b73815a18d
- Fix handling of S1 Page Table Walk permission fault at S2 on instruction fetch - Cleanup kvm_vcpu_dabt_iswrite() -----BEGIN PGP SIGNATURE----- iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl9k6LYPHG1hekBrZXJu ZWwub3JnAAoJECPQ0LrRPXpDe6UP+gMRK9yEgY7eBg23nfOVDiF7t8dvj+J5eSws 8YP3nRew9pL710SLClGJCrVyVaCEMPN7cL7O926IALqGPMsPgKFPX7RcshjVUOUo otjQPfT3hMOKfmAGCHyQHeudQ8KMEZX9ikdvGd19zT3F2t2CojUn0uFZPgjIXKOe x4Un5F/QuOVFoI85BctqpNRJsc9yzjpIu/J2YjO+QeKyMoK1gp+GLIACDczfbaLq IWSRApDPP3vyxImxtWaahI/IlAk4XcDV4EFmUMN2GDuK64bFTcky1YLr88njp0ZV VVrxw4Z/lGGKl1MqNV8/OVBS+z1+L8G8+uNFELFL1veDc+eDn+P/Sr/SoDxT93uO Dz9/gWJd2GEtneJ/PspjxLdzpAkUluV7vRQBikjVtBld7OivnDYeylJsA88olXzI PUY+Y9p1K3T/u5oeiKEnDvufzisDiYZSKpE81KtJP+++biOULVIm7rkCmg5IvUAF GhxnQ/n2RW9Q+FCXy7FTss8gxl7FBKdWSCnGQ1ZYa+hwnIa9WU1GLG94Zx/qc/GO zIYstUKsYtn2ViHn9XTbbewUz1XeCaedmb/R1Uu14j6WrzgirhJOfVHE2US9Xlji w/GruENw4Xqlb842q5NbZnv2XtTFQWLAduthAotclnIecYRvqIWRR8JVf64XVvjR K0JmH08N =D7jg -----END PGP SIGNATURE----- Merge tag 'kvmarm-fixes-5.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master KVM/arm64 fixes for 5.9, take #2 - Fix handling of S1 Page Table Walk permission fault at S2 on instruction fetch - Cleanup kvm_vcpu_dabt_iswrite()
2639 lines
68 KiB
C
2639 lines
68 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#include <linux/mman.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/io.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <trace/events/kvm.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_ras.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/virt.h>
|
|
|
|
#include "trace.h"
|
|
|
|
static pgd_t *boot_hyp_pgd;
|
|
static pgd_t *hyp_pgd;
|
|
static pgd_t *merged_hyp_pgd;
|
|
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
|
|
|
|
static unsigned long hyp_idmap_start;
|
|
static unsigned long hyp_idmap_end;
|
|
static phys_addr_t hyp_idmap_vector;
|
|
|
|
static unsigned long io_map_base;
|
|
|
|
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
|
|
|
|
#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
|
|
#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
|
|
|
|
static bool is_iomap(unsigned long flags)
|
|
{
|
|
return flags & KVM_S2PTE_FLAG_IS_IOMAP;
|
|
}
|
|
|
|
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
|
|
{
|
|
return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
|
|
}
|
|
|
|
/**
|
|
* kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
|
|
* @kvm: pointer to kvm structure.
|
|
*
|
|
* Interface to HYP function to flush all VM TLB entries
|
|
*/
|
|
void kvm_flush_remote_tlbs(struct kvm *kvm)
|
|
{
|
|
kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
|
|
}
|
|
|
|
static void kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
|
|
int level)
|
|
{
|
|
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ipa, level);
|
|
}
|
|
|
|
/*
|
|
* D-Cache management functions. They take the page table entries by
|
|
* value, as they are flushing the cache using the kernel mapping (or
|
|
* kmap on 32bit).
|
|
*/
|
|
static void kvm_flush_dcache_pte(pte_t pte)
|
|
{
|
|
__kvm_flush_dcache_pte(pte);
|
|
}
|
|
|
|
static void kvm_flush_dcache_pmd(pmd_t pmd)
|
|
{
|
|
__kvm_flush_dcache_pmd(pmd);
|
|
}
|
|
|
|
static void kvm_flush_dcache_pud(pud_t pud)
|
|
{
|
|
__kvm_flush_dcache_pud(pud);
|
|
}
|
|
|
|
static bool kvm_is_device_pfn(unsigned long pfn)
|
|
{
|
|
return !pfn_valid(pfn);
|
|
}
|
|
|
|
/**
|
|
* stage2_dissolve_pmd() - clear and flush huge PMD entry
|
|
* @mmu: pointer to mmu structure to operate on
|
|
* @addr: IPA
|
|
* @pmd: pmd pointer for IPA
|
|
*
|
|
* Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
|
|
*/
|
|
static void stage2_dissolve_pmd(struct kvm_s2_mmu *mmu, phys_addr_t addr, pmd_t *pmd)
|
|
{
|
|
if (!pmd_thp_or_huge(*pmd))
|
|
return;
|
|
|
|
pmd_clear(pmd);
|
|
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
|
|
put_page(virt_to_page(pmd));
|
|
}
|
|
|
|
/**
|
|
* stage2_dissolve_pud() - clear and flush huge PUD entry
|
|
* @mmu: pointer to mmu structure to operate on
|
|
* @addr: IPA
|
|
* @pud: pud pointer for IPA
|
|
*
|
|
* Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
|
|
*/
|
|
static void stage2_dissolve_pud(struct kvm_s2_mmu *mmu, phys_addr_t addr, pud_t *pudp)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
|
|
if (!stage2_pud_huge(kvm, *pudp))
|
|
return;
|
|
|
|
stage2_pud_clear(kvm, pudp);
|
|
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
|
|
put_page(virt_to_page(pudp));
|
|
}
|
|
|
|
static void clear_stage2_pgd_entry(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
|
|
stage2_pgd_clear(kvm, pgd);
|
|
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
|
|
stage2_p4d_free(kvm, p4d_table);
|
|
put_page(virt_to_page(pgd));
|
|
}
|
|
|
|
static void clear_stage2_p4d_entry(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
|
|
stage2_p4d_clear(kvm, p4d);
|
|
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
|
|
stage2_pud_free(kvm, pud_table);
|
|
put_page(virt_to_page(p4d));
|
|
}
|
|
|
|
static void clear_stage2_pud_entry(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
|
|
|
|
VM_BUG_ON(stage2_pud_huge(kvm, *pud));
|
|
stage2_pud_clear(kvm, pud);
|
|
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
|
|
stage2_pmd_free(kvm, pmd_table);
|
|
put_page(virt_to_page(pud));
|
|
}
|
|
|
|
static void clear_stage2_pmd_entry(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr)
|
|
{
|
|
pte_t *pte_table = pte_offset_kernel(pmd, 0);
|
|
VM_BUG_ON(pmd_thp_or_huge(*pmd));
|
|
pmd_clear(pmd);
|
|
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
|
|
free_page((unsigned long)pte_table);
|
|
put_page(virt_to_page(pmd));
|
|
}
|
|
|
|
static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
|
|
{
|
|
WRITE_ONCE(*ptep, new_pte);
|
|
dsb(ishst);
|
|
}
|
|
|
|
static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
|
|
{
|
|
WRITE_ONCE(*pmdp, new_pmd);
|
|
dsb(ishst);
|
|
}
|
|
|
|
static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
|
|
{
|
|
kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
|
|
}
|
|
|
|
static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
|
|
{
|
|
WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
|
|
dsb(ishst);
|
|
}
|
|
|
|
static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp)
|
|
{
|
|
WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp));
|
|
dsb(ishst);
|
|
}
|
|
|
|
static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
|
|
{
|
|
#ifndef __PAGETABLE_P4D_FOLDED
|
|
WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp));
|
|
dsb(ishst);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Unmapping vs dcache management:
|
|
*
|
|
* If a guest maps certain memory pages as uncached, all writes will
|
|
* bypass the data cache and go directly to RAM. However, the CPUs
|
|
* can still speculate reads (not writes) and fill cache lines with
|
|
* data.
|
|
*
|
|
* Those cache lines will be *clean* cache lines though, so a
|
|
* clean+invalidate operation is equivalent to an invalidate
|
|
* operation, because no cache lines are marked dirty.
|
|
*
|
|
* Those clean cache lines could be filled prior to an uncached write
|
|
* by the guest, and the cache coherent IO subsystem would therefore
|
|
* end up writing old data to disk.
|
|
*
|
|
* This is why right after unmapping a page/section and invalidating
|
|
* the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
|
|
* the IO subsystem will never hit in the cache.
|
|
*
|
|
* This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
|
|
* we then fully enforce cacheability of RAM, no matter what the guest
|
|
* does.
