linux/fs/cachefiles/rdwr.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

985 lines
24 KiB
C

/* Storage object read/write
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/mount.h>
#include <linux/slab.h>
#include <linux/file.h>
#include "internal.h"
/*
* detect wake up events generated by the unlocking of pages in which we're
* interested
* - we use this to detect read completion of backing pages
* - the caller holds the waitqueue lock
*/
static int cachefiles_read_waiter(wait_queue_t *wait, unsigned mode,
int sync, void *_key)
{
struct cachefiles_one_read *monitor =
container_of(wait, struct cachefiles_one_read, monitor);
struct cachefiles_object *object;
struct wait_bit_key *key = _key;
struct page *page = wait->private;
ASSERT(key);
_enter("{%lu},%u,%d,{%p,%u}",
monitor->netfs_page->index, mode, sync,
key->flags, key->bit_nr);
if (key->flags != &page->flags ||
key->bit_nr != PG_locked)
return 0;
_debug("--- monitor %p %lx ---", page, page->flags);
if (!PageUptodate(page) && !PageError(page)) {
/* unlocked, not uptodate and not erronous? */
_debug("page probably truncated");
}
/* remove from the waitqueue */
list_del(&wait->task_list);
/* move onto the action list and queue for FS-Cache thread pool */
ASSERT(monitor->op);
object = container_of(monitor->op->op.object,
struct cachefiles_object, fscache);
spin_lock(&object->work_lock);
list_add_tail(&monitor->op_link, &monitor->op->to_do);
spin_unlock(&object->work_lock);
fscache_enqueue_retrieval(monitor->op);
return 0;
}
/*
* handle a probably truncated page
* - check to see if the page is still relevant and reissue the read if
* possible
* - return -EIO on error, -ENODATA if the page is gone, -EINPROGRESS if we
* must wait again and 0 if successful
*/
static int cachefiles_read_reissue(struct cachefiles_object *object,
struct cachefiles_one_read *monitor)
{
struct address_space *bmapping = object->backer->d_inode->i_mapping;
struct page *backpage = monitor->back_page, *backpage2;
int ret;
kenter("{ino=%lx},{%lx,%lx}",
object->backer->d_inode->i_ino,
backpage->index, backpage->flags);
/* skip if the page was truncated away completely */
if (backpage->mapping != bmapping) {
kleave(" = -ENODATA [mapping]");
return -ENODATA;
}
backpage2 = find_get_page(bmapping, backpage->index);
if (!backpage2) {
kleave(" = -ENODATA [gone]");
return -ENODATA;
}
if (backpage != backpage2) {
put_page(backpage2);
kleave(" = -ENODATA [different]");
return -ENODATA;
}
/* the page is still there and we already have a ref on it, so we don't
* need a second */
put_page(backpage2);
INIT_LIST_HEAD(&monitor->op_link);
add_page_wait_queue(backpage, &monitor->monitor);
if (trylock_page(backpage)) {
ret = -EIO;
if (PageError(backpage))
goto unlock_discard;
ret = 0;
if (PageUptodate(backpage))
goto unlock_discard;
kdebug("reissue read");
ret = bmapping->a_ops->readpage(NULL, backpage);
if (ret < 0)
goto unlock_discard;
}
/* but the page may have been read before the monitor was installed, so
* the monitor may miss the event - so we have to ensure that we do get
* one in such a case */
if (trylock_page(backpage)) {
_debug("jumpstart %p {%lx}", backpage, backpage->flags);
unlock_page(backpage);
}
/* it'll reappear on the todo list */
kleave(" = -EINPROGRESS");
return -EINPROGRESS;
unlock_discard:
unlock_page(backpage);
spin_lock_irq(&object->work_lock);
list_del(&monitor->op_link);
spin_unlock_irq(&object->work_lock);
kleave(" = %d", ret);
return ret;
}
/*
* copy data from backing pages to netfs pages to complete a read operation
* - driven by FS-Cache's thread pool
*/
static void cachefiles_read_copier(struct fscache_operation *_op)
{
struct cachefiles_one_read *monitor;
struct cachefiles_object *object;
struct fscache_retrieval *op;
struct pagevec pagevec;
int error, max;
op = container_of(_op, struct fscache_retrieval, op);
