *head = &sk->sk_receive_queue;
struct scm_fp_list *fpl;
struct sk_buff *skb;
if (likely(!io_file_need_scm(file)))
return 0;
/*
* See if we can merge this file into an existing skb SCM_RIGHTS
* file set. If there's no room, fall back to allocating a new skb
* and filling it in.
*/
spin_lock_irq(&head->lock);
skb = skb_peek(head);
if (skb && UNIXCB(skb).fp->count < SCM_MAX_FD)
__skb_unlink(skb, head);
else
skb = NULL;
spin_unlock_irq(&head->lock);
if (!skb) {
fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
if (!fpl)
return -ENOMEM;
skb = alloc_skb(0, GFP_KERNEL);
if (!skb) {
kfree(fpl);
return -ENOMEM;
}
fpl->user = get_uid(current_user());
fpl->max = SCM_MAX_FD;
fpl->count = 0;
UNIXCB(skb).fp = fpl;
skb->sk = sk;
skb->destructor = unix_destruct_scm;
refcount_add(skb->truesize, &sk->sk_wmem_alloc);
}
fpl = UNIXCB(skb).fp;
fpl->fp[fpl->count++] = get_file(file);
unix_inflight(fpl->user, file);
skb_queue_head(head, skb);
fput(file);
#endif
return 0;
}
static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
{
struct file *file = prsrc->file;
#if defined(CONFIG_UNIX)
struct sock *sock = ctx->ring_sock->sk;
struct sk_buff_head list, *head = &sock->sk_receive_queue;
struct sk_buff *skb;
int i;
if (!io_file_need_scm(file)) {
fput(file);
return;
}
__skb_queue_head_init(&list);
/*
* Find the skb that holds this file in its SCM_RIGHTS. When found,
* remove this entry and rearrange the file array.
*/
skb = skb_dequeue(head);
while (skb) {
struct scm_fp_list *fp;
fp = UNIXCB(skb).fp;
for (i = 0; i < fp->count; i++) {
int left;
if (fp->fp[i] != file)
continue;
unix_notinflight(fp->user, fp->fp[i]);
left = fp->count - 1 - i;
if (left) {
memmove(&fp->fp[i], &fp->fp[i + 1],
left * sizeof(struct file *));
}
fp->count--;
if (!fp->count) {
kfree_skb(skb);
skb = NULL;
} else {
__skb_queue_tail(&list, skb);
}
fput(file);
file = NULL;
break;
}
if (!file)
break;
__skb_queue_tail(&list, skb);
skb = skb_dequeue(head);
}
if (skb_peek(&list)) {
spin_lock_irq(&head->lock);
while ((skb = __skb_dequeue(&list)) != NULL)
__skb_queue_tail(head, skb);
spin_unlock_irq(&head->lock);
}
#else
fput(file);
#endif
}
static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
{
struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
struct io_ring_ctx *ctx = rsrc_data->ctx;
struct io_rsrc_put *prsrc, *tmp;
list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
list_del(&prsrc->list);
if (prsrc->tag) {
if (ctx->flags & IORING_SETUP_IOPOLL)
mutex_lock(&ctx->uring_lock);
spin_lock(&ctx->completion_lock);
io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
io_commit_cqring(ctx);
spin_unlock(&ctx->completion_lock);
io_cqring_ev_posted(ctx);
if (ctx->flags & IORING_SETUP_IOPOLL)
mutex_unlock(&ctx->uring_lock);
}
rsrc_data->do_put(ctx, prsrc);
kfree(prsrc);
}
io_rsrc_node_destroy(ref_node);
if (atomic_dec_and_test(&rsrc_data->refs))
complete(&rsrc_data->done);
}
static void io_rsrc_put_work(struct work_struct *work)
{
struct io_ring_ctx *ctx;
struct llist_node *node;
ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
node = llist_del_all(&ctx->rsrc_put_llist);
while (node) {
struct io_rsrc_node *ref_node;
struct llist_node *next = node->next;
ref_node = llist_entry(node, struct io_rsrc_node, llist);
__io_rsrc_put_work(ref_node);
node = next;
}
}
static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
unsigned nr_args, u64 __user *tags)
{
__s32 __user *fds = (__s32 __user *) arg;
struct file *file;
int fd, ret;
unsigned i;
if (ctx->file_data)
return -EBUSY;
if (!nr_args)
return -EINVAL;
if (nr_args > IORING_MAX_FIXED_FILES)
return -EMFILE;
if (nr_args > rlimit(RLIMIT_NOFILE))
return -EMFILE;
ret = io_rsrc_node_switch_start(ctx);
if (ret)
return ret;
ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
&ctx->file_data);
if (ret)
return ret;
if (!io_alloc_file_tables(&ctx->file_table, nr_args)) {
io_rsrc_data_free(ctx->file_data);
ctx->file_data = NULL;
return -ENOMEM;
}
for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
struct io_fixed_file *file_slot;
if (fds && copy_from_user(&fd, &fds[i], sizeof(fd))) {
ret = -EFAULT;
goto fail;
}
/* allow sparse sets */
if (!fds || fd == -1) {
ret = -EINVAL;
if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
goto fail;
continue;
}
file = fget(fd);
ret = -EBADF;
if (unlikely(!file))
goto fail;
/*
* Don't allow io_uring instances to be registered. If UNIX
* isn't enabled, then this causes a reference cycle and this
* instance can never get freed. If UNIX is enabled we'll
* handle it just fine, but there's still no point in allowing
* a ring fd as it doesn't support regular read/write anyway.
*/
if (file->f_op == &io_uring_fops) {
fput(file);
goto fail;
}
ret = io_scm_file_account(ctx, file);
if (ret) {
fput(file);
goto fail;
}
file_slot = io_fixed_file_slot(&ctx->file_table, i);
io_fixed_file_set(file_slot, file);
io_file_bitmap_set(&ctx->file_table, i);
}
io_rsrc_node_switch(ctx, NULL);
return 0;
fail:
__io_sqe_files_unregister(ctx);
return ret;
}
static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
struct io_rsrc_node *node, void *rsrc)
{
u64 *tag_slot = io_get_tag_slot(data, idx);
struct io_rsrc_put *prsrc;
prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
if (!prsrc)
return -ENOMEM;
prsrc->tag = *tag_slot;
*tag_slot = 0;
prsrc->rsrc = rsrc;
list_add(&prsrc->list, &node->rsrc_list);
return 0;
}
static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
unsigned int issue_flags, u32 slot_index)
__must_hold(&req->ctx->uring_lock)
{
struct io_ring_ctx *ctx = req->ctx;
bool needs_switch = false;
struct io_fixed_file *file_slot;
int ret;
if (file->f_op == &io_uring_fops)
return -EBADF;
if (!ctx->file_data)
return -ENXIO;
if (slot_index >= ctx->nr_user_files)
return -EINVAL;
slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
if (file_slot->file_ptr) {
struct file *old_file;
ret = io_rsrc_node_switch_start(ctx);
if (ret)
goto err;
old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
ctx->rsrc_node, old_file);
if (ret)
goto err;
file_slot->file_ptr = 0;
io_file_bitmap_clear(&ctx->file_table, slot_index);
needs_switch = true;
}
ret = io_scm_file_account(ctx, file);
if (!ret) {
*io_get_tag_slot(ctx->file_data, slot_index) = 0;
io_fixed_file_set(file_slot, file);
io_file_bitmap_set(&ctx->file_table, slot_index);
}
err:
if (needs_switch)
io_rsrc_node_switch(ctx, ctx->file_data);
if (ret)
fput(file);
return ret;
}
static int __io_close_fixed(struct io_kiocb *req, unsigned int issue_flags,
unsigned int offset)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_fixed_file *file_slot;
struct file *file;
int ret;
io_ring_submit_lock(ctx, issue_flags);
ret = -ENXIO;
if (unlikely(!ctx->file_data))
goto out;
ret = -EINVAL;
if (offset >= ctx->nr_user_files)
goto out;
ret = io_rsrc_node_switch_start(ctx);
if (ret)
goto out;
offset = array_index_nospec(offset, ctx->nr_user_files);
file_slot = io_fixed_file_slot(&ctx->file_table, offset);
ret = -EBADF;
if (!file_slot->file_ptr)
goto out;
file = (struct file *)(file_slot->file_ptr & FFS_MASK);
ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
if (ret)
goto out;
file_slot->file_ptr = 0;
io_file_bitmap_clear(&ctx->file_table, offset);
io_rsrc_node_switch(ctx, ctx->file_data);
ret = 0;
out:
io_ring_submit_unlock(ctx, issue_flags);
return ret;
}
static inline int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
{
return __io_close_fixed(req, issue_flags, req->close.file_slot - 1);
}
static int __io_sqe_files_update(struct io_ring_ctx *ctx,
struct io_uring_rsrc_update2 *up,
unsigned nr_args)
{
u64 __user *tags = u64_to_user_ptr(up->tags);
__s32 __user *fds = u64_to_user_ptr(up->data);
struct io_rsrc_data *data = ctx->file_data;
struct io_fixed_file *file_slot;
struct file *file;
int fd, i, err = 0;
unsigned int done;
bool needs_switch = false;
if (!ctx->file_data)
return -ENXIO;
if (up->offset + nr_args > ctx->nr_user_files)
return -EINVAL;
for (done = 0; done < nr_args; done++) {
u64 tag = 0;
if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
copy_from_user(&fd, &fds[done], sizeof(fd))) {
err = -EFAULT;
break;
}
if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
err = -EINVAL;
break;
}
if (fd == IORING_REGISTER_FILES_SKIP)
continue;
i = array_index_nospec(up->offset + done, ctx->nr_user_files);
file_slot = io_fixed_file_slot(&ctx->file_table, i);
if (file_slot->file_ptr) {
file = (struct file *)(file_slot->file_ptr & FFS_MASK);
err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
if (err)
break;
file_slot->file_ptr = 0;
io_file_bitmap_clear(&ctx->file_table, i);
needs_switch = true;
}
if (fd != -1) {
file = fget(fd);
if (!file) {
err = -EBADF;
break;
}
/*
* Don't allow io_uring instances to be registered. If
* UNIX isn't enabled, then this causes a reference
* cycle and this instance can never get freed. If UNIX
* is enabled we'll handle it just fine, but there's
* still no point in allowing a ring fd as it doesn't
* support regular read/write anyway.