|
|
*/
|
|
static void unmap_stage2_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
phys_addr_t start_addr = addr;
|
|
pte_t *pte, *start_pte;
|
|
|
|
start_pte = pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
if (!pte_none(*pte)) {
|
|
pte_t old_pte = *pte;
|
|
|
|
kvm_set_pte(pte, __pte(0));
|
|
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
|
|
|
|
/* No need to invalidate the cache for device mappings */
|
|
if (!kvm_is_device_pfn(pte_pfn(old_pte)))
|
|
kvm_flush_dcache_pte(old_pte);
|
|
|
|
put_page(virt_to_page(pte));
|
|
}
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
|
|
if (stage2_pte_table_empty(mmu->kvm, start_pte))
|
|
clear_stage2_pmd_entry(mmu, pmd, start_addr);
|
|
}
|
|
|
|
static void unmap_stage2_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
phys_addr_t next, start_addr = addr;
|
|
pmd_t *pmd, *start_pmd;
|
|
|
|
start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
|
|
do {
|
|
next = stage2_pmd_addr_end(kvm, addr, end);
|
|
if (!pmd_none(*pmd)) {
|
|
if (pmd_thp_or_huge(*pmd)) {
|
|
pmd_t old_pmd = *pmd;
|
|
|
|
pmd_clear(pmd);
|
|
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
|
|
|
|
kvm_flush_dcache_pmd(old_pmd);
|
|
|
|
put_page(virt_to_page(pmd));
|
|
} else {
|
|
unmap_stage2_ptes(mmu, pmd, addr, next);
|
|
}
|
|
}
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
if (stage2_pmd_table_empty(kvm, start_pmd))
|
|
clear_stage2_pud_entry(mmu, pud, start_addr);
|
|
}
|
|
|
|
static void unmap_stage2_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
phys_addr_t next, start_addr = addr;
|
|
pud_t *pud, *start_pud;
|
|
|
|
start_pud = pud = stage2_pud_offset(kvm, p4d, addr);
|
|
do {
|
|
next = stage2_pud_addr_end(kvm, addr, end);
|
|
if (!stage2_pud_none(kvm, *pud)) {
|
|
if (stage2_pud_huge(kvm, *pud)) {
|
|
pud_t old_pud = *pud;
|
|
|
|
stage2_pud_clear(kvm, pud);
|
|
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
|
|
kvm_flush_dcache_pud(old_pud);
|
|
put_page(virt_to_page(pud));
|
|
} else {
|
|
unmap_stage2_pmds(mmu, pud, addr, next);
|
|
}
|
|
}
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
if (stage2_pud_table_empty(kvm, start_pud))
|
|
clear_stage2_p4d_entry(mmu, p4d, start_addr);
|
|
}
|
|
|
|
static void unmap_stage2_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
phys_addr_t next, start_addr = addr;
|
|
p4d_t *p4d, *start_p4d;
|
|
|
|
start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr);
|
|
do {
|
|
next = stage2_p4d_addr_end(kvm, addr, end);
|
|
if (!stage2_p4d_none(kvm, *p4d))
|
|
unmap_stage2_puds(mmu, p4d, addr, next);
|
|
} while (p4d++, addr = next, addr != end);
|
|
|
|
if (stage2_p4d_table_empty(kvm, start_p4d))
|
|
clear_stage2_pgd_entry(mmu, pgd, start_addr);
|
|
}
|
|
|
|
/**
|
|
* unmap_stage2_range -- Clear stage2 page table entries to unmap a range
|
|
* @kvm: The VM pointer
|
|
* @start: The intermediate physical base address of the range to unmap
|
|
* @size: The size of the area to unmap
|
|
*
|
|
* Clear a range of stage-2 mappings, lowering the various ref-counts. Must
|
|
* be called while holding mmu_lock (unless for freeing the stage2 pgd before
|
|
* destroying the VM), otherwise another faulting VCPU may come in and mess
|
|
* with things behind our backs.
|
|
*/
|
|
static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
|
|
bool may_block)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pgd_t *pgd;
|
|
phys_addr_t addr = start, end = start + size;
|
|
phys_addr_t next;
|
|
|
|
assert_spin_locked(&kvm->mmu_lock);
|
|
WARN_ON(size & ~PAGE_MASK);
|
|
|
|
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
|
|
do {
|
|
/*
|
|
* Make sure the page table is still active, as another thread
|
|
* could have possibly freed the page table, while we released
|
|
* the lock.
|
|
*/
|
|
if (!READ_ONCE(mmu->pgd))
|
|
break;
|
|
next = stage2_pgd_addr_end(kvm, addr, end);
|
|
if (!stage2_pgd_none(kvm, *pgd))
|
|
unmap_stage2_p4ds(mmu, pgd, addr, next);
|
|
/*
|
|
* If the range is too large, release the kvm->mmu_lock
|
|
* to prevent starvation and lockup detector warnings.
|
|
*/
|
|
if (may_block && next != end)
|
|
cond_resched_lock(&kvm->mmu_lock);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
|
|
{
|
|
__unmap_stage2_range(mmu, start, size, true);
|
|
}
|
|
|
|
static void stage2_flush_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
|
|
kvm_flush_dcache_pte(*pte);
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
static void stage2_flush_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pmd_t *pmd;
|
|
phys_addr_t next;
|
|
|
|
pmd = stage2_pmd_offset(kvm, pud, addr);
|
|
do {
|
|
next = stage2_pmd_addr_end(kvm, addr, end);
|
|
if (!pmd_none(*pmd)) {
|
|
if (pmd_thp_or_huge(*pmd))
|
|
kvm_flush_dcache_pmd(*pmd);
|
|
else
|
|
stage2_flush_ptes(mmu, pmd, addr, next);
|
|
}
|
|
} while (pmd++, addr = next, addr != end);
|
|
}
|
|
|
|
static void stage2_flush_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pud_t *pud;
|
|
phys_addr_t next;
|
|
|
|
pud = stage2_pud_offset(kvm, p4d, addr);
|
|
do {
|
|
next = stage2_pud_addr_end(kvm, addr, end);
|
|
if (!stage2_pud_none(kvm, *pud)) {
|
|
if (stage2_pud_huge(kvm, *pud))
|
|
kvm_flush_dcache_pud(*pud);
|
|
else
|
|
stage2_flush_pmds(mmu, pud, addr, next);
|
|
}
|
|
} while (pud++, addr = next, addr != end);
|
|
}
|
|
|
|
static void stage2_flush_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
p4d_t *p4d;
|
|
phys_addr_t next;
|
|
|
|
p4d = stage2_p4d_offset(kvm, pgd, addr);
|
|
do {
|
|
next = stage2_p4d_addr_end(kvm, addr, end);
|
|
if (!stage2_p4d_none(kvm, *p4d))
|
|
stage2_flush_puds(mmu, p4d, addr, next);
|
|
} while (p4d++, addr = next, addr != end);
|
|
}
|
|
|
|
static void stage2_flush_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot)
|
|
{
|
|
struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
|
|
phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
|
|
phys_addr_t next;
|
|
pgd_t *pgd;
|
|
|
|
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
|
|
do {
|
|
next = stage2_pgd_addr_end(kvm, addr, end);
|
|
if (!stage2_pgd_none(kvm, *pgd))
|
|
stage2_flush_p4ds(mmu, pgd, addr, next);
|
|
|
|
if (next != end)
|
|
cond_resched_lock(&kvm->mmu_lock);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
/**
|
|
* stage2_flush_vm - Invalidate cache for pages mapped in stage 2
|
|
* @kvm: The struct kvm pointer
|
|
*
|
|
* Go through the stage 2 page tables and invalidate any cache lines
|
|
* backing memory already mapped to the VM.
|
|
*/
|
|
static void stage2_flush_vm(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, slots)
|
|
stage2_flush_memslot(kvm, memslot);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
static void clear_hyp_pgd_entry(pgd_t *pgd)
|
|
{
|
|
p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL);
|
|
pgd_clear(pgd);
|
|
p4d_free(NULL, p4d_table);
|
|
put_page(virt_to_page(pgd));
|
|
}
|
|
|
|
static void clear_hyp_p4d_entry(p4d_t *p4d)
|
|
{
|
|
pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL);
|
|
VM_BUG_ON(p4d_huge(*p4d));
|
|
p4d_clear(p4d);
|
|
pud_free(NULL, pud_table);
|
|
put_page(virt_to_page(p4d));
|
|
}
|
|
|
|
static void clear_hyp_pud_entry(pud_t *pud)
|
|
{
|
|
pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
|
|
VM_BUG_ON(pud_huge(*pud));
|
|
pud_clear(pud);
|
|
pmd_free(NULL, pmd_table);
|
|
put_page(virt_to_page(pud));
|
|
}
|
|
|
|
static void clear_hyp_pmd_entry(pmd_t *pmd)
|
|
{
|
|
pte_t *pte_table = pte_offset_kernel(pmd, 0);
|
|
VM_BUG_ON(pmd_thp_or_huge(*pmd));
|
|
pmd_clear(pmd);
|
|
pte_free_kernel(NULL, pte_table);
|
|
put_page(virt_to_page(pmd));
|
|
}
|
|
|
|
static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
pte_t *pte, *start_pte;
|
|
|
|
start_pte = pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
if (!pte_none(*pte)) {
|
|
kvm_set_pte(pte, __pte(0));
|
|
put_page(virt_to_page(pte));
|
|
}
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
|
|
if (hyp_pte_table_empty(start_pte))
|
|
clear_hyp_pmd_entry(pmd);
|
|
}
|
|
|
|
static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
phys_addr_t next;
|
|
pmd_t *pmd, *start_pmd;
|
|
|
|
start_pmd = pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
/* Hyp doesn't use huge pmds */
|
|
if (!pmd_none(*pmd))
|
|
unmap_hyp_ptes(pmd, addr, next);
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
if (hyp_pmd_table_empty(start_pmd))
|
|
clear_hyp_pud_entry(pud);
|
|
}
|
|
|
|
static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
phys_addr_t next;
|
|
pud_t *pud, *start_pud;
|
|
|
|
start_pud = pud = pud_offset(p4d, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
/* Hyp doesn't use huge puds */
|
|
if (!pud_none(*pud))
|
|
unmap_hyp_pmds(pud, addr, next);
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
if (hyp_pud_table_empty(start_pud))
|
|
clear_hyp_p4d_entry(p4d);
|
|
}
|
|
|
|
static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
phys_addr_t next;
|
|
p4d_t *p4d, *start_p4d;
|
|
|
|
start_p4d = p4d = p4d_offset(pgd, addr);
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
/* Hyp doesn't use huge p4ds */
|
|
if (!p4d_none(*p4d))
|
|
unmap_hyp_puds(p4d, addr, next);
|
|
} while (p4d++, addr = next, addr != end);
|
|
|
|
if (hyp_p4d_table_empty(start_p4d))
|
|
clear_hyp_pgd_entry(pgd);
|
|
}
|
|
|
|
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
|
|
{
|
|
return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
|
|
}
|
|
|
|
static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
|
|
phys_addr_t start, u64 size)
|
|
{
|
|
pgd_t *pgd;
|
|
phys_addr_t addr = start, end = start + size;
|
|
phys_addr_t next;
|
|
|
|
/*
|
|
* We don't unmap anything from HYP, except at the hyp tear down.
|
|
* Hence, we don't have to invalidate the TLBs here.
|
|
*/
|
|
pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (!pgd_none(*pgd))
|
|
unmap_hyp_p4ds(pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
|
|
{
|
|
__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
|
|
}
|
|
|
|
static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
|
|
{
|
|
__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
|
|
}
|
|
|
|
/**
|
|
* free_hyp_pgds - free Hyp-mode page tables
|
|
*
|
|
* Assumes hyp_pgd is a page table used strictly in Hyp-mode and
|
|
* therefore contains either mappings in the kernel memory area (above
|
|
* PAGE_OFFSET), or device mappings in the idmap range.
