forked from Minki/linux
4c55215c05
This patch adds the driver support for, - Registering the ptp clock functionality with the OS. - Timestamping the Rx/Tx PTP packets. - Ethtool callbacks related to PTP. Signed-off-by: Sudarsana Reddy Kalluru <Sudarsana.Kalluru@cavium.com> Signed-off-by: Yuval Mintz <Yuval.Mintz@cavium.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1701 lines
47 KiB
C
1701 lines
47 KiB
C
/* QLogic qede NIC Driver
|
|
* Copyright (c) 2015-2017 QLogic Corporation
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and /or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/bpf_trace.h>
|
|
#include <net/udp_tunnel.h>
|
|
#include <linux/ip.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/tcp.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/ip6_checksum.h>
|
|
#include "qede_ptp.h"
|
|
|
|
#include <linux/qed/qed_if.h>
|
|
#include "qede.h"
|
|
/*********************************
|
|
* Content also used by slowpath *
|
|
*********************************/
|
|
|
|
int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
|
|
{
|
|
struct sw_rx_data *sw_rx_data;
|
|
struct eth_rx_bd *rx_bd;
|
|
dma_addr_t mapping;
|
|
struct page *data;
|
|
|
|
/* In case lazy-allocation is allowed, postpone allocation until the
|
|
* end of the NAPI run. We'd still need to make sure the Rx ring has
|
|
* sufficient buffers to guarantee an additional Rx interrupt.
|
|
*/
|
|
if (allow_lazy && likely(rxq->filled_buffers > 12)) {
|
|
rxq->filled_buffers--;
|
|
return 0;
|
|
}
|
|
|
|
data = alloc_pages(GFP_ATOMIC, 0);
|
|
if (unlikely(!data))
|
|
return -ENOMEM;
|
|
|
|
/* Map the entire page as it would be used
|
|
* for multiple RX buffer segment size mapping.
|
|
*/
|
|
mapping = dma_map_page(rxq->dev, data, 0,
|
|
PAGE_SIZE, rxq->data_direction);
|
|
if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
|
|
__free_page(data);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
|
|
sw_rx_data->page_offset = 0;
|
|
sw_rx_data->data = data;
|
|
sw_rx_data->mapping = mapping;
|
|
|
|
/* Advance PROD and get BD pointer */
|
|
rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
|
|
WARN_ON(!rx_bd);
|
|
rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
|
|
rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
|
|
|
|
rxq->sw_rx_prod++;
|
|
rxq->filled_buffers++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Unmap the data and free skb */
|
|
int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
|
|
{
|
|
u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
|
|
struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
|
|
struct eth_tx_1st_bd *first_bd;
|
|
struct eth_tx_bd *tx_data_bd;
|
|
int bds_consumed = 0;
|
|
int nbds;
|
|
bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
|
|
int i, split_bd_len = 0;
|
|
|
|
if (unlikely(!skb)) {
|
|
DP_ERR(edev,
|
|
"skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
|
|
idx, txq->sw_tx_cons, txq->sw_tx_prod);
|
|
return -1;
|
|
}
|
|
|
|
*len = skb->len;
|
|
|
|
first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
|
|
|
|
bds_consumed++;
|
|
|
|
nbds = first_bd->data.nbds;
|
|
|
|
if (data_split) {
|
|
struct eth_tx_bd *split = (struct eth_tx_bd *)
|
|
qed_chain_consume(&txq->tx_pbl);
|
|
split_bd_len = BD_UNMAP_LEN(split);
|
|
bds_consumed++;
|
|
}
|
|
dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
|
|
BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
|
|
|
|
/* Unmap the data of the skb frags */
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
|
|
tx_data_bd = (struct eth_tx_bd *)
|
|
qed_chain_consume(&txq->tx_pbl);
|
|
dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
|
|
BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
|
|
}
|
|
|
|
while (bds_consumed++ < nbds)
|
|
qed_chain_consume(&txq->tx_pbl);
|
|
|
|
/* Free skb */
|
|
dev_kfree_skb_any(skb);
|
|
txq->sw_tx_ring.skbs[idx].skb = NULL;
|
|
txq->sw_tx_ring.skbs[idx].flags = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Unmap the data and free skb when mapping failed during start_xmit */
|
|
static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
|
|
struct eth_tx_1st_bd *first_bd,
|
|
int nbd, bool data_split)
|
|
{
|
|
u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
|
|
struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
|
|
struct eth_tx_bd *tx_data_bd;
|
|
int i, split_bd_len = 0;
|
|
|
|
/* Return prod to its position before this skb was handled */
|
|
qed_chain_set_prod(&txq->tx_pbl,
|
|
le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
|
|
|
|
first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
|
|
|
|
if (data_split) {
|
|
struct eth_tx_bd *split = (struct eth_tx_bd *)
|
|
qed_chain_produce(&txq->tx_pbl);
|
|
split_bd_len = BD_UNMAP_LEN(split);
|
|
nbd--;
|
|
}
|
|
|
|
dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
|
|
BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
|
|
|
|
/* Unmap the data of the skb frags */
|
|
for (i = 0; i < nbd; i++) {
|
|
tx_data_bd = (struct eth_tx_bd *)
|
|
qed_chain_produce(&txq->tx_pbl);
|
|
if (tx_data_bd->nbytes)
|
|
dma_unmap_page(txq->dev,
|
|
BD_UNMAP_ADDR(tx_data_bd),
|
|
BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
|
|
}
|
|
|
|
/* Return again prod to its position before this skb was handled */
|
|
qed_chain_set_prod(&txq->tx_pbl,
|
|
le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
|
|
|
|
/* Free skb */
|
|
dev_kfree_skb_any(skb);
|
|
txq->sw_tx_ring.skbs[idx].skb = NULL;
|
|
txq->sw_tx_ring.skbs[idx].flags = 0;
|
|
}
|
|
|
|
static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
|
|
{
|
|
u32 rc = XMIT_L4_CSUM;
|
|
__be16 l3_proto;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return XMIT_PLAIN;
|
|
|
|
l3_proto = vlan_get_protocol(skb);
|
|
if (l3_proto == htons(ETH_P_IPV6) &&
|
|
(ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
|
|
*ipv6_ext = 1;
|
|
|
|
if (skb->encapsulation) {
|
|
rc |= XMIT_ENC;
|
|
if (skb_is_gso(skb)) {
|
|
unsigned short gso_type = skb_shinfo(skb)->gso_type;
|
|
|
|
if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
|
|
(gso_type & SKB_GSO_GRE_CSUM))
|
|
rc |= XMIT_ENC_GSO_L4_CSUM;
|
|
|
|
rc |= XMIT_LSO;
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (skb_is_gso(skb))
|
|
rc |= XMIT_LSO;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