*/
if (file->f_op == &io_uring_fops) {
fput(file);
err = -EBADF;
break;
}
err = io_scm_file_account(ctx, file);
if (err) {
fput(file);
break;
}
*io_get_tag_slot(data, i) = tag;
io_fixed_file_set(file_slot, file);
io_file_bitmap_set(&ctx->file_table, i);
}
}
if (needs_switch)
io_rsrc_node_switch(ctx, data);
return done ? done : err;
}
static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
struct task_struct *task)
{
struct io_wq_hash *hash;
struct io_wq_data data;
unsigned int concurrency;
mutex_lock(&ctx->uring_lock);
hash = ctx->hash_map;
if (!hash) {
hash = kzalloc(sizeof(*hash), GFP_KERNEL);
if (!hash) {
mutex_unlock(&ctx->uring_lock);
return ERR_PTR(-ENOMEM);
}
refcount_set(&hash->refs, 1);
init_waitqueue_head(&hash->wait);
ctx->hash_map = hash;
}
mutex_unlock(&ctx->uring_lock);
data.hash = hash;
data.task = task;
data.free_work = io_wq_free_work;
data.do_work = io_wq_submit_work;
/* Do QD, or 4 * CPUS, whatever is smallest */
concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
return io_wq_create(concurrency, &data);
}
static __cold int io_uring_alloc_task_context(struct task_struct *task,
struct io_ring_ctx *ctx)
{
struct io_uring_task *tctx;
int ret;
tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
if (unlikely(!tctx))
return -ENOMEM;
tctx->registered_rings = kcalloc(IO_RINGFD_REG_MAX,
sizeof(struct file *), GFP_KERNEL);
if (unlikely(!tctx->registered_rings)) {
kfree(tctx);
return -ENOMEM;
}
ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
if (unlikely(ret)) {
kfree(tctx->registered_rings);
kfree(tctx);
return ret;
}
tctx->io_wq = io_init_wq_offload(ctx, task);
if (IS_ERR(tctx->io_wq)) {
ret = PTR_ERR(tctx->io_wq);
percpu_counter_destroy(&tctx->inflight);
kfree(tctx->registered_rings);
kfree(tctx);
return ret;
}
xa_init(&tctx->xa);
init_waitqueue_head(&tctx->wait);
atomic_set(&tctx->in_idle, 0);
atomic_set(&tctx->inflight_tracked, 0);
task->io_uring = tctx;
spin_lock_init(&tctx->task_lock);
INIT_WQ_LIST(&tctx->task_list);
INIT_WQ_LIST(&tctx->prio_task_list);
init_task_work(&tctx->task_work, tctx_task_work);
return 0;
}
void __io_uring_free(struct task_struct *tsk)
{
struct io_uring_task *tctx = tsk->io_uring;
WARN_ON_ONCE(!xa_empty(&tctx->xa));
WARN_ON_ONCE(tctx->io_wq);
WARN_ON_ONCE(tctx->cached_refs);
kfree(tctx->registered_rings);
percpu_counter_destroy(&tctx->inflight);
kfree(tctx);
tsk->io_uring = NULL;
}
static __cold int io_sq_offload_create(struct io_ring_ctx *ctx,
struct io_uring_params *p)
{
int ret;
/* Retain compatibility with failing for an invalid attach attempt */
if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
IORING_SETUP_ATTACH_WQ) {
struct fd f;
f = fdget(p->wq_fd);
if (!f.file)
return -ENXIO;
if (f.file->f_op != &io_uring_fops) {
fdput(f);
return -EINVAL;
}
fdput(f);
}
if (ctx->flags & IORING_SETUP_SQPOLL) {
struct task_struct *tsk;
struct io_sq_data *sqd;
bool attached;
ret = security_uring_sqpoll();
if (ret)
return ret;
sqd = io_get_sq_data(p, &attached);
if (IS_ERR(sqd)) {
ret = PTR_ERR(sqd);
goto err;
}
ctx->sq_creds = get_current_cred();
ctx->sq_data = sqd;
ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
if (!ctx->sq_thread_idle)
ctx->sq_thread_idle = HZ;
io_sq_thread_park(sqd);
list_add(&ctx->sqd_list, &sqd->ctx_list);
io_sqd_update_thread_idle(sqd);
/* don't attach to a dying SQPOLL thread, would be racy */
ret = (attached && !sqd->thread) ? -ENXIO : 0;
io_sq_thread_unpark(sqd);
if (ret < 0)
goto err;
if (attached)
return 0;
if (p->flags & IORING_SETUP_SQ_AFF) {
int cpu = p->sq_thread_cpu;
ret = -EINVAL;
if (cpu >= nr_cpu_ids || !cpu_online(cpu))
goto err_sqpoll;
sqd->sq_cpu = cpu;
} else {
sqd->sq_cpu = -1;
}
sqd->task_pid = current->pid;
sqd->task_tgid = current->tgid;
tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
if (IS_ERR(tsk)) {
ret = PTR_ERR(tsk);
goto err_sqpoll;
}
sqd->thread = tsk;
ret = io_uring_alloc_task_context(tsk, ctx);
wake_up_new_task(tsk);
if (ret)
goto err;
} else if (p->flags & IORING_SETUP_SQ_AFF) {
/* Can't have SQ_AFF without SQPOLL */
ret = -EINVAL;
goto err;
}
return 0;
err_sqpoll:
complete(&ctx->sq_data->exited);
err:
io_sq_thread_finish(ctx);
return ret;
}
static inline void __io_unaccount_mem(struct user_struct *user,
unsigned long nr_pages)
{
atomic_long_sub(nr_pages, &user->locked_vm);
}
static inline int __io_account_mem(struct user_struct *user,
unsigned long nr_pages)
{
unsigned long page_limit, cur_pages, new_pages;
/* Don't allow more pages than we can safely lock */
page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
do {
cur_pages = atomic_long_read(&user->locked_vm);
new_pages = cur_pages + nr_pages;
if (new_pages > page_limit)
return -ENOMEM;
} while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
new_pages) != cur_pages);
return 0;
}
static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
{
if (ctx->user)
__io_unaccount_mem(ctx->user, nr_pages);
if (ctx->mm_account)
atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
}
static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
{
int ret;
if (ctx->user) {
ret = __io_account_mem(ctx->user, nr_pages);
if (ret)
return ret;
}
if (ctx->mm_account)
atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
return 0;
}
static void io_mem_free(void *ptr)
{
struct page *page;
if (!ptr)
return;
page = virt_to_head_page(ptr);
if (put_page_testzero(page))
free_compound_page(page);
}
static void *io_mem_alloc(size_t size)
{
gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
return (void *) __get_free_pages(gfp, get_order(size));
}
static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
unsigned int cq_entries, size_t *sq_offset)
{
struct io_rings *rings;
size_t off, sq_array_size;
off = struct_size(rings, cqes, cq_entries);
if (off == SIZE_MAX)
return SIZE_MAX;
if (ctx->flags & IORING_SETUP_CQE32) {
if (check_shl_overflow(off, 1, &off))
return SIZE_MAX;
}
#ifdef CONFIG_SMP
off = ALIGN(off, SMP_CACHE_BYTES);
if (off == 0)
return SIZE_MAX;
#endif
if (sq_offset)
*sq_offset = off;
sq_array_size = array_size(sizeof(u32), sq_entries);
if (sq_array_size == SIZE_MAX)
return SIZE_MAX;
if (check_add_overflow(off, sq_array_size, &off))
return SIZE_MAX;
return off;
}
static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
{
struct io_mapped_ubuf *imu = *slot;
unsigned int i;
if (imu != ctx->dummy_ubuf) {
for (i = 0; i < imu->nr_bvecs; i++)
unpin_user_page(imu->bvec[i].bv_page);
if (imu->acct_pages)
io_unaccount_mem(ctx, imu->acct_pages);
kvfree(imu);
}
*slot = NULL;
}
static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
{
io_buffer_unmap(ctx, &prsrc->buf);
prsrc->buf = NULL;
}
static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
{
unsigned int i;
for (i = 0; i < ctx->nr_user_bufs; i++)
io_buffer_unmap(ctx, &ctx->user_bufs[i]);
kfree(ctx->user_bufs);
io_rsrc_data_free(ctx->buf_data);
ctx->user_bufs = NULL;
ctx->buf_data = NULL;
ctx->nr_user_bufs = 0;
}
static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
{
unsigned nr = ctx->nr_user_bufs;
int ret;
if (!ctx->buf_data)
return -ENXIO;
/*
* Quiesce may unlock ->uring_lock, and while it's not held
* prevent new requests using the table.
*/
ctx->nr_user_bufs = 0;
ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
ctx->nr_user_bufs = nr;
if (!ret)
__io_sqe_buffers_unregister(ctx);
return ret;
}
static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
void __user *arg, unsigned index)
{
struct iovec __user *src;
#ifdef CONFIG_COMPAT
if (ctx->compat) {
struct compat_iovec __user *ciovs;
struct compat_iovec ciov;
ciovs = (struct compat_iovec __user *) arg;
if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
return -EFAULT;
dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
dst->iov_len = ciov.iov_len;
return 0;
}
#endif
src = (struct iovec __user *) arg;
if (copy_from_user(dst, &src[index], sizeof(*dst)))
return -EFAULT;
return 0;
}
/*
* Not super efficient, but this is just a registration time. And we do cache
* the last compound head, so generally we'll only do a full search if we don't
* match that one.
*
* We check if the given compound head page has already been accounted, to
* avoid double accounting it. This allows us to account the full size of the
* page, not just the constituent pages of a huge page.