|
|
*
|
|
* boot_hyp_pgd should only map the idmap range, and is only used in
|
|
* the extended idmap case.
|
|
*/
|
|
void free_hyp_pgds(void)
|
|
{
|
|
pgd_t *id_pgd;
|
|
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
|
|
id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
|
|
|
|
if (id_pgd) {
|
|
/* In case we never called hyp_mmu_init() */
|
|
if (!io_map_base)
|
|
io_map_base = hyp_idmap_start;
|
|
unmap_hyp_idmap_range(id_pgd, io_map_base,
|
|
hyp_idmap_start + PAGE_SIZE - io_map_base);
|
|
}
|
|
|
|
if (boot_hyp_pgd) {
|
|
free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
|
|
boot_hyp_pgd = NULL;
|
|
}
|
|
|
|
if (hyp_pgd) {
|
|
unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
|
|
(uintptr_t)high_memory - PAGE_OFFSET);
|
|
|
|
free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
|
|
hyp_pgd = NULL;
|
|
}
|
|
if (merged_hyp_pgd) {
|
|
clear_page(merged_hyp_pgd);
|
|
free_page((unsigned long)merged_hyp_pgd);
|
|
merged_hyp_pgd = NULL;
|
|
}
|
|
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
}
|
|
|
|
static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
|
|
unsigned long end, unsigned long pfn,
|
|
pgprot_t prot)
|
|
{
|
|
pte_t *pte;
|
|
unsigned long addr;
|
|
|
|
addr = start;
|
|
do {
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
|
|
get_page(virt_to_page(pte));
|
|
pfn++;
|
|
} while (addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
|
|
unsigned long end, unsigned long pfn,
|
|
pgprot_t prot)
|
|
{
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
unsigned long addr, next;
|
|
|
|
addr = start;
|
|
do {
|
|
pmd = pmd_offset(pud, addr);
|
|
|
|
BUG_ON(pmd_sect(*pmd));
|
|
|
|
if (pmd_none(*pmd)) {
|
|
pte = pte_alloc_one_kernel(NULL);
|
|
if (!pte) {
|
|
kvm_err("Cannot allocate Hyp pte\n");
|
|
return -ENOMEM;
|
|
}
|
|
kvm_pmd_populate(pmd, pte);
|
|
get_page(virt_to_page(pmd));
|
|
}
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
|
|
pfn += (next - addr) >> PAGE_SHIFT;
|
|
} while (addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start,
|
|
unsigned long end, unsigned long pfn,
|
|
pgprot_t prot)
|
|
{
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
unsigned long addr, next;
|
|
int ret;
|
|
|
|
addr = start;
|
|
do {
|
|
pud = pud_offset(p4d, addr);
|
|
|
|
if (pud_none_or_clear_bad(pud)) {
|
|
pmd = pmd_alloc_one(NULL, addr);
|
|
if (!pmd) {
|
|
kvm_err("Cannot allocate Hyp pmd\n");
|
|
return -ENOMEM;
|
|
}
|
|
kvm_pud_populate(pud, pmd);
|
|
get_page(virt_to_page(pud));
|
|
}
|
|
|
|
next = pud_addr_end(addr, end);
|
|
ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
|
|
if (ret)
|
|
return ret;
|
|
pfn += (next - addr) >> PAGE_SHIFT;
|
|
} while (addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start,
|
|
unsigned long end, unsigned long pfn,
|
|
pgprot_t prot)
|
|
{
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
unsigned long addr, next;
|
|
int ret;
|
|
|
|
addr = start;
|
|
do {
|
|
p4d = p4d_offset(pgd, addr);
|
|
|
|
if (p4d_none(*p4d)) {
|
|
pud = pud_alloc_one(NULL, addr);
|
|
if (!pud) {
|
|
kvm_err("Cannot allocate Hyp pud\n");
|
|
return -ENOMEM;
|
|
}
|
|
kvm_p4d_populate(p4d, pud);
|
|
get_page(virt_to_page(p4d));
|
|
}
|
|
|
|
next = p4d_addr_end(addr, end);
|
|
ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot);
|
|
if (ret)
|
|
return ret;
|
|
pfn += (next - addr) >> PAGE_SHIFT;
|
|
} while (addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
|
|
unsigned long start, unsigned long end,
|
|
unsigned long pfn, pgprot_t prot)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
unsigned long addr, next;
|
|
int err = 0;
|
|
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
addr = start & PAGE_MASK;
|
|
end = PAGE_ALIGN(end);
|
|
do {
|
|
pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
|
|
|
|
if (pgd_none(*pgd)) {
|
|
p4d = p4d_alloc_one(NULL, addr);
|
|
if (!p4d) {
|
|
kvm_err("Cannot allocate Hyp p4d\n");
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
kvm_pgd_populate(pgd, p4d);
|
|
get_page(virt_to_page(pgd));
|
|
}
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot);
|
|
if (err)
|
|
goto out;
|
|
pfn += (next - addr) >> PAGE_SHIFT;
|
|
} while (addr = next, addr != end);
|
|
out:
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
return err;
|
|
}
|
|
|
|
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
|
|
{
|
|
if (!is_vmalloc_addr(kaddr)) {
|
|
BUG_ON(!virt_addr_valid(kaddr));
|
|
return __pa(kaddr);
|
|
} else {
|
|
return page_to_phys(vmalloc_to_page(kaddr)) +
|
|
offset_in_page(kaddr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
|
|
* @from: The virtual kernel start address of the range
|
|
* @to: The virtual kernel end address of the range (exclusive)
|
|
* @prot: The protection to be applied to this range
|
|
*
|
|
* The same virtual address as the kernel virtual address is also used
|
|
* in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
|
|
* physical pages.
|
|
*/
|
|
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
|
|
{
|
|
phys_addr_t phys_addr;
|
|
unsigned long virt_addr;
|
|
unsigned long start = kern_hyp_va((unsigned long)from);
|
|
unsigned long end = kern_hyp_va((unsigned long)to);
|
|
|
|
if (is_kernel_in_hyp_mode())
|
|
return 0;
|
|
|
|
start = start & PAGE_MASK;
|
|
end = PAGE_ALIGN(end);
|
|
|
|
for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
|
|
int err;
|
|
|
|
phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
|
|
err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
|
|
virt_addr, virt_addr + PAGE_SIZE,
|
|
__phys_to_pfn(phys_addr),
|
|
prot);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
|
|
unsigned long *haddr, pgprot_t prot)
|
|
{
|
|
pgd_t *pgd = hyp_pgd;
|
|
unsigned long base;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
|
|
/*
|
|
* This assumes that we have enough space below the idmap
|
|
* page to allocate our VAs. If not, the check below will
|
|
* kick. A potential alternative would be to detect that
|
|
* overflow and switch to an allocation above the idmap.
|
|
*
|
|
* The allocated size is always a multiple of PAGE_SIZE.
|
|
*/
|
|
size = PAGE_ALIGN(size + offset_in_page(phys_addr));
|
|
base = io_map_base - size;
|
|
|
|
/*
|
|
* Verify that BIT(VA_BITS - 1) hasn't been flipped by
|
|
* allocating the new area, as it would indicate we've
|
|
* overflowed the idmap/IO address range.
|
|
*/
|
|
if ((base ^ io_map_base) & BIT(VA_BITS - 1))
|
|
ret = -ENOMEM;
|
|
else
|
|
io_map_base = base;
|
|
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (__kvm_cpu_uses_extended_idmap())
|
|
pgd = boot_hyp_pgd;
|
|
|
|
ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
|
|
base, base + size,
|
|
__phys_to_pfn(phys_addr), prot);
|
|
if (ret)
|
|
goto out;
|
|
|
|
*haddr = base + offset_in_page(phys_addr);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* create_hyp_io_mappings - Map IO into both kernel and HYP
|
|
* @phys_addr: The physical start address which gets mapped
|
|
* @size: Size of the region being mapped
|
|
* @kaddr: Kernel VA for this mapping
|
|
* @haddr: HYP VA for this mapping
|
|
*/
|
|
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
|
|
void __iomem **kaddr,
|
|
void __iomem **haddr)
|
|
{
|
|
unsigned long addr;
|
|
int ret;
|
|
|
|
*kaddr = ioremap(phys_addr, size);
|
|
if (!*kaddr)
|
|
return -ENOMEM;
|
|
|
|
if (is_kernel_in_hyp_mode()) {
|
|
*haddr = *kaddr;
|
|
return 0;
|
|
}
|
|
|
|
ret = __create_hyp_private_mapping(phys_addr, size,
|
|
&addr, PAGE_HYP_DEVICE);
|
|
if (ret) {
|
|
iounmap(*kaddr);
|
|
*kaddr = NULL;
|
|
*haddr = NULL;
|
|
return ret;
|
|
}
|
|
|
|
*haddr = (void __iomem *)addr;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* create_hyp_exec_mappings - Map an executable range into HYP
|
|
* @phys_addr: The physical start address which gets mapped
|
|
* @size: Size of the region being mapped
|
|
* @haddr: HYP VA for this mapping
|
|
*/
|
|
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
|
|
void **haddr)
|
|
{
|
|
unsigned long addr;
|
|
int ret;
|
|
|
|
BUG_ON(is_kernel_in_hyp_mode());
|
|
|
|
ret = __create_hyp_private_mapping(phys_addr, size,
|
|
&addr, PAGE_HYP_EXEC);
|
|
if (ret) {
|
|
*haddr = NULL;
|
|
return ret;
|
|
}
|
|
|
|
*haddr = (void *)addr;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
|
|
* @kvm: The pointer to the KVM structure
|
|
* @mmu: The pointer to the s2 MMU structure
|
|
*
|
|
* Allocates only the stage-2 HW PGD level table(s) of size defined by
|
|
* stage2_pgd_size(mmu->kvm).
|
|
*
|
|
* Note we don't need locking here as this is only called when the VM is
|
|
* created, which can only be done once.