|
|
struct eth_tx_2nd_bd *second_bd,
|
|
struct eth_tx_3rd_bd *third_bd)
|
|
{
|
|
u8 l4_proto;
|
|
u16 bd2_bits1 = 0, bd2_bits2 = 0;
|
|
|
|
bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
|
|
|
|
bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
|
|
ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
|
|
<< ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
|
|
|
|
bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
|
|
ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
|
|
|
|
if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
|
|
l4_proto = ipv6_hdr(skb)->nexthdr;
|
|
else
|
|
l4_proto = ip_hdr(skb)->protocol;
|
|
|
|
if (l4_proto == IPPROTO_UDP)
|
|
bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
|
|
|
|
if (third_bd)
|
|
third_bd->data.bitfields |=
|
|
cpu_to_le16(((tcp_hdrlen(skb) / 4) &
|
|
ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
|
|
ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
|
|
|
|
second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
|
|
second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
|
|
}
|
|
|
|
static int map_frag_to_bd(struct qede_tx_queue *txq,
|
|
skb_frag_t *frag, struct eth_tx_bd *bd)
|
|
{
|
|
dma_addr_t mapping;
|
|
|
|
/* Map skb non-linear frag data for DMA */
|
|
mapping = skb_frag_dma_map(txq->dev, frag, 0,
|
|
skb_frag_size(frag), DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(txq->dev, mapping)))
|
|
return -ENOMEM;
|
|
|
|
/* Setup the data pointer of the frag data */
|
|
BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
|
|
{
|
|
if (is_encap_pkt)
|
|
return (skb_inner_transport_header(skb) +
|
|
inner_tcp_hdrlen(skb) - skb->data);
|
|
else
|
|
return (skb_transport_header(skb) +
|
|
tcp_hdrlen(skb) - skb->data);
|
|
}
|
|
|
|
/* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
|
|
#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
|
|
static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
|
|
{
|
|
int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
|
|
|
|
if (xmit_type & XMIT_LSO) {
|
|
int hlen;
|
|
|
|
hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
|
|
|
|
/* linear payload would require its own BD */
|
|
if (skb_headlen(skb) > hlen)
|
|
allowed_frags--;
|
|
}
|
|
|
|
return (skb_shinfo(skb)->nr_frags > allowed_frags);
|
|
}
|
|
#endif
|
|
|
|
static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
|
|
{
|
|
/* wmb makes sure that the BDs data is updated before updating the
|
|
* producer, otherwise FW may read old data from the BDs.
|
|
*/
|
|
wmb();
|
|
barrier();
|
|
writel(txq->tx_db.raw, txq->doorbell_addr);
|
|
|
|
/* mmiowb is needed to synchronize doorbell writes from more than one
|
|
* processor. It guarantees that the write arrives to the device before
|
|
* the queue lock is released and another start_xmit is called (possibly
|
|
* on another CPU). Without this barrier, the next doorbell can bypass
|
|
* this doorbell. This is applicable to IA64/Altix systems.
|
|
*/
|
|
mmiowb();
|
|
}
|
|
|
|
static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
|
|
struct sw_rx_data *metadata, u16 padding, u16 length)
|
|
{
|
|
struct qede_tx_queue *txq = fp->xdp_tx;
|
|
u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
|
|
struct eth_tx_1st_bd *first_bd;
|
|
|
|
if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
|
|
txq->stopped_cnt++;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
|
|
|
|
memset(first_bd, 0, sizeof(*first_bd));
|
|
first_bd->data.bd_flags.bitfields =
|
|
BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
|
|
first_bd->data.bitfields |=
|
|
(length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
|
|
ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
|
|
first_bd->data.nbds = 1;
|
|
|
|
/* We can safely ignore the offset, as it's 0 for XDP */
|
|
BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
|
|
|
|
/* Synchronize the buffer back to device, as program [probably]
|
|
* has changed it.
|
|
*/
|
|
dma_sync_single_for_device(&edev->pdev->dev,
|
|
metadata->mapping + padding,
|
|
length, PCI_DMA_TODEVICE);
|
|
|
|
txq->sw_tx_ring.pages[idx] = metadata->data;
|
|
txq->sw_tx_prod++;
|
|
|
|
/* Mark the fastpath for future XDP doorbell */
|
|
fp->xdp_xmit = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qede_txq_has_work(struct qede_tx_queue *txq)
|
|
{
|
|
u16 hw_bd_cons;
|
|
|
|
/* Tell compiler that consumer and producer can change */
|
|
barrier();
|
|
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
|
|
if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
|
|
return 0;
|
|
|
|
return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
|
|
}
|
|
|
|
static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
|
|
{
|
|
struct eth_tx_1st_bd *bd;
|
|
u16 hw_bd_cons;
|
|
|
|
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
|
|
barrier();
|
|
|
|
while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
|
|
bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
|
|
|
|
dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(bd),
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
__free_page(txq->sw_tx_ring.pages[txq->sw_tx_cons &
|
|
NUM_TX_BDS_MAX]);
|
|
|
|
txq->sw_tx_cons++;
|
|
txq->xmit_pkts++;
|
|
}
|
|
}
|
|
|
|
static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
|
|
{
|
|
struct netdev_queue *netdev_txq;
|
|
u16 hw_bd_cons;
|
|
unsigned int pkts_compl = 0, bytes_compl = 0;
|
|
int rc;
|
|
|
|
netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
|
|
|
|
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
|
|
barrier();
|
|
|
|
while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
|
|
int len = 0;
|
|
|
|
rc = qede_free_tx_pkt(edev, txq, &len);
|
|
if (rc) {
|
|
DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
|
|
hw_bd_cons,
|
|
qed_chain_get_cons_idx(&txq->tx_pbl));
|
|
break;
|
|
}
|
|
|
|
bytes_compl += len;
|
|
pkts_compl++;
|
|
txq->sw_tx_cons++;
|
|
txq->xmit_pkts++;
|
|
}
|
|
|
|
netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
|
|
|
|
/* Need to make the tx_bd_cons update visible to start_xmit()
|
|
* before checking for netif_tx_queue_stopped(). Without the
|
|
* memory barrier, there is a small possibility that
|
|
* start_xmit() will miss it and cause the queue to be stopped
|
|
* forever.