*/
static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
int nr_pages, struct page *hpage)
{
int i, j;
/* check current page array */
for (i = 0; i < nr_pages; i++) {
if (!PageCompound(pages[i]))
continue;
if (compound_head(pages[i]) == hpage)
return true;
}
/* check previously registered pages */
for (i = 0; i < ctx->nr_user_bufs; i++) {
struct io_mapped_ubuf *imu = ctx->user_bufs[i];
for (j = 0; j < imu->nr_bvecs; j++) {
if (!PageCompound(imu->bvec[j].bv_page))
continue;
if (compound_head(imu->bvec[j].bv_page) == hpage)
return true;
}
}
return false;
}
static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
int nr_pages, struct io_mapped_ubuf *imu,
struct page **last_hpage)
{
int i, ret;
imu->acct_pages = 0;
for (i = 0; i < nr_pages; i++) {
if (!PageCompound(pages[i])) {
imu->acct_pages++;
} else {
struct page *hpage;
hpage = compound_head(pages[i]);
if (hpage == *last_hpage)
continue;
*last_hpage = hpage;
if (headpage_already_acct(ctx, pages, i, hpage))
continue;
imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
}
}
if (!imu->acct_pages)
return 0;
ret = io_account_mem(ctx, imu->acct_pages);
if (ret)
imu->acct_pages = 0;
return ret;
}
static struct page **io_pin_pages(unsigned long ubuf, unsigned long len,
int *npages)
{
unsigned long start, end, nr_pages;
struct vm_area_struct **vmas = NULL;
struct page **pages = NULL;
int i, pret, ret = -ENOMEM;
end = (ubuf + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
start = ubuf >> PAGE_SHIFT;
nr_pages = end - start;
pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
if (!pages)
goto done;
vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
GFP_KERNEL);
if (!vmas)
goto done;
ret = 0;
mmap_read_lock(current->mm);
pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
pages, vmas);
if (pret == nr_pages) {
/* don't support file backed memory */
for (i = 0; i < nr_pages; i++) {
struct vm_area_struct *vma = vmas[i];
if (vma_is_shmem(vma))
continue;
if (vma->vm_file &&
!is_file_hugepages(vma->vm_file)) {
ret = -EOPNOTSUPP;
break;
}
}
*npages = nr_pages;
} else {
ret = pret < 0 ? pret : -EFAULT;
}
mmap_read_unlock(current->mm);
if (ret) {
/*
* if we did partial map, or found file backed vmas,
* release any pages we did get
*/
if (pret > 0)
unpin_user_pages(pages, pret);
goto done;
}
ret = 0;
done:
kvfree(vmas);
if (ret < 0) {
kvfree(pages);
pages = ERR_PTR(ret);
}
return pages;
}
static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
struct io_mapped_ubuf **pimu,
struct page **last_hpage)
{
struct io_mapped_ubuf *imu = NULL;
struct page **pages = NULL;
unsigned long off;
size_t size;
int ret, nr_pages, i;
if (!iov->iov_base) {
*pimu = ctx->dummy_ubuf;
return 0;
}
*pimu = NULL;
ret = -ENOMEM;
pages = io_pin_pages((unsigned long) iov->iov_base, iov->iov_len,
&nr_pages);
if (IS_ERR(pages)) {
ret = PTR_ERR(pages);
pages = NULL;
goto done;
}
imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
if (!imu)
goto done;
ret = io_buffer_account_pin(ctx, pages, nr_pages, imu, last_hpage);
if (ret) {
unpin_user_pages(pages, nr_pages);
goto done;
}
off = (unsigned long) iov->iov_base & ~PAGE_MASK;
size = iov->iov_len;
for (i = 0; i < nr_pages; i++) {
size_t vec_len;
vec_len = min_t(size_t, size, PAGE_SIZE - off);
imu->bvec[i].bv_page = pages[i];
imu->bvec[i].bv_len = vec_len;
imu->bvec[i].bv_offset = off;
off = 0;
size -= vec_len;
}
/* store original address for later verification */
imu->ubuf = (unsigned long) iov->iov_base;
imu->ubuf_end = imu->ubuf + iov->iov_len;
imu->nr_bvecs = nr_pages;
*pimu = imu;
ret = 0;
done:
if (ret)
kvfree(imu);
kvfree(pages);
return ret;
}
static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
{
ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
return ctx->user_bufs ? 0 : -ENOMEM;
}
static int io_buffer_validate(struct iovec *iov)
{
unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
/*
* Don't impose further limits on the size and buffer
* constraints here, we'll -EINVAL later when IO is
* submitted if they are wrong.
*/
if (!iov->iov_base)
return iov->iov_len ? -EFAULT : 0;
if (!iov->iov_len)
return -EFAULT;
/* arbitrary limit, but we need something */
if (iov->iov_len > SZ_1G)
return -EFAULT;
if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
return -EOVERFLOW;
return 0;
}
static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
unsigned int nr_args, u64 __user *tags)
{
struct page *last_hpage = NULL;
struct io_rsrc_data *data;
int i, ret;
struct iovec iov;
if (ctx->user_bufs)
return -EBUSY;
if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
return -EINVAL;
ret = io_rsrc_node_switch_start(ctx);
if (ret)
return ret;
ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
if (ret)
return ret;
ret = io_buffers_map_alloc(ctx, nr_args);
if (ret) {
io_rsrc_data_free(data);
return ret;
}
for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
if (arg) {
ret = io_copy_iov(ctx, &iov, arg, i);
if (ret)
break;
ret = io_buffer_validate(&iov);
if (ret)
break;
} else {
memset(&iov, 0, sizeof(iov));
}
if (!iov.iov_base && *io_get_tag_slot(data, i)) {
ret = -EINVAL;
break;
}
ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
&last_hpage);
if (ret)
break;
}
WARN_ON_ONCE(ctx->buf_data);
ctx->buf_data = data;
if (ret)
__io_sqe_buffers_unregister(ctx);
else
io_rsrc_node_switch(ctx, NULL);
return ret;
}
static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
struct io_uring_rsrc_update2 *up,
unsigned int nr_args)
{
u64 __user *tags = u64_to_user_ptr(up->tags);
struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
struct page *last_hpage = NULL;
bool needs_switch = false;
__u32 done;
int i, err;
if (!ctx->buf_data)
return -ENXIO;
if (up->offset + nr_args > ctx->nr_user_bufs)
return -EINVAL;
for (done = 0; done < nr_args; done++) {
struct io_mapped_ubuf *imu;
int offset = up->offset + done;
u64 tag = 0;
err = io_copy_iov(ctx, &iov, iovs, done);
if (err)
break;
if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
err = -EFAULT;
break;
}
err = io_buffer_validate(&iov);
if (err)
break;
if (!iov.iov_base && tag) {
err = -EINVAL;
break;
}
err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
if (err)
break;
i = array_index_nospec(offset, ctx->nr_user_bufs);
if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
err = io_queue_rsrc_removal(ctx->buf_data, i,
ctx->rsrc_node, ctx->user_bufs[i]);
if (unlikely(err)) {
io_buffer_unmap(ctx, &imu);
break;
}
ctx->user_bufs[i] = NULL;
needs_switch = true;
}
ctx->user_bufs[i] = imu;
*io_get_tag_slot(ctx->buf_data, offset) = tag;
}
if (needs_switch)
io_rsrc_node_switch(ctx, ctx->buf_data);
return done ? done : err;
}
static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
unsigned int eventfd_async)
{
struct io_ev_fd *ev_fd;
__s32 __user *fds = arg;
int fd;
ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
lockdep_is_held(&ctx->uring_lock));
if (ev_fd)
return -EBUSY;
if (copy_from_user(&fd, fds, sizeof(*fds)))
return -EFAULT;
ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
if (!ev_fd)
return -ENOMEM;
ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
if (IS_ERR(ev_fd->cq_ev_fd)) {
int ret = PTR_ERR(ev_fd->cq_ev_fd);
kfree(ev_fd);
return ret;
}
ev_fd->eventfd_async = eventfd_async;
ctx->has_evfd = true;
rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
return 0;
}
static void io_eventfd_put(struct rcu_head *rcu)
{
struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
eventfd_ctx_put(ev_fd->cq_ev_fd);
kfree(ev_fd);
}
static int io_eventfd_unregister(struct io_ring_ctx *ctx)
{
struct io_ev_fd *ev_fd;
ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
lockdep_is_held(&ctx->uring_lock));
if (ev_fd) {
ctx->has_evfd = false;
rcu_assign_pointer(ctx->io_ev_fd, NULL);
call_rcu(&ev_fd->rcu, io_eventfd_put);
return 0;
}
return -ENXIO;
}
static void io_destroy_buffers(struct io_ring_ctx *ctx)
{
struct io_buffer_list *bl;
unsigned long index;
int i;
for (i = 0; i < BGID_ARRAY; i++) {
if (!ctx->io_bl)
break;
__io_remove_buffers(ctx, &ctx->io_bl[i], -1U);
}
xa_for_each(&ctx->io_bl_xa, index, bl) {
xa_erase(&ctx->io_bl_xa, bl->bgid);
__io_remove_buffers(ctx, bl, -1U);
kfree(bl);
}
while (!list_empty(&ctx->io_buffers_pages)) {
struct page *page;
page = list_first_entry(&ctx->io_buffers_pages, struct page, lru);
list_del_init(&page->lru);
__free_page(page);
}
}
static void io_req_caches_free(struct io_ring_ctx *ctx)
{
struct io_submit_state *state = &ctx->submit_state;
int nr = 0;
mutex_lock(&ctx->uring_lock);
io_flush_cached_locked_reqs(ctx, state);
while (!io_req_cache_empty(ctx)) {
struct io_wq_work_node *node;
struct io_kiocb *req;
node = wq_stack_extract(&state->free_list);
req = container_of(node, struct io_kiocb, comp_list);
kmem_cache_free(req_cachep, req);
nr++;
}
if (nr)
percpu_ref_put_many(&ctx->refs, nr);
mutex_unlock(&ctx->uring_lock);
}
static void io_wait_rsrc_data(struct io_rsrc_data *data)
{
if (data && !atomic_dec_and_test(&data->refs))
wait_for_completion(&data->done);
}
static void io_flush_apoll_cache(struct io_ring_ctx *ctx)
{
struct async_poll *apoll;
while (!list_empty(&ctx->apoll_cache)) {
apoll = list_first_entry(&ctx->apoll_cache, struct async_poll,
poll.wait.entry);
list_del(&apoll->poll.wait.entry);
kfree(apoll);
}
}
static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
{
io_sq_thread_finish(ctx);
if (ctx->mm_account) {
mmdrop(ctx->mm_account);
ctx->mm_account = NULL;
}
io_rsrc_refs_drop(ctx);
/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
io_wait_rsrc_data(ctx->buf_data);
io_wait_rsrc_data(ctx->file_data);
mutex_lock(&ctx->uring_lock);
if (ctx->buf_data)
__io_sqe_buffers_unregister(ctx);
if (ctx->file_data)
__io_sqe_files_unregister(ctx);
if (ctx->rings)
__io_cqring_overflow_flush(ctx, true);
io_eventfd_unregister(ctx);
io_flush_apoll_cache(ctx);
mutex_unlock(&ctx->uring_lock);
io_destroy_buffers(ctx);
if (ctx->sq_creds)
put_cred(ctx->sq_creds);
/* there are no registered resources left, nobody uses it */
if (ctx->rsrc_node)
io_rsrc_node_destroy(ctx->rsrc_node);
if (ctx->rsrc_backup_node)
io_rsrc_node_destroy(ctx->rsrc_backup_node);
flush_delayed_work(&ctx->rsrc_put_work);
flush_delayed_work(&ctx->fallback_work);
WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
#if defined(CONFIG_UNIX)
if (ctx->ring_sock) {
ctx->ring_sock->file = NULL; /* so that iput() is called */
sock_release(ctx->ring_sock);
}
#endif
WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
io_mem_free(ctx->rings);
io_mem_free(ctx->sq_sqes);
percpu_ref_exit(&ctx->refs);
free_uid(ctx->user);
io_req_caches_free(ctx);
if (ctx->hash_map)
io_wq_put_hash(ctx->hash_map);
kfree(ctx->cancel_hash);
kfree(ctx->dummy_ubuf);
kfree(ctx->io_bl);
xa_destroy(&ctx->io_bl_xa);
kfree(ctx);
}
static __poll_t io_uring_poll(struct file *file, poll_table *wait)
{
struct io_ring_ctx *ctx = file->private_data;
__poll_t mask = 0;
poll_wait(file, &ctx->cq_wait, wait);
/*
* synchronizes with barrier from wq_has_sleeper call in
* io_commit_cqring
*/
smp_rmb();
if (!io_sqring_full(ctx))
mask |= EPOLLOUT | EPOLLWRNORM;
/*
* Don't flush cqring overflow list here, just do a simple check.