object = container_of(op->op.object,
struct cachefiles_object, fscache);
_enter("{ino=%lu}", object->backer->d_inode->i_ino);
pagevec_init(&pagevec, 0);
max = 8;
spin_lock_irq(&object->work_lock);
while (!list_empty(&op->to_do)) {
monitor = list_entry(op->to_do.next,
struct cachefiles_one_read, op_link);
list_del(&monitor->op_link);
spin_unlock_irq(&object->work_lock);
_debug("- copy {%lu}", monitor->back_page->index);
recheck:
if (PageUptodate(monitor->back_page)) {
copy_highpage(monitor->netfs_page, monitor->back_page);
pagevec_add(&pagevec, monitor->netfs_page);
fscache_mark_pages_cached(monitor->op, &pagevec);
error = 0;
} else if (!PageError(monitor->back_page)) {
/* the page has probably been truncated */
error = cachefiles_read_reissue(object, monitor);
if (error == -EINPROGRESS)
goto next;
goto recheck;
} else {
cachefiles_io_error_obj(
object,
"Readpage failed on backing file %lx",
(unsigned long) monitor->back_page->flags);
error = -EIO;
}
page_cache_release(monitor->back_page);
fscache_end_io(op, monitor->netfs_page, error);
page_cache_release(monitor->netfs_page);
fscache_put_retrieval(op);
kfree(monitor);
next:
/* let the thread pool have some air occasionally */
max--;
if (max < 0 || need_resched()) {
if (!list_empty(&op->to_do))
fscache_enqueue_retrieval(op);
_leave(" [maxed out]");
return;
}
spin_lock_irq(&object->work_lock);
}
spin_unlock_irq(&object->work_lock);
_leave("");
}
/*
* read the corresponding page to the given set from the backing file
* - an uncertain page is simply discarded, to be tried again another time
*/
static int cachefiles_read_backing_file_one(struct cachefiles_object *object,
struct fscache_retrieval *op,
struct page *netpage,
struct pagevec *pagevec)
{
struct cachefiles_one_read *monitor;
struct address_space *bmapping;
struct page *newpage, *backpage;
int ret;
_enter("");
pagevec_reinit(pagevec);
_debug("read back %p{%lu,%d}",
netpage, netpage->index, page_count(netpage));
monitor = kzalloc(sizeof(*monitor), GFP_KERNEL);
if (!monitor)
goto nomem;
monitor->netfs_page = netpage;
monitor->op = fscache_get_retrieval(op);
init_waitqueue_func_entry(&monitor->monitor, cachefiles_read_waiter);
/* attempt to get hold of the backing page */
bmapping = object->backer->d_inode->i_mapping;
newpage = NULL;
for (;;) {
backpage = find_get_page(bmapping, netpage->index);
if (backpage)
goto backing_page_already_present;
if (!newpage) {
newpage = page_cache_alloc_cold(bmapping);
if (!newpage)
goto nomem_monitor;
}
ret = add_to_page_cache(newpage, bmapping,
netpage->index, GFP_KERNEL);
if (ret == 0)
goto installed_new_backing_page;
if (ret != -EEXIST)
goto nomem_page;
}
/* we've installed a new backing page, so now we need to add it
* to the LRU list and start it reading */
installed_new_backing_page:
_debug("- new %p", newpage);
backpage = newpage;
newpage = NULL;
page_cache_get(backpage);
pagevec_add(pagevec, backpage);
__pagevec_lru_add_file(pagevec);
read_backing_page:
ret = bmapping->a_ops->readpage(NULL, backpage);
if (ret < 0)
goto read_error;
/* set the monitor to transfer the data across */
monitor_backing_page:
_debug("- monitor add");
/* install the monitor */
page_cache_get(monitor->netfs_page);
page_cache_get(backpage);
monitor->back_page = backpage;
monitor->monitor.private = backpage;
add_page_wait_queue(backpage, &monitor->monitor);
monitor = NULL;
/* but the page may have been read before the monitor was installed, so
* the monitor may miss the event - so we have to ensure that we do get
* one in such a case */
if (trylock_page(backpage)) {
_debug("jumpstart %p {%lx}", backpage, backpage->flags);
unlock_page(backpage);
}
goto success;
/* if the backing page is already present, it can be in one of
* three states: read in progress, read failed or read okay */
backing_page_already_present:
_debug("- present");
if (newpage) {
page_cache_release(newpage);