|
|
* On the other hand we need an rmb() here to ensure the proper
|
|
* ordering of bit testing in the following
|
|
* netif_tx_queue_stopped(txq) call.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
|
|
/* Taking tx_lock is needed to prevent reenabling the queue
|
|
* while it's empty. This could have happen if rx_action() gets
|
|
* suspended in qede_tx_int() after the condition before
|
|
* netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
|
|
*
|
|
* stops the queue->sees fresh tx_bd_cons->releases the queue->
|
|
* sends some packets consuming the whole queue again->
|
|
* stops the queue
|
|
*/
|
|
|
|
__netif_tx_lock(netdev_txq, smp_processor_id());
|
|
|
|
if ((netif_tx_queue_stopped(netdev_txq)) &&
|
|
(edev->state == QEDE_STATE_OPEN) &&
|
|
(qed_chain_get_elem_left(&txq->tx_pbl)
|
|
>= (MAX_SKB_FRAGS + 1))) {
|
|
netif_tx_wake_queue(netdev_txq);
|
|
DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
|
|
"Wake queue was called\n");
|
|
}
|
|
|
|
__netif_tx_unlock(netdev_txq);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool qede_has_rx_work(struct qede_rx_queue *rxq)
|
|
{
|
|
u16 hw_comp_cons, sw_comp_cons;
|
|
|
|
/* Tell compiler that status block fields can change */
|
|
barrier();
|
|
|
|
hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
|
|
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
|
|
|
|
return hw_comp_cons != sw_comp_cons;
|
|
}
|
|
|
|
static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
|
|
{
|
|
qed_chain_consume(&rxq->rx_bd_ring);
|
|
rxq->sw_rx_cons++;
|
|
}
|
|
|
|
/* This function reuses the buffer(from an offset) from
|
|
* consumer index to producer index in the bd ring
|
|
*/
|
|
static inline void qede_reuse_page(struct qede_rx_queue *rxq,
|
|
struct sw_rx_data *curr_cons)
|
|
{
|
|
struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
|
|
struct sw_rx_data *curr_prod;
|
|
dma_addr_t new_mapping;
|
|
|
|
curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
|
|
*curr_prod = *curr_cons;
|
|
|
|
new_mapping = curr_prod->mapping + curr_prod->page_offset;
|
|
|
|
rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
|
|
rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
|
|
|
|
rxq->sw_rx_prod++;
|
|
curr_cons->data = NULL;
|
|
}
|
|
|
|
/* In case of allocation failures reuse buffers
|
|
* from consumer index to produce buffers for firmware
|
|
*/
|
|
void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
|
|
{
|
|
struct sw_rx_data *curr_cons;
|
|
|
|
for (; count > 0; count--) {
|
|
curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
|
|
qede_reuse_page(rxq, curr_cons);
|
|
qede_rx_bd_ring_consume(rxq);
|
|
}
|
|
}
|
|
|
|
static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
|
|
struct sw_rx_data *curr_cons)
|
|
{
|
|
/* Move to the next segment in the page */
|
|
curr_cons->page_offset += rxq->rx_buf_seg_size;
|
|
|
|
if (curr_cons->page_offset == PAGE_SIZE) {
|
|
if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
|
|
/* Since we failed to allocate new buffer
|
|
* current buffer can be used again.
|
|
*/
|
|
curr_cons->page_offset -= rxq->rx_buf_seg_size;
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dma_unmap_page(rxq->dev, curr_cons->mapping,
|
|
PAGE_SIZE, rxq->data_direction);
|
|
} else {
|
|
/* Increment refcount of the page as we don't want
|
|
* network stack to take the ownership of the page
|
|
* which can be recycled multiple times by the driver.
|
|
*/
|
|
page_ref_inc(curr_cons->data);
|
|
qede_reuse_page(rxq, curr_cons);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
|
|
{
|
|
u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
|
|
u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
|
|
struct eth_rx_prod_data rx_prods = {0};
|
|
|
|
/* Update producers */
|
|
rx_prods.bd_prod = cpu_to_le16(bd_prod);
|
|
rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
|
|
|
|
/* Make sure that the BD and SGE data is updated before updating the
|
|
* producers since FW might read the BD/SGE right after the producer
|
|
* is updated.
|
|
*/
|
|
wmb();
|
|
|
|
internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
|
|
(u32 *)&rx_prods);
|
|
|
|
/* mmiowb is needed to synchronize doorbell writes from more than one
|
|
* processor. It guarantees that the write arrives to the device before
|
|
* the napi lock is released and another qede_poll is called (possibly
|
|
* on another CPU). Without this barrier, the next doorbell can bypass
|
|
* this doorbell. This is applicable to IA64/Altix systems.
|
|
*/
|
|
mmiowb();
|
|
}
|
|
|
|
static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
|
|
{
|
|
enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
|
|
enum rss_hash_type htype;
|
|
u32 hash = 0;
|
|
|
|
htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
|
|
if (htype) {
|
|
hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
|
|
(htype == RSS_HASH_TYPE_IPV6)) ?
|
|
PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
|
|
hash = le32_to_cpu(rss_hash);
|
|
}
|
|
skb_set_hash(skb, hash, hash_type);
|
|
}
|
|
|
|
static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
|
|
{
|
|
skb_checksum_none_assert(skb);
|
|
|
|
if (csum_flag & QEDE_CSUM_UNNECESSARY)
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
|
|
skb->csum_level = 1;
|
|
skb->encapsulation = 1;
|
|
}
|
|
}
|
|
|
|
static inline void qede_skb_receive(struct qede_dev *edev,
|
|
struct qede_fastpath *fp,
|
|
struct qede_rx_queue *rxq,
|
|
struct sk_buff *skb, u16 vlan_tag)
|
|
{
|
|
if (vlan_tag)
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
|
|
|
|
napi_gro_receive(&fp->napi, skb);
|
|
rxq->rcv_pkts++;
|
|
}
|
|
|
|
static void qede_set_gro_params(struct qede_dev *edev,
|
|
struct sk_buff *skb,
|
|
struct eth_fast_path_rx_tpa_start_cqe *cqe)
|
|
{
|
|
u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
|
|
|
|
if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
|
|
PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
|
|
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
|
|
else
|
|
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
|
|
|
|
skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
|
|
cqe->header_len;
|
|
}
|
|
|
|
static int qede_fill_frag_skb(struct qede_dev *edev,
|
|
struct qede_rx_queue *rxq,
|
|
u8 tpa_agg_index, u16 len_on_bd)
|
|
{
|
|
struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
|
|
NUM_RX_BDS_MAX];
|
|
struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
|
|
struct sk_buff *skb = tpa_info->skb;
|
|
|
|
if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
|
|
goto out;
|
|
|
|
/* Add one frag and update the appropriate fields in the skb */
|
|
skb_fill_page_desc(skb, tpa_info->frag_id++,
|
|
current_bd->data, current_bd->page_offset,
|
|
len_on_bd);
|
|
|
|
if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
|
|
/* Incr page ref count to reuse on allocation failure
|
|
* so that it doesn't get freed while freeing SKB.