* Otherwise there could possible be ABBA deadlock:
* CPU0 CPU1
* ---- ----
* lock(&ctx->uring_lock);
* lock(&ep->mtx);
* lock(&ctx->uring_lock);
* lock(&ep->mtx);
*
* Users may get EPOLLIN meanwhile seeing nothing in cqring, this
* pushs them to do the flush.
*/
if (io_cqring_events(ctx) ||
test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
mask |= EPOLLIN | EPOLLRDNORM;
return mask;
}
static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
{
const struct cred *creds;
creds = xa_erase(&ctx->personalities, id);
if (creds) {
put_cred(creds);
return 0;
}
return -EINVAL;
}
struct io_tctx_exit {
struct callback_head task_work;
struct completion completion;
struct io_ring_ctx *ctx;
};
static __cold void io_tctx_exit_cb(struct callback_head *cb)
{
struct io_uring_task *tctx = current->io_uring;
struct io_tctx_exit *work;
work = container_of(cb, struct io_tctx_exit, task_work);
/*
* When @in_idle, we're in cancellation and it's racy to remove the
* node. It'll be removed by the end of cancellation, just ignore it.
*/
if (!atomic_read(&tctx->in_idle))
io_uring_del_tctx_node((unsigned long)work->ctx);
complete(&work->completion);
}
static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
{
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
return req->ctx == data;
}
static __cold void io_ring_exit_work(struct work_struct *work)
{
struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
unsigned long timeout = jiffies + HZ * 60 * 5;
unsigned long interval = HZ / 20;
struct io_tctx_exit exit;
struct io_tctx_node *node;
int ret;
/*
* If we're doing polled IO and end up having requests being
* submitted async (out-of-line), then completions can come in while
* we're waiting for refs to drop. We need to reap these manually,
* as nobody else will be looking for them.
*/
do {
io_uring_try_cancel_requests(ctx, NULL, true);
if (ctx->sq_data) {
struct io_sq_data *sqd = ctx->sq_data;
struct task_struct *tsk;
io_sq_thread_park(sqd);
tsk = sqd->thread;
if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
io_wq_cancel_cb(tsk->io_uring->io_wq,
io_cancel_ctx_cb, ctx, true);
io_sq_thread_unpark(sqd);
}
io_req_caches_free(ctx);
if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
/* there is little hope left, don't run it too often */
interval = HZ * 60;
}
} while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
init_completion(&exit.completion);
init_task_work(&exit.task_work, io_tctx_exit_cb);
exit.ctx = ctx;
/*
* Some may use context even when all refs and requests have been put,
* and they are free to do so while still holding uring_lock or
* completion_lock, see io_req_task_submit(). Apart from other work,
* this lock/unlock section also waits them to finish.
*/
mutex_lock(&ctx->uring_lock);
while (!list_empty(&ctx->tctx_list)) {
WARN_ON_ONCE(time_after(jiffies, timeout));
node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
ctx_node);
/* don't spin on a single task if cancellation failed */
list_rotate_left(&ctx->tctx_list);
ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
if (WARN_ON_ONCE(ret))
continue;
mutex_unlock(&ctx->uring_lock);
wait_for_completion(&exit.completion);
mutex_lock(&ctx->uring_lock);
}
mutex_unlock(&ctx->uring_lock);
spin_lock(&ctx->completion_lock);
spin_unlock(&ctx->completion_lock);
io_ring_ctx_free(ctx);
}
/* Returns true if we found and killed one or more timeouts */
static __cold bool io_kill_timeouts(struct io_ring_ctx *ctx,
struct task_struct *tsk, bool cancel_all)
{
struct io_kiocb *req, *tmp;
int canceled = 0;
spin_lock(&ctx->completion_lock);
spin_lock_irq(&ctx->timeout_lock);
list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
if (io_match_task(req, tsk, cancel_all)) {
io_kill_timeout(req, -ECANCELED);
canceled++;
}
}
spin_unlock_irq(&ctx->timeout_lock);
io_commit_cqring(ctx);
spin_unlock(&ctx->completion_lock);
if (canceled != 0)
io_cqring_ev_posted(ctx);
return canceled != 0;
}
static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
{
unsigned long index;
struct creds *creds;
mutex_lock(&ctx->uring_lock);
percpu_ref_kill(&ctx->refs);
if (ctx->rings)
__io_cqring_overflow_flush(ctx, true);
xa_for_each(&ctx->personalities, index, creds)
io_unregister_personality(ctx, index);
mutex_unlock(&ctx->uring_lock);
/* failed during ring init, it couldn't have issued any requests */
if (ctx->rings) {
io_kill_timeouts(ctx, NULL, true);
io_poll_remove_all(ctx, NULL, true);
/* if we failed setting up the ctx, we might not have any rings */
io_iopoll_try_reap_events(ctx);
}
INIT_WORK(&ctx->exit_work, io_ring_exit_work);
/*
* Use system_unbound_wq to avoid spawning tons of event kworkers
* if we're exiting a ton of rings at the same time. It just adds
* noise and overhead, there's no discernable change in runtime
* over using system_wq.
*/
queue_work(system_unbound_wq, &ctx->exit_work);
}
static int io_uring_release(struct inode *inode, struct file *file)
{
struct io_ring_ctx *ctx = file->private_data;
file->private_data = NULL;
io_ring_ctx_wait_and_kill(ctx);
return 0;
}
struct io_task_cancel {
struct task_struct *task;
bool all;
};
static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
{
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
struct io_task_cancel *cancel = data;
return io_match_task_safe(req, cancel->task, cancel->all);
}
static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
struct task_struct *task,
bool cancel_all)
{
struct io_defer_entry *de;
LIST_HEAD(list);
spin_lock(&ctx->completion_lock);
list_for_each_entry_reverse(de, &ctx->defer_list, list) {
if (io_match_task_safe(de->req, task, cancel_all)) {
list_cut_position(&list, &ctx->defer_list, &de->list);
break;
}
}
spin_unlock(&ctx->completion_lock);
if (list_empty(&list))
return false;
while (!list_empty(&list)) {
de = list_first_entry(&list, struct io_defer_entry, list);
list_del_init(&de->list);
io_req_complete_failed(de->req, -ECANCELED);
kfree(de);
}
return true;
}
static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
{
struct io_tctx_node *node;
enum io_wq_cancel cret;
bool ret = false;
mutex_lock(&ctx->uring_lock);
list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
struct io_uring_task *tctx = node->task->io_uring;
/*
* io_wq will stay alive while we hold uring_lock, because it's
* killed after ctx nodes, which requires to take the lock.
*/
if (!tctx || !tctx->io_wq)
continue;
cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
}
mutex_unlock(&ctx->uring_lock);
return ret;
}
static __cold void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
struct task_struct *task,
bool cancel_all)
{
struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
struct io_uring_task *tctx = task ? task->io_uring : NULL;
/* failed during ring init, it couldn't have issued any requests */
if (!ctx->rings)
return;
while (1) {
enum io_wq_cancel cret;
bool ret = false;
if (!task) {
ret |= io_uring_try_cancel_iowq(ctx);
} else if (tctx && tctx->io_wq) {
/*
* Cancels requests of all rings, not only @ctx, but
* it's fine as the task is in exit/exec.
*/
cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
&cancel, true);
ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
}
/* SQPOLL thread does its own polling */
if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
(ctx->sq_data && ctx->sq_data->thread == current)) {
while (!wq_list_empty(&ctx->iopoll_list)) {
io_iopoll_try_reap_events(ctx);
ret = true;
}
}
ret |= io_cancel_defer_files(ctx, task, cancel_all);
ret |= io_poll_remove_all(ctx, task, cancel_all);
ret |= io_kill_timeouts(ctx, task, cancel_all);
if (task)
ret |= io_run_task_work();
if (!ret)
break;
cond_resched();
}
}
static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
{
struct io_uring_task *tctx = current->io_uring;
struct io_tctx_node *node;
int ret;
if (unlikely(!tctx)) {
ret = io_uring_alloc_task_context(current, ctx);
if (unlikely(ret))
return ret;
tctx = current->io_uring;
if (ctx->iowq_limits_set) {
unsigned int limits[2] = { ctx->iowq_limits[0],
ctx->iowq_limits[1], };
ret = io_wq_max_workers(tctx->io_wq, limits);
if (ret)
return ret;
}
}
if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
node = kmalloc(sizeof(*node), GFP_KERNEL);
if (!node)
return -ENOMEM;
node->ctx = ctx;
node->task = current;
ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
node, GFP_KERNEL));
if (ret) {
kfree(node);
return ret;
}
mutex_lock(&ctx->uring_lock);
list_add(&node->ctx_node, &ctx->tctx_list);
mutex_unlock(&ctx->uring_lock);
}
tctx->last = ctx;
return 0;
}
/*
* Note that this task has used io_uring. We use it for cancelation purposes.
*/
static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
{
struct io_uring_task *tctx = current->io_uring;
if (likely(tctx && tctx->last == ctx))
return 0;
return __io_uring_add_tctx_node(ctx);
}
/*
* Remove this io_uring_file -> task mapping.
*/
static __cold void io_uring_del_tctx_node(unsigned long index)
{
struct io_uring_task *tctx = current->io_uring;
struct io_tctx_node *node;
if (!tctx)
return;
node = xa_erase(&tctx->xa, index);
if (!node)
return;
WARN_ON_ONCE(current != node->task);
WARN_ON_ONCE(list_empty(&node->ctx_node));
mutex_lock(&node->ctx->uring_lock);
list_del(&node->ctx_node);
mutex_unlock(&node->ctx->uring_lock);
if (tctx->last == node->ctx)
tctx->last = NULL;
kfree(node);
}
static __cold void io_uring_clean_tctx(struct io_uring_task *tctx)
{
struct io_wq *wq = tctx->io_wq;
struct io_tctx_node *node;
unsigned long index;
xa_for_each(&tctx->xa, index, node) {
io_uring_del_tctx_node(index);
cond_resched();
}
if (wq) {
/*
* Must be after io_uring_del_tctx_node() (removes nodes under
* uring_lock) to avoid race with io_uring_try_cancel_iowq().
