linux/drivers/gpu/drm/amd/amdgpu/psp_gfx_if.h
Huang Rui 0e5ca0d1ac drm/amdgpu: add PSP driver for vega10 (v2)
PSP is responsible for firmware loading on SOC-15 asics.

v2: fix memory leak (Ken)

Acked-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Huang Rui <ray.huang@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2017-03-29 23:54:48 -04:00

270 lines
11 KiB
C

/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef _PSP_TEE_GFX_IF_H_
#define _PSP_TEE_GFX_IF_H_
#define PSP_GFX_CMD_BUF_VERSION 0x00000001
#define GFX_CMD_STATUS_MASK 0x0000FFFF
#define GFX_CMD_ID_MASK 0x000F0000
#define GFX_CMD_RESERVED_MASK 0x7FF00000
#define GFX_CMD_RESPONSE_MASK 0x80000000
/* TEE Gfx Command IDs for the register interface.
* Command ID must be between 0x00010000 and 0x000F0000.
*/
enum psp_gfx_crtl_cmd_id
{
GFX_CTRL_CMD_ID_INIT_RBI_RING = 0x00010000, /* initialize RBI ring */
GFX_CTRL_CMD_ID_INIT_GPCOM_RING = 0x00020000, /* initialize GPCOM ring */
GFX_CTRL_CMD_ID_DESTROY_RINGS = 0x00030000, /* destroy rings */
GFX_CTRL_CMD_ID_CAN_INIT_RINGS = 0x00040000, /* is it allowed to initialized the rings */
GFX_CTRL_CMD_ID_MAX = 0x000F0000, /* max command ID */
};
/* Control registers of the TEE Gfx interface. These are located in
* SRBM-to-PSP mailbox registers (total 8 registers).
*/
struct psp_gfx_ctrl
{
volatile uint32_t cmd_resp; /* +0 Command/Response register for Gfx commands */
volatile uint32_t rbi_wptr; /* +4 Write pointer (index) of RBI ring */
volatile uint32_t rbi_rptr; /* +8 Read pointer (index) of RBI ring */
volatile uint32_t gpcom_wptr; /* +12 Write pointer (index) of GPCOM ring */
volatile uint32_t gpcom_rptr; /* +16 Read pointer (index) of GPCOM ring */
volatile uint32_t ring_addr_lo; /* +20 bits [31:0] of physical address of ring buffer */
volatile uint32_t ring_addr_hi; /* +24 bits [63:32] of physical address of ring buffer */
volatile uint32_t ring_buf_size; /* +28 Ring buffer size (in bytes) */
};
/* Response flag is set in the command when command is completed by PSP.
* Used in the GFX_CTRL.CmdResp.
* When PSP GFX I/F is initialized, the flag is set.
*/
#define GFX_FLAG_RESPONSE 0x80000000
/* TEE Gfx Command IDs for the ring buffer interface. */
enum psp_gfx_cmd_id
{
GFX_CMD_ID_LOAD_TA = 0x00000001, /* load TA */
GFX_CMD_ID_UNLOAD_TA = 0x00000002, /* unload TA */
GFX_CMD_ID_INVOKE_CMD = 0x00000003, /* send command to TA */
GFX_CMD_ID_LOAD_ASD = 0x00000004, /* load ASD Driver */
GFX_CMD_ID_SETUP_TMR = 0x00000005, /* setup TMR region */
GFX_CMD_ID_LOAD_IP_FW = 0x00000006, /* load HW IP FW */
};
/* Command to load Trusted Application binary into PSP OS. */
struct psp_gfx_cmd_load_ta
{
uint32_t app_phy_addr_lo; /* bits [31:0] of the physical address of the TA binary (must be 4 KB aligned) */
uint32_t app_phy_addr_hi; /* bits [63:32] of the physical address of the TA binary */
uint32_t app_len; /* length of the TA binary in bytes */
uint32_t cmd_buf_phy_addr_lo; /* bits [31:0] of the physical address of CMD buffer (must be 4 KB aligned) */
uint32_t cmd_buf_phy_addr_hi; /* bits [63:32] of the physical address of CMD buffer */
uint32_t cmd_buf_len; /* length of the CMD buffer in bytes; must be multiple of 4 KB */
/* Note: CmdBufLen can be set to 0. In this case no persistent CMD buffer is provided
* for the TA. Each InvokeCommand can have dinamically mapped CMD buffer instead
* of using global persistent buffer.
*/
};
/* Command to Unload Trusted Application binary from PSP OS. */
struct psp_gfx_cmd_unload_ta
{
uint32_t session_id; /* Session ID of the loaded TA to be unloaded */
};
/* Shared buffers for InvokeCommand.
*/
struct psp_gfx_buf_desc
{
uint32_t buf_phy_addr_lo; /* bits [31:0] of physical address of the buffer (must be 4 KB aligned) */
uint32_t buf_phy_addr_hi; /* bits [63:32] of physical address of the buffer */