|
|
*/
|
|
page_ref_inc(current_bd->data);
|
|
goto out;
|
|
}
|
|
|
|
qed_chain_consume(&rxq->rx_bd_ring);
|
|
rxq->sw_rx_cons++;
|
|
|
|
skb->data_len += len_on_bd;
|
|
skb->truesize += rxq->rx_buf_seg_size;
|
|
skb->len += len_on_bd;
|
|
|
|
return 0;
|
|
|
|
out:
|
|
tpa_info->state = QEDE_AGG_STATE_ERROR;
|
|
qede_recycle_rx_bd_ring(rxq, 1);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static bool qede_tunn_exist(u16 flag)
|
|
{
|
|
return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
|
|
}
|
|
|
|
static u8 qede_check_tunn_csum(u16 flag)
|
|
{
|
|
u16 csum_flag = 0;
|
|
u8 tcsum = 0;
|
|
|
|
if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
|
|
csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
|
|
|
|
if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
|
|
csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
|
|
tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
|
|
}
|
|
|
|
csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
|
|
PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
|
|
|
|
if (csum_flag & flag)
|
|
return QEDE_CSUM_ERROR;
|
|
|
|
return QEDE_CSUM_UNNECESSARY | tcsum;
|
|
}
|
|
|
|
static void qede_tpa_start(struct qede_dev *edev,
|
|
struct qede_rx_queue *rxq,
|
|
struct eth_fast_path_rx_tpa_start_cqe *cqe)
|
|
{
|
|
struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
|
|
struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
|
|
struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
|
|
struct sw_rx_data *replace_buf = &tpa_info->buffer;
|
|
dma_addr_t mapping = tpa_info->buffer_mapping;
|
|
struct sw_rx_data *sw_rx_data_cons;
|
|
struct sw_rx_data *sw_rx_data_prod;
|
|
|
|
sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
|
|
sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
|
|
|
|
/* Use pre-allocated replacement buffer - we can't release the agg.
|
|
* start until its over and we don't want to risk allocation failing
|
|
* here, so re-allocate when aggregation will be over.
|
|
*/
|
|
sw_rx_data_prod->mapping = replace_buf->mapping;
|
|
|
|
sw_rx_data_prod->data = replace_buf->data;
|
|
rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
|
|
rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
|
|
sw_rx_data_prod->page_offset = replace_buf->page_offset;
|
|
|
|
rxq->sw_rx_prod++;
|
|
|
|
/* move partial skb from cons to pool (don't unmap yet)
|
|
* save mapping, incase we drop the packet later on.
|
|
*/
|
|
tpa_info->buffer = *sw_rx_data_cons;
|
|
mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
|
|
le32_to_cpu(rx_bd_cons->addr.lo));
|
|
|
|
tpa_info->buffer_mapping = mapping;
|
|
rxq->sw_rx_cons++;
|
|
|
|
/* set tpa state to start only if we are able to allocate skb
|
|
* for this aggregation, otherwise mark as error and aggregation will
|
|
* be dropped
|
|
*/
|
|
tpa_info->skb = netdev_alloc_skb(edev->ndev,
|
|
le16_to_cpu(cqe->len_on_first_bd));
|
|
if (unlikely(!tpa_info->skb)) {
|
|
DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
|
|
tpa_info->state = QEDE_AGG_STATE_ERROR;
|
|
goto cons_buf;
|
|
}
|
|
|
|
/* Start filling in the aggregation info */
|
|
skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
|
|
tpa_info->frag_id = 0;
|
|
tpa_info->state = QEDE_AGG_STATE_START;
|
|
|
|
/* Store some information from first CQE */
|
|
tpa_info->start_cqe_placement_offset = cqe->placement_offset;
|
|
tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd);
|
|
if ((le16_to_cpu(cqe->pars_flags.flags) >>
|
|
PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
|
|
PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
|
|
tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
|
|
else
|
|
tpa_info->vlan_tag = 0;
|
|
|
|
qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
|
|
|
|
/* This is needed in order to enable forwarding support */
|
|
qede_set_gro_params(edev, tpa_info->skb, cqe);
|
|
|
|
cons_buf: /* We still need to handle bd_len_list to consume buffers */
|
|
if (likely(cqe->ext_bd_len_list[0]))
|
|
qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
|
|
le16_to_cpu(cqe->ext_bd_len_list[0]));
|
|
|
|
if (unlikely(cqe->ext_bd_len_list[1])) {
|
|
DP_ERR(edev,
|
|
"Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
|
|
tpa_info->state = QEDE_AGG_STATE_ERROR;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_INET
|
|
static void qede_gro_ip_csum(struct sk_buff *skb)
|
|
{
|
|
const struct iphdr *iph = ip_hdr(skb);
|
|
struct tcphdr *th;
|
|
|
|
skb_set_transport_header(skb, sizeof(struct iphdr));
|
|
th = tcp_hdr(skb);
|
|
|
|
th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
|
|
iph->saddr, iph->daddr, 0);
|
|
|
|
tcp_gro_complete(skb);
|
|
}
|
|
|
|
static void qede_gro_ipv6_csum(struct sk_buff *skb)
|
|
{
|
|
struct ipv6hdr *iph = ipv6_hdr(skb);
|
|
struct tcphdr *th;
|
|
|
|
skb_set_transport_header(skb, sizeof(struct ipv6hdr));
|
|
th = tcp_hdr(skb);
|
|
|
|
th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
|
|
&iph->saddr, &iph->daddr, 0);
|
|
tcp_gro_complete(skb);
|
|
}
|
|
#endif
|
|
|
|
static void qede_gro_receive(struct qede_dev *edev,
|
|
struct qede_fastpath *fp,
|
|
struct sk_buff *skb,
|
|
u16 vlan_tag)
|
|
{
|
|
/* FW can send a single MTU sized packet from gro flow
|
|
* due to aggregation timeout/last segment etc. which
|
|
* is not expected to be a gro packet. If a skb has zero
|
|
* frags then simply push it in the stack as non gso skb.