*/
io_wq_put_and_exit(wq);
tctx->io_wq = NULL;
}
}
static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
{
if (tracked)
return atomic_read(&tctx->inflight_tracked);
return percpu_counter_sum(&tctx->inflight);
}
/*
* Find any io_uring ctx that this task has registered or done IO on, and cancel
* requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
*/
static __cold void io_uring_cancel_generic(bool cancel_all,
struct io_sq_data *sqd)
{
struct io_uring_task *tctx = current->io_uring;
struct io_ring_ctx *ctx;
s64 inflight;
DEFINE_WAIT(wait);
WARN_ON_ONCE(sqd && sqd->thread != current);
if (!current->io_uring)
return;
if (tctx->io_wq)
io_wq_exit_start(tctx->io_wq);
atomic_inc(&tctx->in_idle);
do {
io_uring_drop_tctx_refs(current);
/* read completions before cancelations */
inflight = tctx_inflight(tctx, !cancel_all);
if (!inflight)
break;
if (!sqd) {
struct io_tctx_node *node;
unsigned long index;
xa_for_each(&tctx->xa, index, node) {
/* sqpoll task will cancel all its requests */
if (node->ctx->sq_data)
continue;
io_uring_try_cancel_requests(node->ctx, current,
cancel_all);
}
} else {
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
io_uring_try_cancel_requests(ctx, current,
cancel_all);
}
prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
io_run_task_work();
io_uring_drop_tctx_refs(current);
/*
* If we've seen completions, retry without waiting. This
* avoids a race where a completion comes in before we did
* prepare_to_wait().
*/
if (inflight == tctx_inflight(tctx, !cancel_all))
schedule();
finish_wait(&tctx->wait, &wait);
} while (1);
io_uring_clean_tctx(tctx);
if (cancel_all) {
/*
* We shouldn't run task_works after cancel, so just leave
* ->in_idle set for normal exit.
*/
atomic_dec(&tctx->in_idle);
/* for exec all current's requests should be gone, kill tctx */
__io_uring_free(current);
}
}
void __io_uring_cancel(bool cancel_all)
{
io_uring_cancel_generic(cancel_all, NULL);
}
void io_uring_unreg_ringfd(void)
{
struct io_uring_task *tctx = current->io_uring;
int i;
for (i = 0; i < IO_RINGFD_REG_MAX; i++) {
if (tctx->registered_rings[i]) {
fput(tctx->registered_rings[i]);
tctx->registered_rings[i] = NULL;
}
}
}
static int io_ring_add_registered_fd(struct io_uring_task *tctx, int fd,
int start, int end)
{
struct file *file;
int offset;
for (offset = start; offset < end; offset++) {
offset = array_index_nospec(offset, IO_RINGFD_REG_MAX);
if (tctx->registered_rings[offset])
continue;
file = fget(fd);
if (!file) {
return -EBADF;
} else if (file->f_op != &io_uring_fops) {
fput(file);
return -EOPNOTSUPP;
}
tctx->registered_rings[offset] = file;
return offset;
}
return -EBUSY;
}
/*
* Register a ring fd to avoid fdget/fdput for each io_uring_enter()
* invocation. User passes in an array of struct io_uring_rsrc_update
* with ->data set to the ring_fd, and ->offset given for the desired
* index. If no index is desired, application may set ->offset == -1U
* and we'll find an available index. Returns number of entries
* successfully processed, or < 0 on error if none were processed.
*/
static int io_ringfd_register(struct io_ring_ctx *ctx, void __user *__arg,
unsigned nr_args)
{
struct io_uring_rsrc_update __user *arg = __arg;
struct io_uring_rsrc_update reg;
struct io_uring_task *tctx;
int ret, i;
if (!nr_args || nr_args > IO_RINGFD_REG_MAX)
return -EINVAL;
mutex_unlock(&ctx->uring_lock);
ret = io_uring_add_tctx_node(ctx);
mutex_lock(&ctx->uring_lock);
if (ret)
return ret;
tctx = current->io_uring;
for (i = 0; i < nr_args; i++) {
int start, end;
if (copy_from_user(&reg, &arg[i], sizeof(reg))) {
ret = -EFAULT;
break;
}
if (reg.resv) {
ret = -EINVAL;
break;
}
if (reg.offset == -1U) {
start = 0;
end = IO_RINGFD_REG_MAX;
} else {
if (reg.offset >= IO_RINGFD_REG_MAX) {
ret = -EINVAL;
break;
}
start = reg.offset;
end = start + 1;
}
ret = io_ring_add_registered_fd(tctx, reg.data, start, end);
if (ret < 0)
break;
reg.offset = ret;
if (copy_to_user(&arg[i], &reg, sizeof(reg))) {
fput(tctx->registered_rings[reg.offset]);
tctx->registered_rings[reg.offset] = NULL;
ret = -EFAULT;
break;
}
}
return i ? i : ret;
}
static int io_ringfd_unregister(struct io_ring_ctx *ctx, void __user *__arg,
unsigned nr_args)
{
struct io_uring_rsrc_update __user *arg = __arg;
struct io_uring_task *tctx = current->io_uring;
struct io_uring_rsrc_update reg;
int ret = 0, i;
if (!nr_args || nr_args > IO_RINGFD_REG_MAX)
return -EINVAL;
if (!tctx)
return 0;
for (i = 0; i < nr_args; i++) {
if (copy_from_user(&reg, &arg[i], sizeof(reg))) {
ret = -EFAULT;
break;
}
if (reg.resv || reg.data || reg.offset >= IO_RINGFD_REG_MAX) {
ret = -EINVAL;
break;
}
reg.offset = array_index_nospec(reg.offset, IO_RINGFD_REG_MAX);
if (tctx->registered_rings[reg.offset]) {
fput(tctx->registered_rings[reg.offset]);
tctx->registered_rings[reg.offset] = NULL;
}
}
return i ? i : ret;
}
static void *io_uring_validate_mmap_request(struct file *file,
loff_t pgoff, size_t sz)
{
struct io_ring_ctx *ctx = file->private_data;
loff_t offset = pgoff << PAGE_SHIFT;
struct page *page;
void *ptr;
switch (offset) {
case IORING_OFF_SQ_RING:
case IORING_OFF_CQ_RING:
ptr = ctx->rings;
break;
case IORING_OFF_SQES:
ptr = ctx->sq_sqes;
break;
default:
return ERR_PTR(-EINVAL);
}
page = virt_to_head_page(ptr);
if (sz > page_size(page))
return ERR_PTR(-EINVAL);
return ptr;
}
#ifdef CONFIG_MMU
static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
{
size_t sz = vma->vm_end - vma->vm_start;
unsigned long pfn;
void *ptr;
ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
}
#else /* !CONFIG_MMU */
static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
{
return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
}
static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
{
return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
}
static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
void *ptr;
ptr = io_uring_validate_mmap_request(file, pgoff, len);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
return (unsigned long) ptr;
}
#endif /* !CONFIG_MMU */
static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
{
DEFINE_WAIT(wait);
do {
if (!io_sqring_full(ctx))
break;
prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
if (!io_sqring_full(ctx))
break;
schedule();
} while (!signal_pending(current));
finish_wait(&ctx->sqo_sq_wait, &wait);
return 0;
}
static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
{
if (flags & IORING_ENTER_EXT_ARG) {
struct io_uring_getevents_arg arg;
if (argsz != sizeof(arg))
return -EINVAL;
if (copy_from_user(&arg, argp, sizeof(arg)))
return -EFAULT;
}
return 0;
}
static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
struct __kernel_timespec __user **ts,
const sigset_t __user **sig)
{
struct io_uring_getevents_arg arg;
/*
* If EXT_ARG isn't set, then we have no timespec and the argp pointer
* is just a pointer to the sigset_t.
*/
if (!(flags & IORING_ENTER_EXT_ARG)) {
*sig = (const sigset_t __user *) argp;
*ts = NULL;
return 0;
}
/*
* EXT_ARG is set - ensure we agree on the size of it and copy in our
* timespec and sigset_t pointers if good.
*/
if (*argsz != sizeof(arg))
return -EINVAL;
if (copy_from_user(&arg, argp, sizeof(arg)))
return -EFAULT;
if (arg.pad)
return -EINVAL;
*sig = u64_to_user_ptr(arg.sigmask);
*argsz = arg.sigmask_sz;
*ts = u64_to_user_ptr(arg.ts);
return 0;
}
SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
u32, min_complete, u32, flags, const void __user *, argp,
size_t, argsz)
{
struct io_ring_ctx *ctx;
struct fd f;
long ret;
io_run_task_work();
if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
IORING_ENTER_REGISTERED_RING)))
return -EINVAL;
/*
* Ring fd has been registered via IORING_REGISTER_RING_FDS, we
* need only dereference our task private array to find it.
*/
if (flags & IORING_ENTER_REGISTERED_RING) {
struct io_uring_task *tctx = current->io_uring;
if (!tctx || fd >= IO_RINGFD_REG_MAX)
return -EINVAL;
fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
f.file = tctx->registered_rings[fd];
f.flags = 0;
} else {
f = fdget(fd);
}
if (unlikely(!f.file))
return -EBADF;
ret = -EOPNOTSUPP;
if (unlikely(f.file->f_op != &io_uring_fops))
goto out_fput;
ret = -ENXIO;
ctx = f.file->private_data;
if (unlikely(!percpu_ref_tryget(&ctx->refs)))
goto out_fput;
ret = -EBADFD;
if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
goto out;
/*
* For SQ polling, the thread will do all submissions and completions.
* Just return the requested submit count, and wake the thread if
* we were asked to.
*/
ret = 0;
if (ctx->flags & IORING_SETUP_SQPOLL) {
io_cqring_overflow_flush(ctx);
if (unlikely(ctx->sq_data->thread == NULL)) {
ret = -EOWNERDEAD;
goto out;
}
if (flags & IORING_ENTER_SQ_WAKEUP)
wake_up(&ctx->sq_data->wait);
if (flags & IORING_ENTER_SQ_WAIT) {
ret = io_sqpoll_wait_sq(ctx);
if (ret)
goto out;
}
ret = to_submit;
} else if (to_submit) {
ret = io_uring_add_tctx_node(ctx);
if (unlikely(ret))
goto out;
mutex_lock(&ctx->uring_lock);
ret = io_submit_sqes(ctx, to_submit);
if (ret != to_submit) {
mutex_unlock(&ctx->uring_lock);
goto out;
}
if ((flags & IORING_ENTER_GETEVENTS) && ctx->syscall_iopoll)
goto iopoll_locked;
mutex_unlock(&ctx->uring_lock);
}
if (flags & IORING_ENTER_GETEVENTS) {
int ret2;
if (ctx->syscall_iopoll) {
/*
* We disallow the app entering submit/complete with
* polling, but we still need to lock the ring to
* prevent racing with polled issue that got punted to
* a workqueue.