|
|
*/
|
|
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
|
|
{
|
|
phys_addr_t pgd_phys;
|
|
pgd_t *pgd;
|
|
int cpu;
|
|
|
|
if (mmu->pgd != NULL) {
|
|
kvm_err("kvm_arch already initialized?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allocate the HW PGD, making sure that each page gets its own refcount */
|
|
pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
pgd_phys = virt_to_phys(pgd);
|
|
if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
|
|
return -EINVAL;
|
|
|
|
mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
|
|
if (!mmu->last_vcpu_ran) {
|
|
free_pages_exact(pgd, stage2_pgd_size(kvm));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for_each_possible_cpu(cpu)
|
|
*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
|
|
|
|
mmu->kvm = kvm;
|
|
mmu->pgd = pgd;
|
|
mmu->pgd_phys = pgd_phys;
|
|
mmu->vmid.vmid_gen = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stage2_unmap_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot)
|
|
{
|
|
hva_t hva = memslot->userspace_addr;
|
|
phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t size = PAGE_SIZE * memslot->npages;
|
|
hva_t reg_end = hva + size;
|
|
|
|
/*
|
|
* A memory region could potentially cover multiple VMAs, and any holes
|
|
* between them, so iterate over all of them to find out if we should
|
|
* unmap any of them.
|
|
*
|
|
* +--------------------------------------------+
|
|
* +---------------+----------------+ +----------------+
|
|
* | : VMA 1 | VMA 2 | | VMA 3 : |
|
|
* +---------------+----------------+ +----------------+
|
|
* | memory region |
|
|
* +--------------------------------------------+
|
|
*/
|
|
do {
|
|
struct vm_area_struct *vma = find_vma(current->mm, hva);
|
|
hva_t vm_start, vm_end;
|
|
|
|
if (!vma || vma->vm_start >= reg_end)
|
|
break;
|
|
|
|
/*
|
|
* Take the intersection of this VMA with the memory region
|
|
*/
|
|
vm_start = max(hva, vma->vm_start);
|
|
vm_end = min(reg_end, vma->vm_end);
|
|
|
|
if (!(vma->vm_flags & VM_PFNMAP)) {
|
|
gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
|
|
unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
|
|
}
|
|
hva = vm_end;
|
|
} while (hva < reg_end);
|
|
}
|
|
|
|
/**
|
|
* stage2_unmap_vm - Unmap Stage-2 RAM mappings
|
|
* @kvm: The struct kvm pointer
|
|
*
|
|
* Go through the memregions and unmap any regular RAM
|
|
* backing memory already mapped to the VM.
|
|
*/
|
|
void stage2_unmap_vm(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
mmap_read_lock(current->mm);
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, slots)
|
|
stage2_unmap_memslot(kvm, memslot);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
mmap_read_unlock(current->mm);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
void *pgd = NULL;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (mmu->pgd) {
|
|
unmap_stage2_range(mmu, 0, kvm_phys_size(kvm));
|
|
pgd = READ_ONCE(mmu->pgd);
|
|
mmu->pgd = NULL;
|
|
}
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
/* Free the HW pgd, one page at a time */
|
|
if (pgd) {
|
|
free_pages_exact(pgd, stage2_pgd_size(kvm));
|
|
free_percpu(mmu->last_vcpu_ran);
|
|
}
|
|
}
|
|
|
|
static p4d_t *stage2_get_p4d(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
|
|
phys_addr_t addr)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
|
|
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
|
|
if (stage2_pgd_none(kvm, *pgd)) {
|
|
if (!cache)
|
|
return NULL;
|
|
p4d = kvm_mmu_memory_cache_alloc(cache);
|
|
stage2_pgd_populate(kvm, pgd, p4d);
|
|
get_page(virt_to_page(pgd));
|
|
}
|
|
|
|
return stage2_p4d_offset(kvm, pgd, addr);
|
|
}
|
|
|
|
static pud_t *stage2_get_pud(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
|
|
phys_addr_t addr)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
|
|
p4d = stage2_get_p4d(mmu, cache, addr);
|
|
if (stage2_p4d_none(kvm, *p4d)) {
|
|
if (!cache)
|
|
return NULL;
|
|
pud = kvm_mmu_memory_cache_alloc(cache);
|
|
stage2_p4d_populate(kvm, p4d, pud);
|
|
get_page(virt_to_page(p4d));
|
|
}
|
|
|
|
return stage2_pud_offset(kvm, p4d, addr);
|
|
}
|
|
|
|
static pmd_t *stage2_get_pmd(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
|
|
phys_addr_t addr)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pud = stage2_get_pud(mmu, cache, addr);
|
|
if (!pud || stage2_pud_huge(kvm, *pud))
|
|
return NULL;
|
|
|
|
if (stage2_pud_none(kvm, *pud)) {
|
|
if (!cache)
|
|
return NULL;
|
|
pmd = kvm_mmu_memory_cache_alloc(cache);
|
|
stage2_pud_populate(kvm, pud, pmd);
|
|
get_page(virt_to_page(pud));
|
|
}
|
|
|
|
return stage2_pmd_offset(kvm, pud, addr);
|
|
}
|
|
|
|
static int stage2_set_pmd_huge(struct kvm_s2_mmu *mmu,
|
|
struct kvm_mmu_memory_cache *cache,
|
|
phys_addr_t addr, const pmd_t *new_pmd)
|
|
{
|
|
pmd_t *pmd, old_pmd;
|
|
|
|
retry:
|
|
pmd = stage2_get_pmd(mmu, cache, addr);
|
|
VM_BUG_ON(!pmd);
|
|
|
|
old_pmd = *pmd;
|
|
/*
|
|
* Multiple vcpus faulting on the same PMD entry, can
|
|
* lead to them sequentially updating the PMD with the
|
|
* same value. Following the break-before-make
|
|
* (pmd_clear() followed by tlb_flush()) process can
|
|
* hinder forward progress due to refaults generated
|
|
* on missing translations.
|
|
*
|
|
* Skip updating the page table if the entry is
|
|
* unchanged.
|
|
*/
|
|
if (pmd_val(old_pmd) == pmd_val(*new_pmd))
|
|
return 0;
|
|
|
|
if (pmd_present(old_pmd)) {
|
|
/*
|
|
* If we already have PTE level mapping for this block,
|
|
* we must unmap it to avoid inconsistent TLB state and
|
|
* leaking the table page. We could end up in this situation
|
|
* if the memory slot was marked for dirty logging and was
|
|
* reverted, leaving PTE level mappings for the pages accessed
|
|
* during the period. So, unmap the PTE level mapping for this
|
|
* block and retry, as we could have released the upper level
|
|
* table in the process.
|
|
*
|
|
* Normal THP split/merge follows mmu_notifier callbacks and do
|
|
* get handled accordingly.
|
|
*/
|
|
if (!pmd_thp_or_huge(old_pmd)) {
|
|
unmap_stage2_range(mmu, addr & S2_PMD_MASK, S2_PMD_SIZE);
|
|
goto retry;
|
|
}
|
|
/*
|
|
* Mapping in huge pages should only happen through a
|
|
* fault. If a page is merged into a transparent huge
|
|
* page, the individual subpages of that huge page
|
|
* should be unmapped through MMU notifiers before we
|
|
* get here.
|
|
*
|
|
* Merging of CompoundPages is not supported; they
|
|
* should become splitting first, unmapped, merged,
|
|
* and mapped back in on-demand.
|
|
*/
|
|
WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
|
|
pmd_clear(pmd);
|
|
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
|
|
} else {
|
|
get_page(virt_to_page(pmd));
|
|
}
|
|
|
|
kvm_set_pmd(pmd, *new_pmd);
|
|
return 0;
|
|
}
|
|
|
|
static int stage2_set_pud_huge(struct kvm_s2_mmu *mmu,
|
|
struct kvm_mmu_memory_cache *cache,
|
|
phys_addr_t addr, const pud_t *new_pudp)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pud_t *pudp, old_pud;
|
|
|
|
retry:
|
|
pudp = stage2_get_pud(mmu, cache, addr);
|
|
VM_BUG_ON(!pudp);
|
|
|
|
old_pud = *pudp;
|
|
|
|
/*
|
|
* A large number of vcpus faulting on the same stage 2 entry,
|
|
* can lead to a refault due to the stage2_pud_clear()/tlb_flush().
|
|
* Skip updating the page tables if there is no change.
|
|
*/
|
|
if (pud_val(old_pud) == pud_val(*new_pudp))
|
|
return 0;
|
|
|
|
if (stage2_pud_present(kvm, old_pud)) {
|
|
/*
|
|
* If we already have table level mapping for this block, unmap
|
|
* the range for this block and retry.
|
|
*/
|
|
if (!stage2_pud_huge(kvm, old_pud)) {
|
|
unmap_stage2_range(mmu, addr & S2_PUD_MASK, S2_PUD_SIZE);
|
|
goto retry;
|
|
}
|
|
|
|
WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
|
|
stage2_pud_clear(kvm, pudp);
|
|
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
|
|
} else {
|
|
get_page(virt_to_page(pudp));
|
|
}
|
|
|
|
kvm_set_pud(pudp, *new_pudp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* stage2_get_leaf_entry - walk the stage2 VM page tables and return
|
|
* true if a valid and present leaf-entry is found. A pointer to the
|
|
* leaf-entry is returned in the appropriate level variable - pudpp,
|
|
* pmdpp, ptepp.