|
|
*/
|
|
if (unlikely(!skb->data_len)) {
|
|
skb_shinfo(skb)->gso_type = 0;
|
|
skb_shinfo(skb)->gso_size = 0;
|
|
goto send_skb;
|
|
}
|
|
|
|
#ifdef CONFIG_INET
|
|
if (skb_shinfo(skb)->gso_size) {
|
|
skb_reset_network_header(skb);
|
|
|
|
switch (skb->protocol) {
|
|
case htons(ETH_P_IP):
|
|
qede_gro_ip_csum(skb);
|
|
break;
|
|
case htons(ETH_P_IPV6):
|
|
qede_gro_ipv6_csum(skb);
|
|
break;
|
|
default:
|
|
DP_ERR(edev,
|
|
"Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
|
|
ntohs(skb->protocol));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
send_skb:
|
|
skb_record_rx_queue(skb, fp->rxq->rxq_id);
|
|
qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
|
|
}
|
|
|
|
static inline void qede_tpa_cont(struct qede_dev *edev,
|
|
struct qede_rx_queue *rxq,
|
|
struct eth_fast_path_rx_tpa_cont_cqe *cqe)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; cqe->len_list[i]; i++)
|
|
qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
|
|
le16_to_cpu(cqe->len_list[i]));
|
|
|
|
if (unlikely(i > 1))
|
|
DP_ERR(edev,
|
|
"Strange - TPA cont with more than a single len_list entry\n");
|
|
}
|
|
|
|
static void qede_tpa_end(struct qede_dev *edev,
|
|
struct qede_fastpath *fp,
|
|
struct eth_fast_path_rx_tpa_end_cqe *cqe)
|
|
{
|
|
struct qede_rx_queue *rxq = fp->rxq;
|
|
struct qede_agg_info *tpa_info;
|
|
struct sk_buff *skb;
|
|
int i;
|
|
|
|
tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
|
|
skb = tpa_info->skb;
|
|
|
|
for (i = 0; cqe->len_list[i]; i++)
|
|
qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
|
|
le16_to_cpu(cqe->len_list[i]));
|
|
if (unlikely(i > 1))
|
|
DP_ERR(edev,
|
|
"Strange - TPA emd with more than a single len_list entry\n");
|
|
|
|
if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
|
|
goto err;
|
|
|
|
/* Sanity */
|
|
if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
|
|
DP_ERR(edev,
|
|
"Strange - TPA had %02x BDs, but SKB has only %d frags\n",
|
|
cqe->num_of_bds, tpa_info->frag_id);
|
|
if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
|
|
DP_ERR(edev,
|
|
"Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
|
|
le16_to_cpu(cqe->total_packet_len), skb->len);
|
|
|
|
memcpy(skb->data,
|
|
page_address(tpa_info->buffer.data) +
|
|
tpa_info->start_cqe_placement_offset +
|
|
tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len);
|
|
|
|
/* Finalize the SKB */
|
|
skb->protocol = eth_type_trans(skb, edev->ndev);
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
|
|
* to skb_shinfo(skb)->gso_segs
|
|
*/
|
|
NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
|
|
|
|
qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
|
|
|
|
tpa_info->state = QEDE_AGG_STATE_NONE;
|
|
|
|
return;
|
|
err:
|
|
tpa_info->state = QEDE_AGG_STATE_NONE;
|
|
dev_kfree_skb_any(tpa_info->skb);
|
|
tpa_info->skb = NULL;
|
|
}
|
|
|
|
static u8 qede_check_notunn_csum(u16 flag)
|
|
{
|
|
u16 csum_flag = 0;
|
|
u8 csum = 0;
|
|
|
|
if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
|
|
csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
|
|
csum = QEDE_CSUM_UNNECESSARY;
|
|
}
|
|
|
|
csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
|
|
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
|
|
|
|
if (csum_flag & flag)
|
|
return QEDE_CSUM_ERROR;
|
|
|
|
return csum;
|
|
}
|
|
|
|
static u8 qede_check_csum(u16 flag)
|
|
{
|
|
if (!qede_tunn_exist(flag))
|
|
return qede_check_notunn_csum(flag);
|
|
else
|
|
return qede_check_tunn_csum(flag);
|
|
}
|
|
|
|
static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
|
|
u16 flag)
|
|
{
|
|
u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
|
|
|
|
if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
|
|
ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
|
|
(flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
|
|
PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true iff packet is to be passed to stack */
|
|
static bool qede_rx_xdp(struct qede_dev *edev,
|
|
struct qede_fastpath *fp,
|
|
struct qede_rx_queue *rxq,
|
|
struct bpf_prog *prog,
|
|
struct sw_rx_data *bd,
|
|
struct eth_fast_path_rx_reg_cqe *cqe)
|
|
{
|
|
u16 len = le16_to_cpu(cqe->len_on_first_bd);
|
|
struct xdp_buff xdp;
|
|
enum xdp_action act;
|
|
|
|
xdp.data = page_address(bd->data) + cqe->placement_offset;
|
|
xdp.data_end = xdp.data + len;
|
|
|
|
/* Queues always have a full reset currently, so for the time
|
|
* being until there's atomic program replace just mark read
|
|
* side for map helpers.
|
|
*/
|
|
rcu_read_lock();
|
|
act = bpf_prog_run_xdp(prog, &xdp);
|
|
rcu_read_unlock();
|
|
|
|
if (act == XDP_PASS)
|
|
return true;
|
|
|
|
/* Count number of packets not to be passed to stack */
|
|
rxq->xdp_no_pass++;
|
|
|
|
switch (act) {
|
|
case XDP_TX:
|
|
/* We need the replacement buffer before transmit. */
|
|
if (qede_alloc_rx_buffer(rxq, true)) {
|
|
qede_recycle_rx_bd_ring(rxq, 1);
|
|
trace_xdp_exception(edev->ndev, prog, act);
|
|
return false;
|
|
}
|
|
|
|
/* Now if there's a transmission problem, we'd still have to
|
|
* throw current buffer, as replacement was already allocated.
|
|
*/
|
|
if (qede_xdp_xmit(edev, fp, bd, cqe->placement_offset, len)) {
|
|
dma_unmap_page(rxq->dev, bd->mapping,
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
__free_page(bd->data);
|
|
trace_xdp_exception(edev->ndev, prog, act);
|
|
}
|
|
|
|
/* Regardless, we've consumed an Rx BD */
|
|
qede_rx_bd_ring_consume(rxq);
|
|
return false;
|
|
|
|
default:
|
|
bpf_warn_invalid_xdp_action(act);
|
|
case XDP_ABORTED:
|
|
trace_xdp_exception(edev->ndev, prog, act);
|
|
case XDP_DROP:
|
|
qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev,
|
|
struct qede_rx_queue *rxq,
|
|
struct sw_rx_data *bd, u16 len,
|
|
u16 pad)
|
|
{
|
|
unsigned int offset = bd->page_offset;
|
|
struct skb_frag_struct *frag;
|
|
struct page *page = bd->data;
|
|
unsigned int pull_len;
|
|
struct sk_buff *skb;
|
|
unsigned char *va;
|
|
|
|
/* Allocate a new SKB with a sufficient large header len */
|
|
skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
/* Copy data into SKB - if it's small, we can simply copy it and
|
|
* re-use the already allcoated & mapped memory.
|
|
*/
|
|
if (len + pad <= edev->rx_copybreak) {
|
|
memcpy(skb_put(skb, len),
|
|
page_address(page) + pad + offset, len);
|
|
qede_reuse_page(rxq, bd);
|
|
goto out;
|
|
}
|
|
|
|
frag = &skb_shinfo(skb)->frags[0];
|
|
|
|
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
|
|
page, pad + offset, len, rxq->rx_buf_seg_size);
|
|
|
|
va = skb_frag_address(frag);
|
|
pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
|
|
|
|
/* Align the pull_len to optimize memcpy */
|
|
memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
|
|
|
|
/* Correct the skb & frag sizes offset after the pull */
|
|
skb_frag_size_sub(frag, pull_len);
|
|
frag->page_offset += pull_len;
|
|
skb->data_len -= pull_len;
|
|
skb->tail += pull_len;
|
|
|
|
if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
|
|
/* Incr page ref count to reuse on allocation failure so
|
|
* that it doesn't get freed while freeing SKB [as its
|
|
* already mapped there].