newpage = NULL;
}
if (PageError(backpage))
goto io_error;
if (PageUptodate(backpage))
goto backing_page_already_uptodate;
if (!trylock_page(backpage))
goto monitor_backing_page;
_debug("read %p {%lx}", backpage, backpage->flags);
goto read_backing_page;
/* the backing page is already up to date, attach the netfs
* page to the pagecache and LRU and copy the data across */
backing_page_already_uptodate:
_debug("- uptodate");
pagevec_add(pagevec, netpage);
fscache_mark_pages_cached(op, pagevec);
copy_highpage(netpage, backpage);
fscache_end_io(op, netpage, 0);
success:
_debug("success");
ret = 0;
out:
if (backpage)
page_cache_release(backpage);
if (monitor) {
fscache_put_retrieval(monitor->op);
kfree(monitor);
}
_leave(" = %d", ret);
return ret;
read_error:
_debug("read error %d", ret);
if (ret == -ENOMEM)
goto out;
io_error:
cachefiles_io_error_obj(object, "Page read error on backing file");
ret = -ENOBUFS;
goto out;
nomem_page:
page_cache_release(newpage);
nomem_monitor:
fscache_put_retrieval(monitor->op);
kfree(monitor);
nomem:
_leave(" = -ENOMEM");
return -ENOMEM;
}
/*
* read a page from the cache or allocate a block in which to store it
* - cache withdrawal is prevented by the caller
* - returns -EINTR if interrupted
* - returns -ENOMEM if ran out of memory
* - returns -ENOBUFS if no buffers can be made available
* - returns -ENOBUFS if page is beyond EOF
* - if the page is backed by a block in the cache:
* - a read will be started which will call the callback on completion
* - 0 will be returned
* - else if the page is unbacked:
* - the metadata will be retained
* - -ENODATA will be returned
*/
int cachefiles_read_or_alloc_page(struct fscache_retrieval *op,
struct page *page,
gfp_t gfp)
{
struct cachefiles_object *object;
struct cachefiles_cache *cache;
struct pagevec pagevec;
struct inode *inode;
sector_t block0, block;
unsigned shift;
int ret;
object = container_of(op->op.object,
struct cachefiles_object, fscache);
cache = container_of(object->fscache.cache,
struct cachefiles_cache, cache);
_enter("{%p},{%lx},,,", object, page->index);
if (!object->backer)
return -ENOBUFS;
inode = object->backer->d_inode;
ASSERT(S_ISREG(inode->i_mode));
ASSERT(inode->i_mapping->a_ops->bmap);
ASSERT(inode->i_mapping->a_ops->readpages);
/* calculate the shift required to use bmap */
if (inode->i_sb->s_blocksize > PAGE_SIZE)
return -ENOBUFS;
shift = PAGE_SHIFT - inode->i_sb->s_blocksize_bits;
op->op.flags &= FSCACHE_OP_KEEP_FLAGS;
op->op.flags |= FSCACHE_OP_FAST;
op->op.processor = cachefiles_read_copier;
pagevec_init(&pagevec, 0);
/* we assume the absence or presence of the first block is a good
* enough indication for the page as a whole
* - TODO: don't use bmap() for this as it is _not_ actually good
* enough for this as it doesn't indicate errors, but it's all we've
* got for the moment
*/
block0 = page->index;
block0 <<= shift;
block = inode->i_mapping->a_ops->bmap(inode->i_mapping, block0);
_debug("%llx -> %llx",
(unsigned long long) block0,
(unsigned long long) block);
if (block) {
/* submit the apparently valid page to the backing fs to be
* read from disk */
ret = cachefiles_read_backing_file_one(object, op, page,
&pagevec);
} else if (cachefiles_has_space(cache, 0, 1) == 0) {
/* there's space in the cache we can use */
pagevec_add(&pagevec, page);
fscache_mark_pages_cached(op, &pagevec);
ret = -ENODATA;
} else {
ret = -ENOBUFS;
}
_leave(" = %d", ret);
return ret;
}
/*
* read the corresponding pages to the given set from the backing file
* - any uncertain pages are simply discarded, to be tried again another time
*/
static int cachefiles_read_backing_file(struct cachefiles_object *object,
struct fscache_retrieval *op,
struct list_head *list,
struct pagevec *mark_pvec)
{
struct cachefiles_one_read *monitor = NULL;
struct address_space *bmapping = object->backer->d_inode->i_mapping;