|
|
*/
|
|
static bool stage2_get_leaf_entry(struct kvm_s2_mmu *mmu, phys_addr_t addr,
|
|
pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
*pudpp = NULL;
|
|
*pmdpp = NULL;
|
|
*ptepp = NULL;
|
|
|
|
pudp = stage2_get_pud(mmu, NULL, addr);
|
|
if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
|
|
return false;
|
|
|
|
if (stage2_pud_huge(kvm, *pudp)) {
|
|
*pudpp = pudp;
|
|
return true;
|
|
}
|
|
|
|
pmdp = stage2_pmd_offset(kvm, pudp, addr);
|
|
if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
|
|
return false;
|
|
|
|
if (pmd_thp_or_huge(*pmdp)) {
|
|
*pmdpp = pmdp;
|
|
return true;
|
|
}
|
|
|
|
ptep = pte_offset_kernel(pmdp, addr);
|
|
if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
|
|
return false;
|
|
|
|
*ptepp = ptep;
|
|
return true;
|
|
}
|
|
|
|
static bool stage2_is_exec(struct kvm_s2_mmu *mmu, phys_addr_t addr, unsigned long sz)
|
|
{
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
bool found;
|
|
|
|
found = stage2_get_leaf_entry(mmu, addr, &pudp, &pmdp, &ptep);
|
|
if (!found)
|
|
return false;
|
|
|
|
if (pudp)
|
|
return sz <= PUD_SIZE && kvm_s2pud_exec(pudp);
|
|
else if (pmdp)
|
|
return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp);
|
|
else
|
|
return sz == PAGE_SIZE && kvm_s2pte_exec(ptep);
|
|
}
|
|
|
|
static int stage2_set_pte(struct kvm_s2_mmu *mmu,
|
|
struct kvm_mmu_memory_cache *cache,
|
|
phys_addr_t addr, const pte_t *new_pte,
|
|
unsigned long flags)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte, old_pte;
|
|
bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
|
|
bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
|
|
|
|
VM_BUG_ON(logging_active && !cache);
|
|
|
|
/* Create stage-2 page table mapping - Levels 0 and 1 */
|
|
pud = stage2_get_pud(mmu, cache, addr);
|
|
if (!pud) {
|
|
/*
|
|
* Ignore calls from kvm_set_spte_hva for unallocated
|
|
* address ranges.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* While dirty page logging - dissolve huge PUD, then continue
|
|
* on to allocate page.
|
|
*/
|
|
if (logging_active)
|
|
stage2_dissolve_pud(mmu, addr, pud);
|
|
|
|
if (stage2_pud_none(kvm, *pud)) {
|
|
if (!cache)
|
|
return 0; /* ignore calls from kvm_set_spte_hva */
|
|
pmd = kvm_mmu_memory_cache_alloc(cache);
|
|
stage2_pud_populate(kvm, pud, pmd);
|
|
get_page(virt_to_page(pud));
|
|
}
|
|
|
|
pmd = stage2_pmd_offset(kvm, pud, addr);
|
|
if (!pmd) {
|
|
/*
|
|
* Ignore calls from kvm_set_spte_hva for unallocated
|
|
* address ranges.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* While dirty page logging - dissolve huge PMD, then continue on to
|
|
* allocate page.
|
|
*/
|
|
if (logging_active)
|
|
stage2_dissolve_pmd(mmu, addr, pmd);
|
|
|
|
/* Create stage-2 page mappings - Level 2 */
|
|
if (pmd_none(*pmd)) {
|
|
if (!cache)
|
|
return 0; /* ignore calls from kvm_set_spte_hva */
|
|
pte = kvm_mmu_memory_cache_alloc(cache);
|
|
kvm_pmd_populate(pmd, pte);
|
|
get_page(virt_to_page(pmd));
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
|
|
if (iomap && pte_present(*pte))
|
|
return -EFAULT;
|
|
|
|
/* Create 2nd stage page table mapping - Level 3 */
|
|
old_pte = *pte;
|
|
if (pte_present(old_pte)) {
|
|
/* Skip page table update if there is no change */
|
|
if (pte_val(old_pte) == pte_val(*new_pte))
|
|
return 0;
|
|
|
|
kvm_set_pte(pte, __pte(0));
|
|
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
|
|
} else {
|
|
get_page(virt_to_page(pte));
|
|
}
|
|
|
|
kvm_set_pte(pte, *new_pte);
|
|
return 0;
|
|
}
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
static int stage2_ptep_test_and_clear_young(pte_t *pte)
|
|
{
|
|
if (pte_young(*pte)) {
|
|
*pte = pte_mkold(*pte);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
static int stage2_ptep_test_and_clear_young(pte_t *pte)
|
|
{
|
|
return __ptep_test_and_clear_young(pte);
|
|
}
|
|
#endif
|
|
|
|
static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
|
|
{
|
|
return stage2_ptep_test_and_clear_young((pte_t *)pmd);
|
|
}
|
|
|
|
static int stage2_pudp_test_and_clear_young(pud_t *pud)
|
|
{
|
|
return stage2_ptep_test_and_clear_young((pte_t *)pud);
|
|
}
|
|
|
|
/**
|
|
* kvm_phys_addr_ioremap - map a device range to guest IPA
|
|
*
|
|
* @kvm: The KVM pointer
|
|
* @guest_ipa: The IPA at which to insert the mapping
|
|
* @pa: The physical address of the device
|
|
* @size: The size of the mapping
|
|
*/
|
|
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
|
|
phys_addr_t pa, unsigned long size, bool writable)
|
|
{
|
|
phys_addr_t addr, end;
|
|
int ret = 0;
|
|
unsigned long pfn;
|
|
struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
|
|
|
|
end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
|
|
pfn = __phys_to_pfn(pa);
|
|
|
|
for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
|
|
pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
|
|
|
|
if (writable)
|
|
pte = kvm_s2pte_mkwrite(pte);
|
|
|
|
ret = kvm_mmu_topup_memory_cache(&cache,
|
|
kvm_mmu_cache_min_pages(kvm));
|
|
if (ret)
|
|
goto out;
|
|
spin_lock(&kvm->mmu_lock);
|
|
ret = stage2_set_pte(&kvm->arch.mmu, &cache, addr, &pte,
|
|
KVM_S2PTE_FLAG_IS_IOMAP);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pfn++;
|
|
}
|
|
|
|
out:
|
|
kvm_mmu_free_memory_cache(&cache);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* stage2_wp_ptes - write protect PMD range
|
|
* @pmd: pointer to pmd entry
|
|
* @addr: range start address
|
|
* @end: range end address
|
|
*/
|
|
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
if (!pte_none(*pte)) {
|
|
if (!kvm_s2pte_readonly(pte))
|
|
kvm_set_s2pte_readonly(pte);
|
|
}
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
/**
|
|
* stage2_wp_pmds - write protect PUD range
|
|
* kvm: kvm instance for the VM
|
|
* @pud: pointer to pud entry
|
|
* @addr: range start address
|
|
* @end: range end address
|
|
*/
|
|
static void stage2_wp_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pmd_t *pmd;
|
|
phys_addr_t next;
|
|
|
|
pmd = stage2_pmd_offset(kvm, pud, addr);
|
|
|
|
do {
|
|
next = stage2_pmd_addr_end(kvm, addr, end);
|
|
if (!pmd_none(*pmd)) {
|
|
if (pmd_thp_or_huge(*pmd)) {
|
|
if (!kvm_s2pmd_readonly(pmd))
|
|
kvm_set_s2pmd_readonly(pmd);
|
|
} else {
|
|
stage2_wp_ptes(pmd, addr, next);
|
|
}
|
|
}
|
|
} while (pmd++, addr = next, addr != end);
|
|
}
|
|
|
|
/**
|
|
* stage2_wp_puds - write protect P4D range
|
|
* @p4d: pointer to p4d entry
|
|
* @addr: range start address
|
|
* @end: range end address
|
|
*/
|
|
static void stage2_wp_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pud_t *pud;
|
|
phys_addr_t next;
|
|
|
|
pud = stage2_pud_offset(kvm, p4d, addr);
|
|
do {
|
|
next = stage2_pud_addr_end(kvm, addr, end);
|
|
if (!stage2_pud_none(kvm, *pud)) {
|
|
if (stage2_pud_huge(kvm, *pud)) {
|
|
if (!kvm_s2pud_readonly(pud))
|
|
kvm_set_s2pud_readonly(pud);
|
|
} else {
|
|
stage2_wp_pmds(mmu, pud, addr, next);
|
|
}
|
|
}
|
|
} while (pud++, addr = next, addr != end);
|
|
}
|
|
|
|
/**
|
|
* stage2_wp_p4ds - write protect PGD range
|
|
* @pgd: pointer to pgd entry
|
|
* @addr: range start address
|
|
* @end: range end address
|
|
*/
|
|
static void stage2_wp_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
|
|
phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
p4d_t *p4d;
|
|
phys_addr_t next;
|
|
|
|
p4d = stage2_p4d_offset(kvm, pgd, addr);
|
|
do {
|
|
next = stage2_p4d_addr_end(kvm, addr, end);
|
|
if (!stage2_p4d_none(kvm, *p4d))
|
|
stage2_wp_puds(mmu, p4d, addr, next);
|
|
} while (p4d++, addr = next, addr != end);
|
|
}
|
|
|
|
/**
|
|
* stage2_wp_range() - write protect stage2 memory region range
|
|
* @kvm: The KVM pointer
|
|
* @addr: Start address of range
|
|
* @end: End address of range
|
|
*/
|
|
static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
|
|
{
|
|
struct kvm *kvm = mmu->kvm;
|
|
pgd_t *pgd;
|
|
phys_addr_t next;
|
|
|
|
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
|
|
do {
|
|
/*
|
|
* Release kvm_mmu_lock periodically if the memory region is
|
|
* large. Otherwise, we may see kernel panics with
|
|
* CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
|
|
* CONFIG_LOCKDEP. Additionally, holding the lock too long
|
|
* will also starve other vCPUs. We have to also make sure
|
|
* that the page tables are not freed while we released
|
|
* the lock.
|
|
*/
|
|
cond_resched_lock(&kvm->mmu_lock);
|
|
if (!READ_ONCE(mmu->pgd))
|
|
break;
|
|
next = stage2_pgd_addr_end(kvm, addr, end);
|
|
if (stage2_pgd_present(kvm, *pgd))
|
|
stage2_wp_p4ds(mmu, pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
/**
|
|
* kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
|
|
* @kvm: The KVM pointer
|
|
* @slot: The memory slot to write protect
|
|
*
|
|
* Called to start logging dirty pages after memory region
|
|
* KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
|
|
* all present PUD, PMD and PTEs are write protected in the memory region.
|
|
* Afterwards read of dirty page log can be called.
|
|
*
|
|
* Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
|
|
* serializing operations for VM memory regions.