|
|
*/
|
|
page_ref_inc(page);
|
|
dev_kfree_skb_any(skb);
|
|
return NULL;
|
|
}
|
|
|
|
out:
|
|
/* We've consumed the first BD and prepared an SKB */
|
|
qede_rx_bd_ring_consume(rxq);
|
|
return skb;
|
|
}
|
|
|
|
static int qede_rx_build_jumbo(struct qede_dev *edev,
|
|
struct qede_rx_queue *rxq,
|
|
struct sk_buff *skb,
|
|
struct eth_fast_path_rx_reg_cqe *cqe,
|
|
u16 first_bd_len)
|
|
{
|
|
u16 pkt_len = le16_to_cpu(cqe->pkt_len);
|
|
struct sw_rx_data *bd;
|
|
u16 bd_cons_idx;
|
|
u8 num_frags;
|
|
|
|
pkt_len -= first_bd_len;
|
|
|
|
/* We've already used one BD for the SKB. Now take care of the rest */
|
|
for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
|
|
u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
|
|
pkt_len;
|
|
|
|
if (unlikely(!cur_size)) {
|
|
DP_ERR(edev,
|
|
"Still got %d BDs for mapping jumbo, but length became 0\n",
|
|
num_frags);
|
|
goto out;
|
|
}
|
|
|
|
/* We need a replacement buffer for each BD */
|
|
if (unlikely(qede_alloc_rx_buffer(rxq, true)))
|
|
goto out;
|
|
|
|
/* Now that we've allocated the replacement buffer,
|
|
* we can safely consume the next BD and map it to the SKB.
|
|
*/
|
|
bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
|
|
bd = &rxq->sw_rx_ring[bd_cons_idx];
|
|
qede_rx_bd_ring_consume(rxq);
|
|
|
|
dma_unmap_page(rxq->dev, bd->mapping,
|
|
PAGE_SIZE, DMA_FROM_DEVICE);
|
|
|
|
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
|
|
bd->data, 0, cur_size);
|
|
|
|
skb->truesize += PAGE_SIZE;
|
|
skb->data_len += cur_size;
|
|
skb->len += cur_size;
|
|
pkt_len -= cur_size;
|
|
}
|
|
|
|
if (unlikely(pkt_len))
|
|
DP_ERR(edev,
|
|
"Mapped all BDs of jumbo, but still have %d bytes\n",
|
|
pkt_len);
|
|
|
|
out:
|
|
return num_frags;
|
|
}
|
|
|
|
static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
|
|
struct qede_fastpath *fp,
|
|
struct qede_rx_queue *rxq,
|
|
union eth_rx_cqe *cqe,
|
|
enum eth_rx_cqe_type type)
|
|
{
|
|
switch (type) {
|
|
case ETH_RX_CQE_TYPE_TPA_START:
|
|
qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
|
|
return 0;
|
|
case ETH_RX_CQE_TYPE_TPA_CONT:
|
|
qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
|
|
return 0;
|
|
case ETH_RX_CQE_TYPE_TPA_END:
|
|
qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int qede_rx_process_cqe(struct qede_dev *edev,
|
|
struct qede_fastpath *fp,
|
|
struct qede_rx_queue *rxq)
|
|
{
|
|
struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
|
|
struct eth_fast_path_rx_reg_cqe *fp_cqe;
|
|
u16 len, pad, bd_cons_idx, parse_flag;
|
|
enum eth_rx_cqe_type cqe_type;
|
|
union eth_rx_cqe *cqe;
|
|
struct sw_rx_data *bd;
|
|
struct sk_buff *skb;
|
|
__le16 flags;
|
|
u8 csum_flag;
|
|
|
|
/* Get the CQE from the completion ring */
|
|
cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
|
|
cqe_type = cqe->fast_path_regular.type;
|
|
|
|
/* Process an unlikely slowpath event */
|
|
if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
|
|
struct eth_slow_path_rx_cqe *sp_cqe;
|
|
|
|
sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
|
|
edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
|
|
return 0;
|
|
}
|
|
|
|
/* Handle TPA cqes */
|
|
if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
|
|
return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
|
|
|
|
/* Get the data from the SW ring; Consume it only after it's evident
|
|
* we wouldn't recycle it.
|
|
*/
|
|
bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
|
|
bd = &rxq->sw_rx_ring[bd_cons_idx];
|
|
|
|
fp_cqe = &cqe->fast_path_regular;
|
|
len = le16_to_cpu(fp_cqe->len_on_first_bd);
|
|
pad = fp_cqe->placement_offset;
|
|
|
|
/* Run eBPF program if one is attached */
|
|
if (xdp_prog)
|
|
if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe))
|
|
return 1;
|
|
|
|
/* If this is an error packet then drop it */
|
|
flags = cqe->fast_path_regular.pars_flags.flags;
|
|
parse_flag = le16_to_cpu(flags);
|
|
|
|
csum_flag = qede_check_csum(parse_flag);
|
|
if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
|
|
if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) {
|
|
rxq->rx_ip_frags++;
|
|
} else {
|
|
DP_NOTICE(edev,
|
|
"CQE has error, flags = %x, dropping incoming packet\n",
|
|
parse_flag);
|
|
rxq->rx_hw_errors++;
|
|
qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Basic validation passed; Need to prepare an SKB. This would also
|
|
* guarantee to finally consume the first BD upon success.
|
|
*/
|
|
skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad);
|
|
if (!skb) {
|
|
rxq->rx_alloc_errors++;
|
|
qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
|
|
return 0;
|
|
}
|
|
|
|
/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
|
|
* by a single cqe.
|
|
*/
|
|
if (fp_cqe->bd_num > 1) {
|
|
u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
|
|
fp_cqe, len);
|
|
|
|
if (unlikely(unmapped_frags > 0)) {
|
|
qede_recycle_rx_bd_ring(rxq, unmapped_frags);
|
|
dev_kfree_skb_any(skb);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* The SKB contains all the data. Now prepare meta-magic */
|
|
skb->protocol = eth_type_trans(skb, edev->ndev);
|
|
qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
|
|
qede_set_skb_csum(skb, csum_flag);
|
|
skb_record_rx_queue(skb, rxq->rxq_id);
|
|
qede_ptp_record_rx_ts(edev, cqe, skb);
|
|
|
|
/* SKB is prepared - pass it to stack */
|
|
qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int qede_rx_int(struct qede_fastpath *fp, int budget)
|
|
{
|
|
struct qede_rx_queue *rxq = fp->rxq;
|
|
struct qede_dev *edev = fp->edev;
|
|
u16 hw_comp_cons, sw_comp_cons;
|
|
int work_done = 0;
|
|
|
|
hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
|
|
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
|
|
|
|
/* Memory barrier to prevent the CPU from doing speculative reads of CQE
|
|
* / BD in the while-loop before reading hw_comp_cons. If the CQE is
|
|
* read before it is written by FW, then FW writes CQE and SB, and then
|
|
* the CPU reads the hw_comp_cons, it will use an old CQE.