*/
mutex_lock(&ctx->uring_lock);
iopoll_locked:
ret2 = io_validate_ext_arg(flags, argp, argsz);
if (likely(!ret2)) {
min_complete = min(min_complete,
ctx->cq_entries);
ret2 = io_iopoll_check(ctx, min_complete);
}
mutex_unlock(&ctx->uring_lock);
} else {
const sigset_t __user *sig;
struct __kernel_timespec __user *ts;
ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
if (likely(!ret2)) {
min_complete = min(min_complete,
ctx->cq_entries);
ret2 = io_cqring_wait(ctx, min_complete, sig,
argsz, ts);
}
}
if (!ret) {
ret = ret2;
/*
* EBADR indicates that one or more CQE were dropped.
* Once the user has been informed we can clear the bit
* as they are obviously ok with those drops.
*/
if (unlikely(ret2 == -EBADR))
clear_bit(IO_CHECK_CQ_DROPPED_BIT,
&ctx->check_cq);
}
}
out:
percpu_ref_put(&ctx->refs);
out_fput:
fdput(f);
return ret;
}
#ifdef CONFIG_PROC_FS
static __cold int io_uring_show_cred(struct seq_file *m, unsigned int id,
const struct cred *cred)
{
struct user_namespace *uns = seq_user_ns(m);
struct group_info *gi;
kernel_cap_t cap;
unsigned __capi;
int g;
seq_printf(m, "%5d\n", id);
seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
seq_puts(m, "\n\tGroups:\t");
gi = cred->group_info;
for (g = 0; g < gi->ngroups; g++) {
seq_put_decimal_ull(m, g ? " " : "",
from_kgid_munged(uns, gi->gid[g]));
}
seq_puts(m, "\n\tCapEff:\t");
cap = cred->cap_effective;
CAP_FOR_EACH_U32(__capi)
seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
seq_putc(m, '\n');
return 0;
}
static __cold void __io_uring_show_fdinfo(struct io_ring_ctx *ctx,
struct seq_file *m)
{
struct io_sq_data *sq = NULL;
struct io_overflow_cqe *ocqe;
struct io_rings *r = ctx->rings;
unsigned int sq_mask = ctx->sq_entries - 1, cq_mask = ctx->cq_entries - 1;
unsigned int sq_head = READ_ONCE(r->sq.head);
unsigned int sq_tail = READ_ONCE(r->sq.tail);
unsigned int cq_head = READ_ONCE(r->cq.head);
unsigned int cq_tail = READ_ONCE(r->cq.tail);
unsigned int cq_shift = 0;
unsigned int sq_entries, cq_entries;
bool has_lock;
bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
unsigned int i;
if (is_cqe32)
cq_shift = 1;
/*
* we may get imprecise sqe and cqe info if uring is actively running
* since we get cached_sq_head and cached_cq_tail without uring_lock
* and sq_tail and cq_head are changed by userspace. But it's ok since
* we usually use these info when it is stuck.
*/
seq_printf(m, "SqMask:\t0x%x\n", sq_mask);
seq_printf(m, "SqHead:\t%u\n", sq_head);
seq_printf(m, "SqTail:\t%u\n", sq_tail);
seq_printf(m, "CachedSqHead:\t%u\n", ctx->cached_sq_head);
seq_printf(m, "CqMask:\t0x%x\n", cq_mask);
seq_printf(m, "CqHead:\t%u\n", cq_head);
seq_printf(m, "CqTail:\t%u\n", cq_tail);
seq_printf(m, "CachedCqTail:\t%u\n", ctx->cached_cq_tail);
seq_printf(m, "SQEs:\t%u\n", sq_tail - ctx->cached_sq_head);
sq_entries = min(sq_tail - sq_head, ctx->sq_entries);
for (i = 0; i < sq_entries; i++) {
unsigned int entry = i + sq_head;
unsigned int sq_idx = READ_ONCE(ctx->sq_array[entry & sq_mask]);
struct io_uring_sqe *sqe;
if (sq_idx > sq_mask)
continue;
sqe = &ctx->sq_sqes[sq_idx];
seq_printf(m, "%5u: opcode:%d, fd:%d, flags:%x, user_data:%llu\n",
sq_idx, sqe->opcode, sqe->fd, sqe->flags,
sqe->user_data);
}
seq_printf(m, "CQEs:\t%u\n", cq_tail - cq_head);
cq_entries = min(cq_tail - cq_head, ctx->cq_entries);
for (i = 0; i < cq_entries; i++) {
unsigned int entry = i + cq_head;
struct io_uring_cqe *cqe = &r->cqes[(entry & cq_mask) << cq_shift];
if (!is_cqe32) {
seq_printf(m, "%5u: user_data:%llu, res:%d, flag:%x\n",
entry & cq_mask, cqe->user_data, cqe->res,
cqe->flags);
} else {
seq_printf(m, "%5u: user_data:%llu, res:%d, flag:%x, "
"extra1:%llu, extra2:%llu\n",
entry & cq_mask, cqe->user_data, cqe->res,
cqe->flags, cqe->big_cqe[0], cqe->big_cqe[1]);
}
}
/*
* Avoid ABBA deadlock between the seq lock and the io_uring mutex,
* since fdinfo case grabs it in the opposite direction of normal use
* cases. If we fail to get the lock, we just don't iterate any
* structures that could be going away outside the io_uring mutex.
*/
has_lock = mutex_trylock(&ctx->uring_lock);
if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
sq = ctx->sq_data;
if (!sq->thread)
sq = NULL;
}
seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
struct file *f = io_file_from_index(ctx, i);
if (f)
seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
else
seq_printf(m, "%5u: <none>\n", i);
}
seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
struct io_mapped_ubuf *buf = ctx->user_bufs[i];
unsigned int len = buf->ubuf_end - buf->ubuf;
seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
}
if (has_lock && !xa_empty(&ctx->personalities)) {
unsigned long index;
const struct cred *cred;
seq_printf(m, "Personalities:\n");
xa_for_each(&ctx->personalities, index, cred)
io_uring_show_cred(m, index, cred);
}
if (has_lock)
mutex_unlock(&ctx->uring_lock);
seq_puts(m, "PollList:\n");
spin_lock(&ctx->completion_lock);
for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
struct hlist_head *list = &ctx->cancel_hash[i];
struct io_kiocb *req;
hlist_for_each_entry(req, list, hash_node)
seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
task_work_pending(req->task));
}
seq_puts(m, "CqOverflowList:\n");
list_for_each_entry(ocqe, &ctx->cq_overflow_list, list) {
struct io_uring_cqe *cqe = &ocqe->cqe;
seq_printf(m, " user_data=%llu, res=%d, flags=%x\n",
cqe->user_data, cqe->res, cqe->flags);
}
spin_unlock(&ctx->completion_lock);
}
static __cold void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
{
struct io_ring_ctx *ctx = f->private_data;
if (percpu_ref_tryget(&ctx->refs)) {
__io_uring_show_fdinfo(ctx, m);
percpu_ref_put(&ctx->refs);
}
}
#endif
static const struct file_operations io_uring_fops = {
.release = io_uring_release,
.mmap = io_uring_mmap,
#ifndef CONFIG_MMU
.get_unmapped_area = io_uring_nommu_get_unmapped_area,
.mmap_capabilities = io_uring_nommu_mmap_capabilities,
#endif
.poll = io_uring_poll,
#ifdef CONFIG_PROC_FS
.show_fdinfo = io_uring_show_fdinfo,
#endif
};
static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
struct io_uring_params *p)
{
struct io_rings *rings;
size_t size, sq_array_offset;
/* make sure these are sane, as we already accounted them */
ctx->sq_entries = p->sq_entries;
ctx->cq_entries = p->cq_entries;
size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
if (size == SIZE_MAX)
return -EOVERFLOW;
rings = io_mem_alloc(size);
if (!rings)
return -ENOMEM;
ctx->rings = rings;
ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
rings->sq_ring_mask = p->sq_entries - 1;
rings->cq_ring_mask = p->cq_entries - 1;
rings->sq_ring_entries = p->sq_entries;
rings->cq_ring_entries = p->cq_entries;
if (p->flags & IORING_SETUP_SQE128)
size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
else
size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
if (size == SIZE_MAX) {
io_mem_free(ctx->rings);
ctx->rings = NULL;
return -EOVERFLOW;
}
ctx->sq_sqes = io_mem_alloc(size);
if (!ctx->sq_sqes) {
io_mem_free(ctx->rings);
ctx->rings = NULL;
return -ENOMEM;
}
return 0;
}
static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
{
int ret, fd;
fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
if (fd < 0)
return fd;
ret = io_uring_add_tctx_node(ctx);
if (ret) {
put_unused_fd(fd);
return ret;
}
fd_install(fd, file);
return fd;
}
/*
* Allocate an anonymous fd, this is what constitutes the application
* visible backing of an io_uring instance. The application mmaps this
* fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
* we have to tie this fd to a socket for file garbage collection purposes.
*/
static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
{
struct file *file;
#if defined(CONFIG_UNIX)
int ret;
ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
&ctx->ring_sock);
if (ret)
return ERR_PTR(ret);
#endif
file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
O_RDWR | O_CLOEXEC, NULL);
#if defined(CONFIG_UNIX)
if (IS_ERR(file)) {
sock_release(ctx->ring_sock);
ctx->ring_sock = NULL;
} else {
ctx->ring_sock->file = file;
}
#endif
return file;
}
static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
struct io_uring_params __user *params)
{
struct io_ring_ctx *ctx;
struct file *file;
int ret;
if (!entries)
return -EINVAL;
if (entries > IORING_MAX_ENTRIES) {
if (!(p->flags & IORING_SETUP_CLAMP))
return -EINVAL;
entries = IORING_MAX_ENTRIES;
}
/*
* Use twice as many entries for the CQ ring. It's possible for the
* application to drive a higher depth than the size of the SQ ring,
* since the sqes are only used at submission time. This allows for
* some flexibility in overcommitting a bit. If the application has
* set IORING_SETUP_CQSIZE, it will have passed in the desired number
* of CQ ring entries manually.