|
|
*/
|
|
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
|
|
phys_addr_t start, end;
|
|
|
|
if (WARN_ON_ONCE(!memslot))
|
|
return;
|
|
|
|
start = memslot->base_gfn << PAGE_SHIFT;
|
|
end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
stage2_wp_range(&kvm->arch.mmu, start, end);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvm_flush_remote_tlbs(kvm);
|
|
}
|
|
|
|
/**
|
|
* kvm_mmu_write_protect_pt_masked() - write protect dirty pages
|
|
* @kvm: The KVM pointer
|
|
* @slot: The memory slot associated with mask
|
|
* @gfn_offset: The gfn offset in memory slot
|
|
* @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
|
|
* slot to be write protected
|
|
*
|
|
* Walks bits set in mask write protects the associated pte's. Caller must
|
|
* acquire kvm_mmu_lock.
|
|
*/
|
|
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot,
|
|
gfn_t gfn_offset, unsigned long mask)
|
|
{
|
|
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
|
|
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
|
|
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
|
|
|
|
stage2_wp_range(&kvm->arch.mmu, start, end);
|
|
}
|
|
|
|
/*
|
|
* kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
|
|
* dirty pages.
|
|
*
|
|
* It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
|
|
* enable dirty logging for them.
|
|
*/
|
|
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot,
|
|
gfn_t gfn_offset, unsigned long mask)
|
|
{
|
|
kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
|
|
}
|
|
|
|
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
|
|
{
|
|
__clean_dcache_guest_page(pfn, size);
|
|
}
|
|
|
|
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
|
|
{
|
|
__invalidate_icache_guest_page(pfn, size);
|
|
}
|
|
|
|
static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
|
|
{
|
|
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
|
|
}
|
|
|
|
static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
|
|
unsigned long hva,
|
|
unsigned long map_size)
|
|
{
|
|
gpa_t gpa_start;
|
|
hva_t uaddr_start, uaddr_end;
|
|
size_t size;
|
|
|
|
/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
|
|
if (map_size == PAGE_SIZE)
|
|
return true;
|
|
|
|
size = memslot->npages * PAGE_SIZE;
|
|
|
|
gpa_start = memslot->base_gfn << PAGE_SHIFT;
|
|
|
|
uaddr_start = memslot->userspace_addr;
|
|
uaddr_end = uaddr_start + size;
|
|
|
|
/*
|
|
* Pages belonging to memslots that don't have the same alignment
|
|
* within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
|
|
* PMD/PUD entries, because we'll end up mapping the wrong pages.
|
|
*
|
|
* Consider a layout like the following:
|
|
*
|
|
* memslot->userspace_addr:
|
|
* +-----+--------------------+--------------------+---+
|
|
* |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
|
|
* +-----+--------------------+--------------------+---+
|
|
*
|
|
* memslot->base_gfn << PAGE_SHIFT:
|
|
* +---+--------------------+--------------------+-----+
|
|
* |abc|def Stage-2 block | Stage-2 block |tvxyz|
|
|
* +---+--------------------+--------------------+-----+
|
|
*
|
|
* If we create those stage-2 blocks, we'll end up with this incorrect
|
|
* mapping:
|
|
* d -> f
|
|
* e -> g
|
|
* f -> h
|
|
*/
|
|
if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
|
|
return false;
|
|
|
|
/*
|
|
* Next, let's make sure we're not trying to map anything not covered
|
|
* by the memslot. This means we have to prohibit block size mappings
|
|
* for the beginning and end of a non-block aligned and non-block sized
|
|
* memory slot (illustrated by the head and tail parts of the
|
|
* userspace view above containing pages 'abcde' and 'xyz',
|
|
* respectively).
|
|
*
|
|
* Note that it doesn't matter if we do the check using the
|
|
* userspace_addr or the base_gfn, as both are equally aligned (per
|
|
* the check above) and equally sized.
|
|
*/
|
|
return (hva & ~(map_size - 1)) >= uaddr_start &&
|
|
(hva & ~(map_size - 1)) + map_size <= uaddr_end;
|
|
}
|
|
|
|
/*
|
|
* Check if the given hva is backed by a transparent huge page (THP) and
|
|
* whether it can be mapped using block mapping in stage2. If so, adjust
|
|
* the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
|
|
* supported. This will need to be updated to support other THP sizes.
|
|
*
|
|
* Returns the size of the mapping.
|
|
*/
|
|
static unsigned long
|
|
transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
|
|
unsigned long hva, kvm_pfn_t *pfnp,
|
|
phys_addr_t *ipap)
|
|
{
|
|
kvm_pfn_t pfn = *pfnp;
|
|
|
|
/*
|
|
* Make sure the adjustment is done only for THP pages. Also make
|
|
* sure that the HVA and IPA are sufficiently aligned and that the
|
|
* block map is contained within the memslot.
|
|
*/
|
|
if (kvm_is_transparent_hugepage(pfn) &&
|
|
fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
|
|
/*
|
|
* The address we faulted on is backed by a transparent huge
|
|
* page. However, because we map the compound huge page and
|
|
* not the individual tail page, we need to transfer the
|
|
* refcount to the head page. We have to be careful that the
|
|
* THP doesn't start to split while we are adjusting the
|
|
* refcounts.
|
|
*
|
|
* We are sure this doesn't happen, because mmu_notifier_retry
|
|
* was successful and we are holding the mmu_lock, so if this
|
|
* THP is trying to split, it will be blocked in the mmu
|
|
* notifier before touching any of the pages, specifically
|
|
* before being able to call __split_huge_page_refcount().
|
|
*
|
|
* We can therefore safely transfer the refcount from PG_tail
|
|
* to PG_head and switch the pfn from a tail page to the head
|
|
* page accordingly.
|
|
*/
|
|
*ipap &= PMD_MASK;
|
|
kvm_release_pfn_clean(pfn);
|
|
pfn &= ~(PTRS_PER_PMD - 1);
|
|
kvm_get_pfn(pfn);
|
|
*pfnp = pfn;
|
|
|
|
return PMD_SIZE;
|
|
}
|
|
|
|
/* Use page mapping if we cannot use block mapping. */
|
|
return PAGE_SIZE;
|
|
}
|
|
|
|
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
|
struct kvm_memory_slot *memslot, unsigned long hva,
|
|
unsigned long fault_status)
|
|
{
|
|
int ret;
|
|
bool write_fault, writable, force_pte = false;
|
|
bool exec_fault, needs_exec;
|
|
unsigned long mmu_seq;
|
|
gfn_t gfn = fault_ipa >> PAGE_SHIFT;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
|
|
struct vm_area_struct *vma;
|
|
short vma_shift;
|
|
kvm_pfn_t pfn;
|
|
pgprot_t mem_type = PAGE_S2;
|
|
bool logging_active = memslot_is_logging(memslot);
|
|
unsigned long vma_pagesize, flags = 0;
|
|
struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
|
|
|
|
write_fault = kvm_is_write_fault(vcpu);
|
|
exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
|
|
VM_BUG_ON(write_fault && exec_fault);
|
|
|
|
if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
|
|
kvm_err("Unexpected L2 read permission error\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Let's check if we will get back a huge page backed by hugetlbfs */
|
|
mmap_read_lock(current->mm);
|
|
vma = find_vma_intersection(current->mm, hva, hva + 1);
|
|
if (unlikely(!vma)) {
|
|
kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
|
|
mmap_read_unlock(current->mm);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (is_vm_hugetlb_page(vma))
|
|
vma_shift = huge_page_shift(hstate_vma(vma));
|
|
else
|
|
vma_shift = PAGE_SHIFT;
|
|
|
|
vma_pagesize = 1ULL << vma_shift;
|
|
if (logging_active ||
|
|
(vma->vm_flags & VM_PFNMAP) ||
|
|
!fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
|
|
force_pte = true;
|
|
vma_pagesize = PAGE_SIZE;
|
|
vma_shift = PAGE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* The stage2 has a minimum of 2 level table (For arm64 see
|
|
* kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
|
|
* use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
|
|
* As for PUD huge maps, we must make sure that we have at least
|
|
* 3 levels, i.e, PMD is not folded.
|
|
*/
|
|
if (vma_pagesize == PMD_SIZE ||
|
|
(vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
|
|
gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
|
|
mmap_read_unlock(current->mm);
|
|
|
|
/* We need minimum second+third level pages */
|
|
ret = kvm_mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm));
|
|
if (ret)
|
|
return ret;
|
|
|
|
mmu_seq = vcpu->kvm->mmu_notifier_seq;
|
|
/*
|
|
* Ensure the read of mmu_notifier_seq happens before we call
|
|
* gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
|
|
* the page we just got a reference to gets unmapped before we have a
|
|
* chance to grab the mmu_lock, which ensure that if the page gets
|
|
* unmapped afterwards, the call to kvm_unmap_hva will take it away
|
|
* from us again properly. This smp_rmb() interacts with the smp_wmb()
|
|
* in kvm_mmu_notifier_invalidate_<page|range_end>.
|
|
*/
|
|
smp_rmb();
|
|
|
|
pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
|
|
if (pfn == KVM_PFN_ERR_HWPOISON) {
|
|
kvm_send_hwpoison_signal(hva, vma_shift);
|
|
return 0;
|
|
}
|
|
if (is_error_noslot_pfn(pfn))
|
|
return -EFAULT;
|
|
|
|
if (kvm_is_device_pfn(pfn)) {
|
|
mem_type = PAGE_S2_DEVICE;
|
|
flags |= KVM_S2PTE_FLAG_IS_IOMAP;
|
|
} else if (logging_active) {
|
|
/*
|
|
* Faults on pages in a memslot with logging enabled
|
|
* should not be mapped with huge pages (it introduces churn
|
|
* and performance degradation), so force a pte mapping.
|
|
*/
|
|
flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
|
|
|
|
/*
|
|
* Only actually map the page as writable if this was a write
|
|
* fault.
|
|
*/
|
|
if (!write_fault)
|
|
writable = false;
|
|
}
|
|
|
|
if (exec_fault && is_iomap(flags))
|
|
return -ENOEXEC;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (mmu_notifier_retry(kvm, mmu_seq))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* If we are not forced to use page mapping, check if we are
|
|
* backed by a THP and thus use block mapping if possible.