|
|
*/
|
|
rmb();
|
|
|
|
/* Loop to complete all indicated BDs */
|
|
while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
|
|
qede_rx_process_cqe(edev, fp, rxq);
|
|
qed_chain_recycle_consumed(&rxq->rx_comp_ring);
|
|
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
|
|
work_done++;
|
|
}
|
|
|
|
/* Allocate replacement buffers */
|
|
while (rxq->num_rx_buffers - rxq->filled_buffers)
|
|
if (qede_alloc_rx_buffer(rxq, false))
|
|
break;
|
|
|
|
/* Update producers */
|
|
qede_update_rx_prod(edev, rxq);
|
|
|
|
return work_done;
|
|
}
|
|
|
|
static bool qede_poll_is_more_work(struct qede_fastpath *fp)
|
|
{
|
|
qed_sb_update_sb_idx(fp->sb_info);
|
|
|
|
/* *_has_*_work() reads the status block, thus we need to ensure that
|
|
* status block indices have been actually read (qed_sb_update_sb_idx)
|
|
* prior to this check (*_has_*_work) so that we won't write the
|
|
* "newer" value of the status block to HW (if there was a DMA right
|
|
* after qede_has_rx_work and if there is no rmb, the memory reading
|
|
* (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
|
|
* In this case there will never be another interrupt until there is
|
|
* another update of the status block, while there is still unhandled
|
|
* work.
|
|
*/
|
|
rmb();
|
|
|
|
if (likely(fp->type & QEDE_FASTPATH_RX))
|
|
if (qede_has_rx_work(fp->rxq))
|
|
return true;
|
|
|
|
if (fp->type & QEDE_FASTPATH_XDP)
|
|
if (qede_txq_has_work(fp->xdp_tx))
|
|
return true;
|
|
|
|
if (likely(fp->type & QEDE_FASTPATH_TX))
|
|
if (qede_txq_has_work(fp->txq))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*********************
|
|
* NDO & API related *
|
|
*********************/
|
|
int qede_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
|
|
napi);
|
|
struct qede_dev *edev = fp->edev;
|
|
int rx_work_done = 0;
|
|
|
|
if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq))
|
|
qede_tx_int(edev, fp->txq);
|
|
|
|
if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
|
|
qede_xdp_tx_int(edev, fp->xdp_tx);
|
|
|
|
rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
|
|
qede_has_rx_work(fp->rxq)) ?
|
|
qede_rx_int(fp, budget) : 0;
|
|
if (rx_work_done < budget) {
|
|
if (!qede_poll_is_more_work(fp)) {
|
|
napi_complete_done(napi, rx_work_done);
|
|
|
|
/* Update and reenable interrupts */
|
|
qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
|
|
} else {
|
|
rx_work_done = budget;
|
|
}
|
|
}
|
|
|
|
if (fp->xdp_xmit) {
|
|
u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
|
|
|
|
fp->xdp_xmit = 0;
|
|
fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
|
|
qede_update_tx_producer(fp->xdp_tx);
|
|
}
|
|
|
|
return rx_work_done;
|
|
}
|
|
|
|
irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
|
|
{
|
|
struct qede_fastpath *fp = fp_cookie;
|
|
|
|
qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
|
|
|
|
napi_schedule_irqoff(&fp->napi);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Main transmit function */
|
|
netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
|
|
{
|
|
struct qede_dev *edev = netdev_priv(ndev);
|
|
struct netdev_queue *netdev_txq;
|
|
struct qede_tx_queue *txq;
|
|
struct eth_tx_1st_bd *first_bd;
|
|
struct eth_tx_2nd_bd *second_bd = NULL;
|
|
struct eth_tx_3rd_bd *third_bd = NULL;
|
|
struct eth_tx_bd *tx_data_bd = NULL;
|
|
u16 txq_index;
|
|
u8 nbd = 0;
|
|
dma_addr_t mapping;
|
|
int rc, frag_idx = 0, ipv6_ext = 0;
|
|
u8 xmit_type;
|
|
u16 idx;
|
|
u16 hlen;
|
|
bool data_split = false;
|
|
|
|
/* Get tx-queue context and netdev index */
|
|
txq_index = skb_get_queue_mapping(skb);
|
|
WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
|
|
txq = edev->fp_array[edev->fp_num_rx + txq_index].txq;
|
|
netdev_txq = netdev_get_tx_queue(ndev, txq_index);
|
|
|
|
WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
|
|
|
|
xmit_type = qede_xmit_type(skb, &ipv6_ext);
|
|
|
|
#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
|
|
if (qede_pkt_req_lin(skb, xmit_type)) {
|
|
if (skb_linearize(skb)) {
|
|
DP_NOTICE(edev,
|
|
"SKB linearization failed - silently dropping this SKB\n");
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Fill the entry in the SW ring and the BDs in the FW ring */
|
|
idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
|
|
txq->sw_tx_ring.skbs[idx].skb = skb;
|
|
first_bd = (struct eth_tx_1st_bd *)
|
|
qed_chain_produce(&txq->tx_pbl);
|
|
memset(first_bd, 0, sizeof(*first_bd));
|
|
first_bd->data.bd_flags.bitfields =
|
|
1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
|
|
|
|
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
|
|
qede_ptp_tx_ts(edev, skb);
|
|
|
|
/* Map skb linear data for DMA and set in the first BD */
|
|
mapping = dma_map_single(txq->dev, skb->data,
|
|
skb_headlen(skb), DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(txq->dev, mapping))) {
|
|
DP_NOTICE(edev, "SKB mapping failed\n");
|
|
qede_free_failed_tx_pkt(txq, first_bd, 0, false);
|
|
qede_update_tx_producer(txq);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
nbd++;
|
|
BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
|
|
|
|
/* In case there is IPv6 with extension headers or LSO we need 2nd and
|
|
* 3rd BDs.
|
|
*/
|
|
if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
|
|
second_bd = (struct eth_tx_2nd_bd *)
|
|
qed_chain_produce(&txq->tx_pbl);
|
|
memset(second_bd, 0, sizeof(*second_bd));
|
|
|
|
nbd++;
|
|
third_bd = (struct eth_tx_3rd_bd *)
|
|
qed_chain_produce(&txq->tx_pbl);
|
|
memset(third_bd, 0, sizeof(*third_bd));
|
|
|
|
nbd++;
|
|
/* We need to fill in additional data in second_bd... */
|
|
tx_data_bd = (struct eth_tx_bd *)second_bd;
|
|
}
|
|
|
|
if (skb_vlan_tag_present(skb)) {
|
|
first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
|
|
first_bd->data.bd_flags.bitfields |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
|
|
}
|
|
|
|
/* Fill the parsing flags & params according to the requested offload */
|
|
if (xmit_type & XMIT_L4_CSUM) {
|
|
/* We don't re-calculate IP checksum as it is already done by
|
|
* the upper stack
|
|
*/
|
|
first_bd->data.bd_flags.bitfields |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
|
|
|
|
if (xmit_type & XMIT_ENC) {
|
|
first_bd->data.bd_flags.bitfields |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
|
|
first_bd->data.bitfields |=
|
|
1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
|
|
}
|
|
|
|
/* Legacy FW had flipped behavior in regard to this bit -
|
|
* I.e., needed to set to prevent FW from touching encapsulated
|
|
* packets when it didn't need to.