struct pagevec lru_pvec;
struct page *newpage = NULL, *netpage, *_n, *backpage = NULL;
int ret = 0;
_enter("");
pagevec_init(&lru_pvec, 0);
list_for_each_entry_safe(netpage, _n, list, lru) {
list_del(&netpage->lru);
_debug("read back %p{%lu,%d}",
netpage, netpage->index, page_count(netpage));
if (!monitor) {
monitor = kzalloc(sizeof(*monitor), GFP_KERNEL);
if (!monitor)
goto nomem;
monitor->op = fscache_get_retrieval(op);
init_waitqueue_func_entry(&monitor->monitor,
cachefiles_read_waiter);
}
for (;;) {
backpage = find_get_page(bmapping, netpage->index);
if (backpage)
goto backing_page_already_present;
if (!newpage) {
newpage = page_cache_alloc_cold(bmapping);
if (!newpage)
goto nomem;
}
ret = add_to_page_cache(newpage, bmapping,
netpage->index, GFP_KERNEL);
if (ret == 0)
goto installed_new_backing_page;
if (ret != -EEXIST)
goto nomem;
}
/* we've installed a new backing page, so now we need to add it
* to the LRU list and start it reading */
installed_new_backing_page:
_debug("- new %p", newpage);
backpage = newpage;
newpage = NULL;
page_cache_get(backpage);
if (!pagevec_add(&lru_pvec, backpage))
__pagevec_lru_add_file(&lru_pvec);
reread_backing_page:
ret = bmapping->a_ops->readpage(NULL, backpage);
if (ret < 0)
goto read_error;
/* add the netfs page to the pagecache and LRU, and set the
* monitor to transfer the data across */
monitor_backing_page:
_debug("- monitor add");
ret = add_to_page_cache(netpage, op->mapping, netpage->index,
GFP_KERNEL);
if (ret < 0) {
if (ret == -EEXIST) {
page_cache_release(netpage);
continue;
}
goto nomem;
}
page_cache_get(netpage);
if (!pagevec_add(&lru_pvec, netpage))
__pagevec_lru_add_file(&lru_pvec);
/* install a monitor */
page_cache_get(netpage);
monitor->netfs_page = netpage;
page_cache_get(backpage);
monitor->back_page = backpage;
monitor->monitor.private = backpage;
add_page_wait_queue(backpage, &monitor->monitor);
monitor = NULL;
/* but the page may have been read before the monitor was
* installed, so the monitor may miss the event - so we have to
* ensure that we do get one in such a case */
if (trylock_page(backpage)) {
_debug("2unlock %p {%lx}", backpage, backpage->flags);
unlock_page(backpage);
}
page_cache_release(backpage);
backpage = NULL;
page_cache_release(netpage);
netpage = NULL;
continue;
/* if the backing page is already present, it can be in one of
* three states: read in progress, read failed or read okay */
backing_page_already_present:
_debug("- present %p", backpage);
if (PageError(backpage))
goto io_error;
if (PageUptodate(backpage))
goto backing_page_already_uptodate;
_debug("- not ready %p{%lx}", backpage, backpage->flags);
if (!trylock_page(backpage))
goto monitor_backing_page;
if (PageError(backpage)) {
_debug("error %lx", backpage->flags);
unlock_page(backpage);
goto io_error;
}
if (PageUptodate(backpage))
goto backing_page_already_uptodate_unlock;
/* we've locked a page that's neither up to date nor erroneous,
* so we need to attempt to read it again */
goto reread_backing_page;
/* the backing page is already up to date, attach the netfs
* page to the pagecache and LRU and copy the data across */
backing_page_already_uptodate_unlock:
_debug("uptodate %lx", backpage->flags);
unlock_page(backpage);
backing_page_already_uptodate:
_debug("- uptodate");
ret = add_to_page_cache(netpage, op->mapping, netpage->index,
GFP_KERNEL);
if (ret < 0) {
if (ret == -EEXIST) {
page_cache_release(netpage);
continue;
}
goto nomem;
}
copy_highpage(netpage, backpage);
page_cache_release(backpage);
backpage = NULL;
if (!pagevec_add(mark_pvec, netpage))
fscache_mark_pages_cached(op, mark_pvec);
page_cache_get(netpage);
if (!pagevec_add(&lru_pvec, netpage))
__pagevec_lru_add_file(&lru_pvec);
fscache_end_io(op, netpage, 0);
page_cache_release(netpage);
netpage = NULL;
continue;
}
netpage = NULL;
_debug("out");