*/
p->sq_entries = roundup_pow_of_two(entries);
if (p->flags & IORING_SETUP_CQSIZE) {
/*
* If IORING_SETUP_CQSIZE is set, we do the same roundup
* to a power-of-two, if it isn't already. We do NOT impose
* any cq vs sq ring sizing.
*/
if (!p->cq_entries)
return -EINVAL;
if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
if (!(p->flags & IORING_SETUP_CLAMP))
return -EINVAL;
p->cq_entries = IORING_MAX_CQ_ENTRIES;
}
p->cq_entries = roundup_pow_of_two(p->cq_entries);
if (p->cq_entries < p->sq_entries)
return -EINVAL;
} else {
p->cq_entries = 2 * p->sq_entries;
}
ctx = io_ring_ctx_alloc(p);
if (!ctx)
return -ENOMEM;
/*
* When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
* space applications don't need to do io completion events
* polling again, they can rely on io_sq_thread to do polling
* work, which can reduce cpu usage and uring_lock contention.
*/
if (ctx->flags & IORING_SETUP_IOPOLL &&
!(ctx->flags & IORING_SETUP_SQPOLL))
ctx->syscall_iopoll = 1;
ctx->compat = in_compat_syscall();
if (!capable(CAP_IPC_LOCK))
ctx->user = get_uid(current_user());
/*
* For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
* COOP_TASKRUN is set, then IPIs are never needed by the app.
*/
ret = -EINVAL;
if (ctx->flags & IORING_SETUP_SQPOLL) {
/* IPI related flags don't make sense with SQPOLL */
if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
IORING_SETUP_TASKRUN_FLAG))
goto err;
ctx->notify_method = TWA_SIGNAL_NO_IPI;
} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
ctx->notify_method = TWA_SIGNAL_NO_IPI;
} else {
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
goto err;
ctx->notify_method = TWA_SIGNAL;
}
/*
* This is just grabbed for accounting purposes. When a process exits,
* the mm is exited and dropped before the files, hence we need to hang
* on to this mm purely for the purposes of being able to unaccount
* memory (locked/pinned vm). It's not used for anything else.
*/
mmgrab(current->mm);
ctx->mm_account = current->mm;
ret = io_allocate_scq_urings(ctx, p);
if (ret)
goto err;
ret = io_sq_offload_create(ctx, p);
if (ret)
goto err;
/* always set a rsrc node */
ret = io_rsrc_node_switch_start(ctx);
if (ret)
goto err;
io_rsrc_node_switch(ctx, NULL);
memset(&p->sq_off, 0, sizeof(p->sq_off));
p->sq_off.head = offsetof(struct io_rings, sq.head);
p->sq_off.tail = offsetof(struct io_rings, sq.tail);
p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
p->sq_off.flags = offsetof(struct io_rings, sq_flags);
p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
memset(&p->cq_off, 0, sizeof(p->cq_off));
p->cq_off.head = offsetof(struct io_rings, cq.head);
p->cq_off.tail = offsetof(struct io_rings, cq.tail);
p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
p->cq_off.cqes = offsetof(struct io_rings, cqes);
p->cq_off.flags = offsetof(struct io_rings, cq_flags);
p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
IORING_FEAT_LINKED_FILE;
if (copy_to_user(params, p, sizeof(*p))) {
ret = -EFAULT;
goto err;
}
file = io_uring_get_file(ctx);
if (IS_ERR(file)) {
ret = PTR_ERR(file);
goto err;
}
/*
* Install ring fd as the very last thing, so we don't risk someone
* having closed it before we finish setup
*/
ret = io_uring_install_fd(ctx, file);
if (ret < 0) {
/* fput will clean it up */
fput(file);
return ret;
}
trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
return ret;
err:
io_ring_ctx_wait_and_kill(ctx);
return ret;
}
/*
* Sets up an aio uring context, and returns the fd. Applications asks for a
* ring size, we return the actual sq/cq ring sizes (among other things) in the
* params structure passed in.
*/
static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
{
struct io_uring_params p;
int i;
if (copy_from_user(&p, params, sizeof(p)))
return -EFAULT;
for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
if (p.resv[i])
return -EINVAL;
}
if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
IORING_SETUP_SQE128 | IORING_SETUP_CQE32))
return -EINVAL;
return io_uring_create(entries, &p, params);
}
SYSCALL_DEFINE2(io_uring_setup, u32, entries,
struct io_uring_params __user *, params)
{
return io_uring_setup(entries, params);
}
static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
unsigned nr_args)
{
struct io_uring_probe *p;
size_t size;
int i, ret;
size = struct_size(p, ops, nr_args);
if (size == SIZE_MAX)
return -EOVERFLOW;
p = kzalloc(size, GFP_KERNEL);
if (!p)
return -ENOMEM;
ret = -EFAULT;
if (copy_from_user(p, arg, size))
goto out;
ret = -EINVAL;
if (memchr_inv(p, 0, size))
goto out;
p->last_op = IORING_OP_LAST - 1;
if (nr_args > IORING_OP_LAST)
nr_args = IORING_OP_LAST;
for (i = 0; i < nr_args; i++) {
p->ops[i].op = i;
if (!io_op_defs[i].not_supported)
p->ops[i].flags = IO_URING_OP_SUPPORTED;
}
p->ops_len = i;
ret = 0;
if (copy_to_user(arg, p, size))
ret = -EFAULT;
out:
kfree(p);
return ret;
}
static int io_register_personality(struct io_ring_ctx *ctx)
{
const struct cred *creds;
u32 id;
int ret;
creds = get_current_cred();
ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
if (ret < 0) {
put_cred(creds);
return ret;
}
return id;
}
static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
void __user *arg, unsigned int nr_args)
{
struct io_uring_restriction *res;
size_t size;
int i, ret;
/* Restrictions allowed only if rings started disabled */
if (!(ctx->flags & IORING_SETUP_R_DISABLED))
return -EBADFD;
/* We allow only a single restrictions registration */
if (ctx->restrictions.registered)
return -EBUSY;
if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
return -EINVAL;
size = array_size(nr_args, sizeof(*res));
if (size == SIZE_MAX)
return -EOVERFLOW;
res = memdup_user(arg, size);
if (IS_ERR(res))
return PTR_ERR(res);
ret = 0;
for (i = 0; i < nr_args; i++) {
switch (res[i].opcode) {
case IORING_RESTRICTION_REGISTER_OP:
if (res[i].register_op >= IORING_REGISTER_LAST) {
ret = -EINVAL;
goto out;
}
__set_bit(res[i].register_op,
ctx->restrictions.register_op);
break;
case IORING_RESTRICTION_SQE_OP:
if (res[i].sqe_op >= IORING_OP_LAST) {
ret = -EINVAL;
goto out;
}
__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
break;
case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
break;
case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
break;
default:
ret = -EINVAL;
goto out;
}
}
out:
/* Reset all restrictions if an error happened */
if (ret != 0)
memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
else
ctx->restrictions.registered = true;
kfree(res);
return ret;
}
static int io_register_enable_rings(struct io_ring_ctx *ctx)
{
if (!(ctx->flags & IORING_SETUP_R_DISABLED))
return -EBADFD;
if (ctx->restrictions.registered)
ctx->restricted = 1;
ctx->flags &= ~IORING_SETUP_R_DISABLED;
if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
wake_up(&ctx->sq_data->wait);
return 0;
}
static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
struct io_uring_rsrc_update2 *up,
unsigned nr_args)
{
__u32 tmp;
int err;
if (check_add_overflow(up->offset, nr_args, &tmp))
return -EOVERFLOW;
err = io_rsrc_node_switch_start(ctx);
if (err)
return err;
switch (type) {
case IORING_RSRC_FILE:
return __io_sqe_files_update(ctx, up, nr_args);
case IORING_RSRC_BUFFER:
return __io_sqe_buffers_update(ctx, up, nr_args);
}
return -EINVAL;
}
static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
unsigned nr_args)
{
struct io_uring_rsrc_update2 up;
if (!nr_args)
return -EINVAL;
memset(&up, 0, sizeof(up));
if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
return -EFAULT;
if (up.resv || up.resv2)
return -EINVAL;
return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
}
static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
unsigned size, unsigned type)
{
struct io_uring_rsrc_update2 up;
if (size != sizeof(up))
return -EINVAL;
if (copy_from_user(&up, arg, sizeof(up)))
return -EFAULT;
if (!up.nr || up.resv || up.resv2)
return -EINVAL;
return __io_register_rsrc_update(ctx, type, &up, up.nr);
}
static __cold int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
unsigned int size, unsigned int type)
{
struct io_uring_rsrc_register rr;
/* keep it extendible */
if (size != sizeof(rr))
return -EINVAL;
memset(&rr, 0, sizeof(rr));
if (copy_from_user(&rr, arg, size))
return -EFAULT;
if (!rr.nr || rr.resv2)
return -EINVAL;
if (rr.flags & ~IORING_RSRC_REGISTER_SPARSE)
return -EINVAL;
switch (type) {
case IORING_RSRC_FILE:
if (rr.flags & IORING_RSRC_REGISTER_SPARSE && rr.data)
break;
return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
rr.nr, u64_to_user_ptr(rr.tags));
case IORING_RSRC_BUFFER:
if (rr.flags & IORING_RSRC_REGISTER_SPARSE && rr.data)
break;
return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
rr.nr, u64_to_user_ptr(rr.tags));
}
return -EINVAL;
}
static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
void __user *arg, unsigned len)
{
struct io_uring_task *tctx = current->io_uring;
cpumask_var_t new_mask;
int ret;
if (!tctx || !tctx->io_wq)
return -EINVAL;
if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
return -ENOMEM;
cpumask_clear(new_mask);
if (len > cpumask_size())
len = cpumask_size();
if (in_compat_syscall()) {
ret = compat_get_bitmap(cpumask_bits(new_mask),
(const compat_ulong_t __user *)arg,
len * 8 /* CHAR_BIT */);
} else {
ret = copy_from_user(new_mask, arg, len);
}
if (ret) {
free_cpumask_var(new_mask);
return -EFAULT;
}
ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
free_cpumask_var(new_mask);
return ret;
}
static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
{
struct io_uring_task *tctx = current->io_uring;
if (!tctx || !tctx->io_wq)
return -EINVAL;
return io_wq_cpu_affinity(tctx->io_wq, NULL);
}
static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
void __user *arg)
__must_hold(&ctx->uring_lock)
{
struct io_tctx_node *node;
struct io_uring_task *tctx = NULL;
struct io_sq_data *sqd = NULL;
__u32 new_count[2];
int i, ret;
if (copy_from_user(new_count, arg, sizeof(new_count)))
return -EFAULT;
for (i = 0; i < ARRAY_SIZE(new_count); i++)
if (new_count[i] > INT_MAX)
return -EINVAL;
if (ctx->flags & IORING_SETUP_SQPOLL) {
sqd = ctx->sq_data;
if (sqd) {
/*
* Observe the correct sqd->lock -> ctx->uring_lock
* ordering. Fine to drop uring_lock here, we hold
* a ref to the ctx.