|
|
*/
|
|
if (vma_pagesize == PAGE_SIZE && !force_pte)
|
|
vma_pagesize = transparent_hugepage_adjust(memslot, hva,
|
|
&pfn, &fault_ipa);
|
|
if (writable)
|
|
kvm_set_pfn_dirty(pfn);
|
|
|
|
if (fault_status != FSC_PERM && !is_iomap(flags))
|
|
clean_dcache_guest_page(pfn, vma_pagesize);
|
|
|
|
if (exec_fault)
|
|
invalidate_icache_guest_page(pfn, vma_pagesize);
|
|
|
|
/*
|
|
* If we took an execution fault we have made the
|
|
* icache/dcache coherent above and should now let the s2
|
|
* mapping be executable.
|
|
*
|
|
* Write faults (!exec_fault && FSC_PERM) are orthogonal to
|
|
* execute permissions, and we preserve whatever we have.
|
|
*/
|
|
needs_exec = exec_fault ||
|
|
(fault_status == FSC_PERM &&
|
|
stage2_is_exec(mmu, fault_ipa, vma_pagesize));
|
|
|
|
/*
|
|
* If PUD_SIZE == PMD_SIZE, there is no real PUD level, and
|
|
* all we have is a 2-level page table. Trying to map a PUD in
|
|
* this case would be fatally wrong.
|
|
*/
|
|
if (PUD_SIZE != PMD_SIZE && vma_pagesize == PUD_SIZE) {
|
|
pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
|
|
|
|
new_pud = kvm_pud_mkhuge(new_pud);
|
|
if (writable)
|
|
new_pud = kvm_s2pud_mkwrite(new_pud);
|
|
|
|
if (needs_exec)
|
|
new_pud = kvm_s2pud_mkexec(new_pud);
|
|
|
|
ret = stage2_set_pud_huge(mmu, memcache, fault_ipa, &new_pud);
|
|
} else if (vma_pagesize == PMD_SIZE) {
|
|
pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
|
|
|
|
new_pmd = kvm_pmd_mkhuge(new_pmd);
|
|
|
|
if (writable)
|
|
new_pmd = kvm_s2pmd_mkwrite(new_pmd);
|
|
|
|
if (needs_exec)
|
|
new_pmd = kvm_s2pmd_mkexec(new_pmd);
|
|
|
|
ret = stage2_set_pmd_huge(mmu, memcache, fault_ipa, &new_pmd);
|
|
} else {
|
|
pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
|
|
|
|
if (writable) {
|
|
new_pte = kvm_s2pte_mkwrite(new_pte);
|
|
mark_page_dirty(kvm, gfn);
|
|
}
|
|
|
|
if (needs_exec)
|
|
new_pte = kvm_s2pte_mkexec(new_pte);
|
|
|
|
ret = stage2_set_pte(mmu, memcache, fault_ipa, &new_pte, flags);
|
|
}
|
|
|
|
out_unlock:
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvm_set_pfn_accessed(pfn);
|
|
kvm_release_pfn_clean(pfn);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Resolve the access fault by making the page young again.
|
|
* Note that because the faulting entry is guaranteed not to be
|
|
* cached in the TLB, we don't need to invalidate anything.
|
|
* Only the HW Access Flag updates are supported for Stage 2 (no DBM),
|
|
* so there is no need for atomic (pte|pmd)_mkyoung operations.
|
|
*/
|
|
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
|
|
{
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
kvm_pfn_t pfn;
|
|
bool pfn_valid = false;
|
|
|
|
trace_kvm_access_fault(fault_ipa);
|
|
|
|
spin_lock(&vcpu->kvm->mmu_lock);
|
|
|
|
if (!stage2_get_leaf_entry(vcpu->arch.hw_mmu, fault_ipa, &pud, &pmd, &pte))
|
|
goto out;
|
|
|
|
if (pud) { /* HugeTLB */
|
|
*pud = kvm_s2pud_mkyoung(*pud);
|
|
pfn = kvm_pud_pfn(*pud);
|
|
pfn_valid = true;
|
|
} else if (pmd) { /* THP, HugeTLB */
|
|
*pmd = pmd_mkyoung(*pmd);
|
|
pfn = pmd_pfn(*pmd);
|
|
pfn_valid = true;
|
|
} else {
|
|
*pte = pte_mkyoung(*pte); /* Just a page... */
|
|
pfn = pte_pfn(*pte);
|
|
pfn_valid = true;
|
|
}
|
|
|
|
out:
|
|
spin_unlock(&vcpu->kvm->mmu_lock);
|
|
if (pfn_valid)
|
|
kvm_set_pfn_accessed(pfn);
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_guest_abort - handles all 2nd stage aborts
|
|
* @vcpu: the VCPU pointer
|
|
*
|
|
* Any abort that gets to the host is almost guaranteed to be caused by a
|
|
* missing second stage translation table entry, which can mean that either the
|
|
* guest simply needs more memory and we must allocate an appropriate page or it
|
|
* can mean that the guest tried to access I/O memory, which is emulated by user
|
|
* space. The distinction is based on the IPA causing the fault and whether this
|
|
* memory region has been registered as standard RAM by user space.
|
|
*/
|
|
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long fault_status;
|
|
phys_addr_t fault_ipa;
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long hva;
|
|
bool is_iabt, write_fault, writable;
|
|
gfn_t gfn;
|
|
int ret, idx;
|
|
|
|
fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
|
|
|
|
fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
|
|
is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
|
|
|
|
/* Synchronous External Abort? */
|
|
if (kvm_vcpu_abt_issea(vcpu)) {
|
|
/*
|
|
* For RAS the host kernel may handle this abort.
|
|
* There is no need to pass the error into the guest.
|
|
*/
|
|
if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
|
|
kvm_inject_vabt(vcpu);
|
|
|
|
return 1;
|
|
}
|
|
|
|
trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
|
|
kvm_vcpu_get_hfar(vcpu), fault_ipa);
|
|
|
|
/* Check the stage-2 fault is trans. fault or write fault */
|
|
if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
|
|
fault_status != FSC_ACCESS) {
|
|
kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
|
|
kvm_vcpu_trap_get_class(vcpu),
|
|
(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
|
|
(unsigned long)kvm_vcpu_get_esr(vcpu));
|
|
return -EFAULT;
|
|
}
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
|
|
gfn = fault_ipa >> PAGE_SHIFT;
|
|
memslot = gfn_to_memslot(vcpu->kvm, gfn);
|
|
hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
|
|
write_fault = kvm_is_write_fault(vcpu);
|
|
if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
|
|
/*
|
|
* The guest has put either its instructions or its page-tables
|
|
* somewhere it shouldn't have. Userspace won't be able to do
|
|
* anything about this (there's no syndrome for a start), so
|
|
* re-inject the abort back into the guest.
|
|
*/
|
|
if (is_iabt) {
|
|
ret = -ENOEXEC;
|
|
goto out;
|
|
}
|
|
|
|
if (kvm_vcpu_abt_iss1tw(vcpu)) {
|
|
kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
|
|
ret = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Check for a cache maintenance operation. Since we
|
|
* ended-up here, we know it is outside of any memory
|
|
* slot. But we can't find out if that is for a device,
|
|
* or if the guest is just being stupid. The only thing
|
|
* we know for sure is that this range cannot be cached.
|
|
*
|
|
* So let's assume that the guest is just being
|
|
* cautious, and skip the instruction.
|
|
*/
|
|
if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
|
|
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
|
ret = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* The IPA is reported as [MAX:12], so we need to
|
|
* complement it with the bottom 12 bits from the
|
|
* faulting VA. This is always 12 bits, irrespective
|
|
* of the page size.
|
|
*/
|
|
fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
|
|
ret = io_mem_abort(vcpu, fault_ipa);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Userspace should not be able to register out-of-bounds IPAs */
|
|
VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
|
|
|
|
if (fault_status == FSC_ACCESS) {
|
|
handle_access_fault(vcpu, fault_ipa);
|
|
ret = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
|
|
if (ret == 0)
|
|
ret = 1;
|
|
out:
|
|
if (ret == -ENOEXEC) {
|
|
kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
|
|
ret = 1;
|
|
}
|
|
out_unlock:
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
return ret;
|
|
}
|
|
|
|
static int handle_hva_to_gpa(struct kvm *kvm,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
int (*handler)(struct kvm *kvm,
|
|
gpa_t gpa, u64 size,
|
|
void *data),
|
|
void *data)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int ret = 0;
|
|
|
|
slots = kvm_memslots(kvm);
|
|
|
|
/* we only care about the pages that the guest sees */
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
unsigned long hva_start, hva_end;
|
|
gfn_t gpa;
|
|
|
|
hva_start = max(start, memslot->userspace_addr);
|
|
hva_end = min(end, memslot->userspace_addr +
|
|
(memslot->npages << PAGE_SHIFT));
|
|
if (hva_start >= hva_end)
|
|
continue;
|
|
|
|
gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
|
|
ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
|
|
{
|
|
unsigned flags = *(unsigned *)data;
|
|
bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE;
|
|
|
|
__unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_unmap_hva_range(struct kvm *kvm,
|
|
unsigned long start, unsigned long end, unsigned flags)
|
|
{
|
|
if (!kvm->arch.mmu.pgd)
|
|
return 0;
|
|
|
|
trace_kvm_unmap_hva_range(start, end);
|
|
handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
|
|
{
|
|
pte_t *pte = (pte_t *)data;
|
|
|
|
WARN_ON(size != PAGE_SIZE);
|
|
/*
|
|
* We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
|
|
* flag clear because MMU notifiers will have unmapped a huge PMD before
|
|
* calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
|
|
* therefore stage2_set_pte() never needs to clear out a huge PMD
|
|
* through this calling path.
|
|
*/
|
|
stage2_set_pte(&kvm->arch.mmu, NULL, gpa, pte, 0);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
|
|
{
|
|
unsigned long end = hva + PAGE_SIZE;
|
|
kvm_pfn_t pfn = pte_pfn(pte);
|
|
pte_t stage2_pte;
|
|
|
|
if (!kvm->arch.mmu.pgd)
|
|
return 0;
|
|
|
|
trace_kvm_set_spte_hva(hva);
|
|
|
|
/*
|
|
* We've moved a page around, probably through CoW, so let's treat it
|
|
* just like a translation fault and clean the cache to the PoC.