out:
/* tidy up */
pagevec_lru_add_file(&lru_pvec);
if (newpage)
page_cache_release(newpage);
if (netpage)
page_cache_release(netpage);
if (backpage)
page_cache_release(backpage);
if (monitor) {
fscache_put_retrieval(op);
kfree(monitor);
}
list_for_each_entry_safe(netpage, _n, list, lru) {
list_del(&netpage->lru);
page_cache_release(netpage);
}
_leave(" = %d", ret);
return ret;
nomem:
_debug("nomem");
ret = -ENOMEM;
goto out;
read_error:
_debug("read error %d", ret);
if (ret == -ENOMEM)
goto out;
io_error:
cachefiles_io_error_obj(object, "Page read error on backing file");
ret = -ENOBUFS;
goto out;
}
/*
* read a list of pages from the cache or allocate blocks in which to store
* them
*/
int cachefiles_read_or_alloc_pages(struct fscache_retrieval *op,
struct list_head *pages,
unsigned *nr_pages,
gfp_t gfp)
{
struct cachefiles_object *object;
struct cachefiles_cache *cache;
struct list_head backpages;
struct pagevec pagevec;
struct inode *inode;
struct page *page, *_n;
unsigned shift, nrbackpages;
int ret, ret2, space;
object = container_of(op->op.object,
struct cachefiles_object, fscache);
cache = container_of(object->fscache.cache,
struct cachefiles_cache, cache);
_enter("{OBJ%x,%d},,%d,,",
object->fscache.debug_id, atomic_read(&op->op.usage),
*nr_pages);
if (!object->backer)
return -ENOBUFS;
space = 1;
if (cachefiles_has_space(cache, 0, *nr_pages) < 0)
space = 0;
inode = object->backer->d_inode;
ASSERT(S_ISREG(inode->i_mode));
ASSERT(inode->i_mapping->a_ops->bmap);
ASSERT(inode->i_mapping->a_ops->readpages);
/* calculate the shift required to use bmap */
if (inode->i_sb->s_blocksize > PAGE_SIZE)
return -ENOBUFS;
shift = PAGE_SHIFT - inode->i_sb->s_blocksize_bits;
pagevec_init(&pagevec, 0);
op->op.flags &= FSCACHE_OP_KEEP_FLAGS;
op->op.flags |= FSCACHE_OP_FAST;
op->op.processor = cachefiles_read_copier;
INIT_LIST_HEAD(&backpages);
nrbackpages = 0;
ret = space ? -ENODATA : -ENOBUFS;
list_for_each_entry_safe(page, _n, pages, lru) {
sector_t block0, block;
/* we assume the absence or presence of the first block is a
* good enough indication for the page as a whole
* - TODO: don't use bmap() for this as it is _not_ actually
* good enough for this as it doesn't indicate errors, but
* it's all we've got for the moment
*/
block0 = page->index;
block0 <<= shift;
block = inode->i_mapping->a_ops->bmap(inode->i_mapping,
block0);
_debug("%llx -> %llx",
(unsigned long long) block0,
(unsigned long long) block);
if (block) {
/* we have data - add it to the list to give to the
* backing fs */
list_move(&page->lru, &backpages);
(*nr_pages)--;
nrbackpages++;
} else if (space && pagevec_add(&pagevec, page) == 0) {
fscache_mark_pages_cached(op, &pagevec);
ret = -ENODATA;
}
}
if (pagevec_count(&pagevec) > 0)
fscache_mark_pages_cached(op, &pagevec);
if (list_empty(pages))
ret = 0;
/* submit the apparently valid pages to the backing fs to be read from
* disk */
if (nrbackpages > 0) {
ret2 = cachefiles_read_backing_file(object, op, &backpages,
&pagevec);
if (ret2 == -ENOMEM || ret2 == -EINTR)
ret = ret2;
}
if (pagevec_count(&pagevec) > 0)
fscache_mark_pages_cached(op, &pagevec);
_leave(" = %d [nr=%u%s]",
ret, *nr_pages, list_empty(pages) ? " empty" : "");
return ret;
}
/*
* allocate a block in the cache in which to store a page
* - cache withdrawal is prevented by the caller
* - returns -EINTR if interrupted
* - returns -ENOMEM if ran out of memory
* - returns -ENOBUFS if no buffers can be made available
* - returns -ENOBUFS if page is beyond EOF
* - otherwise:
* - the metadata will be retained
* - 0 will be returned
*/
int cachefiles_allocate_page(struct fscache_retrieval *op,
struct page *page,
gfp_t gfp)
{
struct cachefiles_object *object;
struct cachefiles_cache *cache;
struct pagevec pagevec;
int ret;
object = container_of(op->op.object,
struct cachefiles_object, fscache);