*/
refcount_inc(&sqd->refs);
mutex_unlock(&ctx->uring_lock);
mutex_lock(&sqd->lock);
mutex_lock(&ctx->uring_lock);
if (sqd->thread)
tctx = sqd->thread->io_uring;
}
} else {
tctx = current->io_uring;
}
BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
for (i = 0; i < ARRAY_SIZE(new_count); i++)
if (new_count[i])
ctx->iowq_limits[i] = new_count[i];
ctx->iowq_limits_set = true;
if (tctx && tctx->io_wq) {
ret = io_wq_max_workers(tctx->io_wq, new_count);
if (ret)
goto err;
} else {
memset(new_count, 0, sizeof(new_count));
}
if (sqd) {
mutex_unlock(&sqd->lock);
io_put_sq_data(sqd);
}
if (copy_to_user(arg, new_count, sizeof(new_count)))
return -EFAULT;
/* that's it for SQPOLL, only the SQPOLL task creates requests */
if (sqd)
return 0;
/* now propagate the restriction to all registered users */
list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
struct io_uring_task *tctx = node->task->io_uring;
if (WARN_ON_ONCE(!tctx->io_wq))
continue;
for (i = 0; i < ARRAY_SIZE(new_count); i++)
new_count[i] = ctx->iowq_limits[i];
/* ignore errors, it always returns zero anyway */
(void)io_wq_max_workers(tctx->io_wq, new_count);
}
return 0;
err:
if (sqd) {
mutex_unlock(&sqd->lock);
io_put_sq_data(sqd);
}
return ret;
}
static int io_register_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
{
struct io_uring_buf_ring *br;
struct io_uring_buf_reg reg;
struct io_buffer_list *bl;
struct page **pages;
int nr_pages;
if (copy_from_user(&reg, arg, sizeof(reg)))
return -EFAULT;
if (reg.pad || reg.resv[0] || reg.resv[1] || reg.resv[2])
return -EINVAL;
if (!reg.ring_addr)
return -EFAULT;
if (reg.ring_addr & ~PAGE_MASK)
return -EINVAL;
if (!is_power_of_2(reg.ring_entries))
return -EINVAL;
/* cannot disambiguate full vs empty due to head/tail size */
if (reg.ring_entries >= 65536)
return -EINVAL;
if (unlikely(reg.bgid < BGID_ARRAY && !ctx->io_bl)) {
int ret = io_init_bl_list(ctx);
if (ret)
return ret;
}
bl = io_buffer_get_list(ctx, reg.bgid);
if (bl) {
/* if mapped buffer ring OR classic exists, don't allow */
if (bl->buf_nr_pages || !list_empty(&bl->buf_list))
return -EEXIST;
} else {
bl = kzalloc(sizeof(*bl), GFP_KERNEL);
if (!bl)
return -ENOMEM;
}
pages = io_pin_pages(reg.ring_addr,
struct_size(br, bufs, reg.ring_entries),
&nr_pages);
if (IS_ERR(pages)) {
kfree(bl);
return PTR_ERR(pages);
}
br = page_address(pages[0]);
bl->buf_pages = pages;
bl->buf_nr_pages = nr_pages;
bl->nr_entries = reg.ring_entries;
bl->buf_ring = br;
bl->mask = reg.ring_entries - 1;
io_buffer_add_list(ctx, bl, reg.bgid);
return 0;
}
static int io_unregister_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
{
struct io_uring_buf_reg reg;
struct io_buffer_list *bl;
if (copy_from_user(&reg, arg, sizeof(reg)))
return -EFAULT;
if (reg.pad || reg.resv[0] || reg.resv[1] || reg.resv[2])
return -EINVAL;
bl = io_buffer_get_list(ctx, reg.bgid);
if (!bl)
return -ENOENT;
if (!bl->buf_nr_pages)
return -EINVAL;
__io_remove_buffers(ctx, bl, -1U);
if (bl->bgid >= BGID_ARRAY) {
xa_erase(&ctx->io_bl_xa, bl->bgid);
kfree(bl);
}
return 0;
}
static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
void __user *arg, unsigned nr_args)
__releases(ctx->uring_lock)
__acquires(ctx->uring_lock)
{
int ret;
/*
* We're inside the ring mutex, if the ref is already dying, then
* someone else killed the ctx or is already going through
* io_uring_register().
*/
if (percpu_ref_is_dying(&ctx->refs))
return -ENXIO;
if (ctx->restricted) {
if (opcode >= IORING_REGISTER_LAST)
return -EINVAL;
opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
if (!test_bit(opcode, ctx->restrictions.register_op))
return -EACCES;
}
switch (opcode) {
case IORING_REGISTER_BUFFERS:
ret = -EFAULT;
if (!arg)
break;
ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
break;
case IORING_UNREGISTER_BUFFERS:
ret = -EINVAL;
if (arg || nr_args)
break;
ret = io_sqe_buffers_unregister(ctx);
break;
case IORING_REGISTER_FILES:
ret = -EFAULT;
if (!arg)
break;
ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
break;
case IORING_UNREGISTER_FILES:
ret = -EINVAL;
if (arg || nr_args)
break;
ret = io_sqe_files_unregister(ctx);
break;
case IORING_REGISTER_FILES_UPDATE:
ret = io_register_files_update(ctx, arg, nr_args);
break;
case IORING_REGISTER_EVENTFD:
ret = -EINVAL;
if (nr_args != 1)
break;
ret = io_eventfd_register(ctx, arg, 0);
break;
case IORING_REGISTER_EVENTFD_ASYNC:
ret = -EINVAL;
if (nr_args != 1)
break;
ret = io_eventfd_register(ctx, arg, 1);
break;
case IORING_UNREGISTER_EVENTFD:
ret = -EINVAL;
if (arg || nr_args)
break;
ret = io_eventfd_unregister(ctx);
break;
case IORING_REGISTER_PROBE:
ret = -EINVAL;
if (!arg || nr_args > 256)
break;
ret = io_probe(ctx, arg, nr_args);
break;
case IORING_REGISTER_PERSONALITY:
ret = -EINVAL;
if (arg || nr_args)
break;
ret = io_register_personality(ctx);
break;
case IORING_UNREGISTER_PERSONALITY:
ret = -EINVAL;
if (arg)
break;
ret = io_unregister_personality(ctx, nr_args);
break;
case IORING_REGISTER_ENABLE_RINGS:
ret = -EINVAL;
if (arg || nr_args)
break;
ret = io_register_enable_rings(ctx);
break;
case IORING_REGISTER_RESTRICTIONS:
ret = io_register_restrictions(ctx, arg, nr_args);
break;
case IORING_REGISTER_FILES2:
ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
break;
case IORING_REGISTER_FILES_UPDATE2:
ret = io_register_rsrc_update(ctx, arg, nr_args,
IORING_RSRC_FILE);
break;
case IORING_REGISTER_BUFFERS2:
ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
break;
case IORING_REGISTER_BUFFERS_UPDATE:
ret = io_register_rsrc_update(ctx, arg, nr_args,
IORING_RSRC_BUFFER);
break;
case IORING_REGISTER_IOWQ_AFF:
ret = -EINVAL;
if (!arg || !nr_args)
break;
ret = io_register_iowq_aff(ctx, arg, nr_args);
break;
case IORING_UNREGISTER_IOWQ_AFF:
ret = -EINVAL;
if (arg || nr_args)
break;
ret = io_unregister_iowq_aff(ctx);
break;
case IORING_REGISTER_IOWQ_MAX_WORKERS:
ret = -EINVAL;
if (!arg || nr_args != 2)
break;
ret = io_register_iowq_max_workers(ctx, arg);
break;
case IORING_REGISTER_RING_FDS:
ret = io_ringfd_register(ctx, arg, nr_args);
break;
case IORING_UNREGISTER_RING_FDS:
ret = io_ringfd_unregister(ctx, arg, nr_args);
break;
case IORING_REGISTER_PBUF_RING:
ret = -EINVAL;
if (!arg || nr_args != 1)
break;
ret = io_register_pbuf_ring(ctx, arg);
break;
case IORING_UNREGISTER_PBUF_RING:
ret = -EINVAL;
if (!arg || nr_args != 1)
break;
ret = io_unregister_pbuf_ring(ctx, arg);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
void __user *, arg, unsigned int, nr_args)
{
struct io_ring_ctx *ctx;
long ret = -EBADF;
struct fd f;
f = fdget(fd);
if (!f.file)
return -EBADF;
ret = -EOPNOTSUPP;
if (f.file->f_op != &io_uring_fops)
goto out_fput;
ctx = f.file->private_data;
io_run_task_work();
mutex_lock(&ctx->uring_lock);
ret = __io_uring_register(ctx, opcode, arg, nr_args);
mutex_unlock(&ctx->uring_lock);
trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
out_fput:
fdput(f);
return ret;
}
static int __init io_uring_init(void)
{
#define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
} while (0)
#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
__BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
BUILD_BUG_SQE_ELEM(0, __u8, opcode);
BUILD_BUG_SQE_ELEM(1, __u8, flags);
BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
BUILD_BUG_SQE_ELEM(4, __s32, fd);
BUILD_BUG_SQE_ELEM(8, __u64, off);
BUILD_BUG_SQE_ELEM(8, __u64, addr2);
BUILD_BUG_SQE_ELEM(16, __u64, addr);
BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
BUILD_BUG_SQE_ELEM(24, __u32, len);
BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
BUILD_BUG_SQE_ELEM(32, __u64, user_data);
BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
BUILD_BUG_SQE_ELEM(42, __u16, personality);
BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
BUILD_BUG_SQE_ELEM(44, __u32, file_index);
BUILD_BUG_SQE_ELEM(48, __u64, addr3);
BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
sizeof(struct io_uring_rsrc_update));
BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
sizeof(struct io_uring_rsrc_update2));
/* ->buf_index is u16 */
BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
BUILD_BUG_ON(BGID_ARRAY * sizeof(struct io_buffer_list) > PAGE_SIZE);
BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
offsetof(struct io_uring_buf_ring, tail));
/* should fit into one byte */
BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
BUILD_BUG_ON(sizeof(struct io_uring_cmd) > 64);
req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
SLAB_ACCOUNT);
return 0;
};
__initcall(io_uring_init);