|
|
*/
|
|
clean_dcache_guest_page(pfn, PAGE_SIZE);
|
|
stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
|
|
handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
|
|
{
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
|
|
if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
|
|
return 0;
|
|
|
|
if (pud)
|
|
return stage2_pudp_test_and_clear_young(pud);
|
|
else if (pmd)
|
|
return stage2_pmdp_test_and_clear_young(pmd);
|
|
else
|
|
return stage2_ptep_test_and_clear_young(pte);
|
|
}
|
|
|
|
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
|
|
{
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
|
|
if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
|
|
return 0;
|
|
|
|
if (pud)
|
|
return kvm_s2pud_young(*pud);
|
|
else if (pmd)
|
|
return pmd_young(*pmd);
|
|
else
|
|
return pte_young(*pte);
|
|
}
|
|
|
|
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
|
|
{
|
|
if (!kvm->arch.mmu.pgd)
|
|
return 0;
|
|
trace_kvm_age_hva(start, end);
|
|
return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
|
|
}
|
|
|
|
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
if (!kvm->arch.mmu.pgd)
|
|
return 0;
|
|
trace_kvm_test_age_hva(hva);
|
|
return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
|
|
kvm_test_age_hva_handler, NULL);
|
|
}
|
|
|
|
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
|
|
}
|
|
|
|
phys_addr_t kvm_mmu_get_httbr(void)
|
|
{
|
|
if (__kvm_cpu_uses_extended_idmap())
|
|
return virt_to_phys(merged_hyp_pgd);
|
|
else
|
|
return virt_to_phys(hyp_pgd);
|
|
}
|
|
|
|
phys_addr_t kvm_get_idmap_vector(void)
|
|
{
|
|
return hyp_idmap_vector;
|
|
}
|
|
|
|
static int kvm_map_idmap_text(pgd_t *pgd)
|
|
{
|
|
int err;
|
|
|
|
/* Create the idmap in the boot page tables */
|
|
err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
|
|
hyp_idmap_start, hyp_idmap_end,
|
|
__phys_to_pfn(hyp_idmap_start),
|
|
PAGE_HYP_EXEC);
|
|
if (err)
|
|
kvm_err("Failed to idmap %lx-%lx\n",
|
|
hyp_idmap_start, hyp_idmap_end);
|
|
|
|
return err;
|
|
}
|
|
|
|
int kvm_mmu_init(void)
|
|
{
|
|
int err;
|
|
|
|
hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
|
|
hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
|
|
hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
|
|
hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
|
|
hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
|
|
|
|
/*
|
|
* We rely on the linker script to ensure at build time that the HYP
|
|
* init code does not cross a page boundary.
|
|
*/
|
|
BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
|
|
|
|
kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
|
|
kvm_debug("HYP VA range: %lx:%lx\n",
|
|
kern_hyp_va(PAGE_OFFSET),
|
|
kern_hyp_va((unsigned long)high_memory - 1));
|
|
|
|
if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
|
|
hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
|
|
hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
|
|
/*
|
|
* The idmap page is intersecting with the VA space,
|
|
* it is not safe to continue further.
|
|
*/
|
|
kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
|
|
if (!hyp_pgd) {
|
|
kvm_err("Hyp mode PGD not allocated\n");
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (__kvm_cpu_uses_extended_idmap()) {
|
|
boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
|
|
hyp_pgd_order);
|
|
if (!boot_hyp_pgd) {
|
|
kvm_err("Hyp boot PGD not allocated\n");
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = kvm_map_idmap_text(boot_hyp_pgd);
|
|
if (err)
|
|
goto out;
|
|
|
|
merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
|
|
if (!merged_hyp_pgd) {
|
|
kvm_err("Failed to allocate extra HYP pgd\n");
|
|
goto out;
|
|
}
|
|
__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
|
|
hyp_idmap_start);
|
|
} else {
|
|
err = kvm_map_idmap_text(hyp_pgd);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
io_map_base = hyp_idmap_start;
|
|
return 0;
|
|
out:
|
|
free_hyp_pgds();
|
|
return err;
|
|
}
|
|
|
|
void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|
const struct kvm_userspace_memory_region *mem,
|
|
struct kvm_memory_slot *old,
|
|
const struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
/*
|
|
* At this point memslot has been committed and there is an
|
|
* allocated dirty_bitmap[], dirty pages will be tracked while the
|
|
* memory slot is write protected.
|
|
*/
|
|
if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
|
|
/*
|
|
* If we're with initial-all-set, we don't need to write
|
|
* protect any pages because they're all reported as dirty.
|
|
* Huge pages and normal pages will be write protect gradually.
|
|
*/
|
|
if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
|
|
kvm_mmu_wp_memory_region(kvm, mem->slot);
|
|
}
|
|
}
|
|
}
|
|
|
|
int kvm_arch_prepare_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
const struct kvm_userspace_memory_region *mem,
|
|
enum kvm_mr_change change)
|
|
{
|
|
hva_t hva = mem->userspace_addr;
|
|
hva_t reg_end = hva + mem->memory_size;
|
|
bool writable = !(mem->flags & KVM_MEM_READONLY);
|
|
int ret = 0;
|
|
|
|
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
|
|
change != KVM_MR_FLAGS_ONLY)
|
|
return 0;
|
|
|
|
/*
|
|
* Prevent userspace from creating a memory region outside of the IPA
|
|
* space addressable by the KVM guest IPA space.
|
|
*/
|
|
if (memslot->base_gfn + memslot->npages >=
|
|
(kvm_phys_size(kvm) >> PAGE_SHIFT))
|
|
return -EFAULT;
|
|
|
|
mmap_read_lock(current->mm);
|
|
/*
|
|
* A memory region could potentially cover multiple VMAs, and any holes
|
|
* between them, so iterate over all of them to find out if we can map
|
|
* any of them right now.
|
|
*
|
|
* +--------------------------------------------+
|
|
* +---------------+----------------+ +----------------+
|
|
* | : VMA 1 | VMA 2 | | VMA 3 : |
|
|
* +---------------+----------------+ +----------------+
|
|
* | memory region |
|
|
* +--------------------------------------------+
|
|
*/
|
|
do {
|
|
struct vm_area_struct *vma = find_vma(current->mm, hva);
|
|
hva_t vm_start, vm_end;
|
|
|
|
if (!vma || vma->vm_start >= reg_end)
|
|
break;
|
|
|
|
/*
|
|
* Take the intersection of this VMA with the memory region
|
|
*/
|
|
vm_start = max(hva, vma->vm_start);
|
|
vm_end = min(reg_end, vma->vm_end);
|
|
|
|
if (vma->vm_flags & VM_PFNMAP) {
|
|
gpa_t gpa = mem->guest_phys_addr +
|
|
(vm_start - mem->userspace_addr);
|
|
phys_addr_t pa;
|
|
|
|
pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
|
|
pa += vm_start - vma->vm_start;
|
|
|
|
/* IO region dirty page logging not allowed */
|
|
if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
|
|
vm_end - vm_start,
|
|
writable);
|
|
if (ret)
|
|
break;
|
|
}
|
|
hva = vm_end;
|
|
} while (hva < reg_end);
|
|
|
|
if (change == KVM_MR_FLAGS_ONLY)
|
|
goto out;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (ret)
|
|
unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
|
|
else
|
|
stage2_flush_memslot(kvm, memslot);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
out:
|
|
mmap_read_unlock(current->mm);
|
|
return ret;
|
|
}
|
|
|
|
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_all(struct kvm *kvm)
|
|
{
|
|
kvm_free_stage2_pgd(&kvm->arch.mmu);
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot)
|
|
{
|
|
gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t size = slot->npages << PAGE_SHIFT;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
unmap_stage2_range(&kvm->arch.mmu, gpa, size);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
/*
|
|
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
|
|
*
|
|
* Main problems:
|
|
* - S/W ops are local to a CPU (not broadcast)
|
|
* - We have line migration behind our back (speculation)
|
|
* - System caches don't support S/W at all (damn!)
|
|
*
|
|
* In the face of the above, the best we can do is to try and convert
|
|
* S/W ops to VA ops. Because the guest is not allowed to infer the
|
|
* S/W to PA mapping, it can only use S/W to nuke the whole cache,
|
|
* which is a rather good thing for us.
|
|
*
|
|
* Also, it is only used when turning caches on/off ("The expected
|
|
* usage of the cache maintenance instructions that operate by set/way
|
|
* is associated with the cache maintenance instructions associated
|
|
* with the powerdown and powerup of caches, if this is required by
|
|
* the implementation.").
|
|
*
|
|
* We use the following policy:
|
|
*
|
|
* - If we trap a S/W operation, we enable VM trapping to detect
|
|
* caches being turned on/off, and do a full clean.
|
|
*
|
|
* - We flush the caches on both caches being turned on and off.
|
|
*
|
|
* - Once the caches are enabled, we stop trapping VM ops.
|
|
*/
|
|
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long hcr = *vcpu_hcr(vcpu);
|
|
|
|
/*
|
|
* If this is the first time we do a S/W operation
|
|
* (i.e. HCR_TVM not set) flush the whole memory, and set the
|
|
* VM trapping.
|
|
*
|
|
* Otherwise, rely on the VM trapping to wait for the MMU +
|
|
* Caches to be turned off. At that point, we'll be able to
|
|
* clean the caches again.
|
|
*/
|
|
if (!(hcr & HCR_TVM)) {
|
|
trace_kvm_set_way_flush(*vcpu_pc(vcpu),
|
|
vcpu_has_cache_enabled(vcpu));
|
|
stage2_flush_vm(vcpu->kvm);
|
|
*vcpu_hcr(vcpu) = hcr | HCR_TVM;
|
|
}
|
|
}
|
|
|
|
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
|
|
{
|
|
bool now_enabled = vcpu_has_cache_enabled(vcpu);
|
|
|
|
/*
|
|
* If switching the MMU+caches on, need to invalidate the caches.
|
|
* If switching it off, need to clean the caches.
|
|
* Clean + invalidate does the trick always.
|
|
*/
|
|
if (now_enabled != was_enabled)
|
|
stage2_flush_vm(vcpu->kvm);
|
|
|
|
/* Caches are now on, stop trapping VM ops (until a S/W op) */
|
|
if (now_enabled)
|
|
*vcpu_hcr(vcpu) &= ~HCR_TVM;
|
|
|
|
trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
|
|
}
|