|
|
*/
|
|
if (unlikely(txq->is_legacy))
|
|
first_bd->data.bitfields ^=
|
|
1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
|
|
|
|
/* If the packet is IPv6 with extension header, indicate that
|
|
* to FW and pass few params, since the device cracker doesn't
|
|
* support parsing IPv6 with extension header/s.
|
|
*/
|
|
if (unlikely(ipv6_ext))
|
|
qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
|
|
}
|
|
|
|
if (xmit_type & XMIT_LSO) {
|
|
first_bd->data.bd_flags.bitfields |=
|
|
(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
|
|
third_bd->data.lso_mss =
|
|
cpu_to_le16(skb_shinfo(skb)->gso_size);
|
|
|
|
if (unlikely(xmit_type & XMIT_ENC)) {
|
|
first_bd->data.bd_flags.bitfields |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
|
|
|
|
if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
|
|
u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
|
|
|
|
first_bd->data.bd_flags.bitfields |= 1 << tmp;
|
|
}
|
|
hlen = qede_get_skb_hlen(skb, true);
|
|
} else {
|
|
first_bd->data.bd_flags.bitfields |=
|
|
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
|
|
hlen = qede_get_skb_hlen(skb, false);
|
|
}
|
|
|
|
/* @@@TBD - if will not be removed need to check */
|
|
third_bd->data.bitfields |=
|
|
cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
|
|
|
|
/* Make life easier for FW guys who can't deal with header and
|
|
* data on same BD. If we need to split, use the second bd...
|
|
*/
|
|
if (unlikely(skb_headlen(skb) > hlen)) {
|
|
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
|
|
"TSO split header size is %d (%x:%x)\n",
|
|
first_bd->nbytes, first_bd->addr.hi,
|
|
first_bd->addr.lo);
|
|
|
|
mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
|
|
le32_to_cpu(first_bd->addr.lo)) +
|
|
hlen;
|
|
|
|
BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
|
|
le16_to_cpu(first_bd->nbytes) -
|
|
hlen);
|
|
|
|
/* this marks the BD as one that has no
|
|
* individual mapping
|
|
*/
|
|
txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
|
|
|
|
first_bd->nbytes = cpu_to_le16(hlen);
|
|
|
|
tx_data_bd = (struct eth_tx_bd *)third_bd;
|
|
data_split = true;
|
|
}
|
|
} else {
|
|
first_bd->data.bitfields |=
|
|
(skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
|
|
ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
|
|
}
|
|
|
|
/* Handle fragmented skb */
|
|
/* special handle for frags inside 2nd and 3rd bds.. */
|
|
while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
|
|
rc = map_frag_to_bd(txq,
|
|
&skb_shinfo(skb)->frags[frag_idx],
|
|
tx_data_bd);
|
|
if (rc) {
|
|
qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
|
|
qede_update_tx_producer(txq);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
if (tx_data_bd == (struct eth_tx_bd *)second_bd)
|
|
tx_data_bd = (struct eth_tx_bd *)third_bd;
|
|
else
|
|
tx_data_bd = NULL;
|
|
|
|
frag_idx++;
|
|
}
|
|
|
|
/* map last frags into 4th, 5th .... */
|
|
for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
|
|
tx_data_bd = (struct eth_tx_bd *)
|
|
qed_chain_produce(&txq->tx_pbl);
|
|
|
|
memset(tx_data_bd, 0, sizeof(*tx_data_bd));
|
|
|
|
rc = map_frag_to_bd(txq,
|
|
&skb_shinfo(skb)->frags[frag_idx],
|
|
tx_data_bd);
|
|
if (rc) {
|
|
qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
|
|
qede_update_tx_producer(txq);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
}
|
|
|
|
/* update the first BD with the actual num BDs */
|
|
first_bd->data.nbds = nbd;
|
|
|
|
netdev_tx_sent_queue(netdev_txq, skb->len);
|
|
|
|
skb_tx_timestamp(skb);
|
|
|
|
/* Advance packet producer only before sending the packet since mapping
|
|
* of pages may fail.
|
|
*/
|
|
txq->sw_tx_prod++;
|
|
|
|
/* 'next page' entries are counted in the producer value */
|
|
txq->tx_db.data.bd_prod =
|
|
cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
|
|
|
|
if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
|
|
qede_update_tx_producer(txq);
|
|
|
|
if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
|
|
< (MAX_SKB_FRAGS + 1))) {
|
|
if (skb->xmit_more)
|
|
qede_update_tx_producer(txq);
|
|
|
|
netif_tx_stop_queue(netdev_txq);
|
|
txq->stopped_cnt++;
|
|
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
|
|
"Stop queue was called\n");
|
|
/* paired memory barrier is in qede_tx_int(), we have to keep
|
|
* ordering of set_bit() in netif_tx_stop_queue() and read of
|
|
* fp->bd_tx_cons
|
|
*/
|
|
smp_mb();
|
|
|
|
if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
|
|
(MAX_SKB_FRAGS + 1)) &&
|
|
(edev->state == QEDE_STATE_OPEN)) {
|
|
netif_tx_wake_queue(netdev_txq);
|
|
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
|
|
"Wake queue was called\n");
|
|
}
|
|
}
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* 8B udp header + 8B base tunnel header + 32B option length */
|
|
#define QEDE_MAX_TUN_HDR_LEN 48
|
|
|
|
netdev_features_t qede_features_check(struct sk_buff *skb,
|
|
struct net_device *dev,
|
|
netdev_features_t features)
|
|
{
|
|
if (skb->encapsulation) {
|
|
u8 l4_proto = 0;
|
|
|
|
switch (vlan_get_protocol(skb)) {
|
|
case htons(ETH_P_IP):
|
|
l4_proto = ip_hdr(skb)->protocol;
|
|
break;
|
|
case htons(ETH_P_IPV6):
|
|
l4_proto = ipv6_hdr(skb)->nexthdr;
|
|
break;
|
|
default:
|
|
return features;
|
|
}
|
|
|
|
/* Disable offloads for geneve tunnels, as HW can't parse
|
|
* the geneve header which has option length greater than 32B.
|
|
*/
|
|
if ((l4_proto == IPPROTO_UDP) &&
|
|
((skb_inner_mac_header(skb) -
|
|
skb_transport_header(skb)) > QEDE_MAX_TUN_HDR_LEN))
|
|
return features & ~(NETIF_F_CSUM_MASK |
|
|
NETIF_F_GSO_MASK);
|
|
}
|
|
|
|
return features;
|
|
}
|