cache = container_of(object->fscache.cache,
struct cachefiles_cache, cache);
_enter("%p,{%lx},", object, page->index);
ret = cachefiles_has_space(cache, 0, 1);
if (ret == 0) {
pagevec_init(&pagevec, 0);
pagevec_add(&pagevec, page);
fscache_mark_pages_cached(op, &pagevec);
} else {
ret = -ENOBUFS;
}
_leave(" = %d", ret);
return ret;
}
/*
* allocate blocks in the cache in which to store a set of pages
* - cache withdrawal is prevented by the caller
* - returns -EINTR if interrupted
* - returns -ENOMEM if ran out of memory
* - returns -ENOBUFS if some buffers couldn't be made available
* - returns -ENOBUFS if some pages are beyond EOF
* - otherwise:
* - -ENODATA will be returned
* - metadata will be retained for any page marked
*/
int cachefiles_allocate_pages(struct fscache_retrieval *op,
struct list_head *pages,
unsigned *nr_pages,
gfp_t gfp)
{
struct cachefiles_object *object;
struct cachefiles_cache *cache;
struct pagevec pagevec;
struct page *page;
int ret;
object = container_of(op->op.object,
struct cachefiles_object, fscache);
cache = container_of(object->fscache.cache,
struct cachefiles_cache, cache);
_enter("%p,,,%d,", object, *nr_pages);
ret = cachefiles_has_space(cache, 0, *nr_pages);
if (ret == 0) {
pagevec_init(&pagevec, 0);
list_for_each_entry(page, pages, lru) {
if (pagevec_add(&pagevec, page) == 0)
fscache_mark_pages_cached(op, &pagevec);
}
if (pagevec_count(&pagevec) > 0)
fscache_mark_pages_cached(op, &pagevec);
ret = -ENODATA;
} else {
ret = -ENOBUFS;
}
_leave(" = %d", ret);
return ret;
}
/*
* request a page be stored in the cache
* - cache withdrawal is prevented by the caller
* - this request may be ignored if there's no cache block available, in which
* case -ENOBUFS will be returned
* - if the op is in progress, 0 will be returned
*/
int cachefiles_write_page(struct fscache_storage *op, struct page *page)
{
struct cachefiles_object *object;
struct cachefiles_cache *cache;
mm_segment_t old_fs;
struct file *file;
loff_t pos, eof;
size_t len;
void *data;
int ret;
ASSERT(op != NULL);
ASSERT(page != NULL);
object = container_of(op->op.object,
struct cachefiles_object, fscache);
_enter("%p,%p{%lx},,,", object, page, page->index);
if (!object->backer) {
_leave(" = -ENOBUFS");
return -ENOBUFS;
}
ASSERT(S_ISREG(object->backer->d_inode->i_mode));
cache = container_of(object->fscache.cache,
struct cachefiles_cache, cache);
/* write the page to the backing filesystem and let it store it in its
* own time */
dget(object->backer);
mntget(cache->mnt);
file = dentry_open(object->backer, cache->mnt, O_RDWR,
cache->cache_cred);
if (IS_ERR(file)) {
ret = PTR_ERR(file);
} else {
ret = -EIO;
if (file->f_op->write) {
pos = (loff_t) page->index << PAGE_SHIFT;
/* we mustn't write more data than we have, so we have
* to beware of a partial page at EOF */
eof = object->fscache.store_limit_l;
len = PAGE_SIZE;
if (eof & ~PAGE_MASK) {
ASSERTCMP(pos, <, eof);
if (eof - pos < PAGE_SIZE) {
_debug("cut short %llx to %llx",
pos, eof);
len = eof - pos;
ASSERTCMP(pos + len, ==, eof);
}
}
data = kmap(page);
old_fs = get_fs();
set_fs(KERNEL_DS);
ret = file->f_op->write(
file, (const void __user *) data, len, &pos);
set_fs(old_fs);
kunmap(page);
if (ret != len)
ret = -EIO;
}
fput(file);
}
if (ret < 0) {
if (ret == -EIO)
cachefiles_io_error_obj(
object, "Write page to backing file failed");
ret = -ENOBUFS;
}
_leave(" = %d", ret);
return ret;
}
/*
* detach a backing block from a page
* - cache withdrawal is prevented by the caller
*/
void cachefiles_uncache_page(struct fscache_object *_object, struct page *page)
{
struct cachefiles_object *object;
struct cachefiles_cache *cache;
object = container_of(_object, struct cachefiles_object, fscache);
cache = container_of(object->fscache.cache,
struct cachefiles_cache, cache);
_enter("%p,{%lu}", object, page->index);
spin_unlock(&object->fscache.cookie->lock);
}