uint32_t buf_size; /* buffer size in bytes (must be multiple of 4 KB and no bigger than 64 MB) */
};
/* Max number of descriptors for one shared buffer (in how many different
* physical locations one shared buffer can be stored). If buffer is too much
* fragmented, error will be returned.
*/
#define GFX_BUF_MAX_DESC 64
struct psp_gfx_buf_list
{
uint32_t num_desc; /* number of buffer descriptors in the list */
uint32_t total_size; /* total size of all buffers in the list in bytes (must be multiple of 4 KB) */
struct psp_gfx_buf_desc buf_desc[GFX_BUF_MAX_DESC]; /* list of buffer descriptors */
/* total 776 bytes */
};
/* Command to execute InvokeCommand entry point of the TA. */
struct psp_gfx_cmd_invoke_cmd
{
uint32_t session_id; /* Session ID of the TA to be executed */
uint32_t ta_cmd_id; /* Command ID to be sent to TA */
struct psp_gfx_buf_list buf; /* one indirect buffer (scatter/gather list) */
};
/* Command to setup TMR region. */
struct psp_gfx_cmd_setup_tmr
{
uint32_t buf_phy_addr_lo; /* bits [31:0] of physical address of TMR buffer (must be 4 KB aligned) */
uint32_t buf_phy_addr_hi; /* bits [63:32] of physical address of TMR buffer */
uint32_t buf_size; /* buffer size in bytes (must be multiple of 4 KB) */
};
/* FW types for GFX_CMD_ID_LOAD_IP_FW command. Limit 31. */
enum psp_gfx_fw_type
{
GFX_FW_TYPE_NONE = 0,
GFX_FW_TYPE_CP_ME = 1,
GFX_FW_TYPE_CP_PFP = 2,
GFX_FW_TYPE_CP_CE = 3,
GFX_FW_TYPE_CP_MEC = 4,
GFX_FW_TYPE_CP_MEC_ME1 = 5,
GFX_FW_TYPE_CP_MEC_ME2 = 6,
GFX_FW_TYPE_RLC_V = 7,
GFX_FW_TYPE_RLC_G = 8,
GFX_FW_TYPE_SDMA0 = 9,
GFX_FW_TYPE_SDMA1 = 10,
GFX_FW_TYPE_DMCU_ERAM = 11,
GFX_FW_TYPE_DMCU_ISR = 12,
GFX_FW_TYPE_VCN = 13,
GFX_FW_TYPE_UVD = 14,
GFX_FW_TYPE_VCE = 15,
GFX_FW_TYPE_ISP = 16,
GFX_FW_TYPE_ACP = 17,
GFX_FW_TYPE_SMU = 18,
};
/* Command to load HW IP FW. */
struct psp_gfx_cmd_load_ip_fw
{
uint32_t fw_phy_addr_lo; /* bits [31:0] of physical address of FW location (must be 4 KB aligned) */
uint32_t fw_phy_addr_hi; /* bits [63:32] of physical address of FW location */
uint32_t fw_size; /* FW buffer size in bytes */
enum psp_gfx_fw_type fw_type; /* FW type */
};
/* All GFX ring buffer commands. */
union psp_gfx_commands
{
struct psp_gfx_cmd_load_ta cmd_load_ta;
struct psp_gfx_cmd_unload_ta cmd_unload_ta;
struct psp_gfx_cmd_invoke_cmd cmd_invoke_cmd;
struct psp_gfx_cmd_setup_tmr cmd_setup_tmr;
struct psp_gfx_cmd_load_ip_fw cmd_load_ip_fw;
};
/* Structure of GFX Response buffer.
* For GPCOM I/F it is part of GFX_CMD_RESP buffer, for RBI
* it is separate buffer.
*/
struct psp_gfx_resp
{
uint32_t status; /* +0 status of command execution */
uint32_t session_id; /* +4 session ID in response to LoadTa command */
uint32_t fw_addr_lo; /* +8 bits [31:0] of FW address within TMR (in response to cmd_load_ip_fw command) */
uint32_t fw_addr_hi; /* +12 bits [63:32] of FW address within TMR (in response to cmd_load_ip_fw command) */
uint32_t reserved[4];
/* total 32 bytes */
};
/* Structure of Command buffer pointed by psp_gfx_rb_frame.cmd_buf_addr_hi
* and psp_gfx_rb_frame.cmd_buf_addr_lo.
*/
struct psp_gfx_cmd_resp
{
uint32_t buf_size; /* +0 total size of the buffer in bytes */
uint32_t buf_version; /* +4 version of the buffer strusture; must be PSP_GFX_CMD_BUF_VERSION */
uint32_t cmd_id; /* +8 command ID */
/* These fields are used for RBI only. They are all 0 in GPCOM commands
*/
uint32_t resp_buf_addr_lo; /* +12 bits [31:0] of physical address of response buffer (must be 4 KB aligned) */
uint32_t resp_buf_addr_hi; /* +16 bits [63:32] of physical address of response buffer */
uint32_t resp_offset; /* +20 offset within response buffer */
uint32_t resp_buf_size; /* +24 total size of the response buffer in bytes */
union psp_gfx_commands cmd; /* +28 command specific structures */
uint8_t reserved_1[864 - sizeof(union psp_gfx_commands) - 28];
/* Note: Resp is part of this buffer for GPCOM ring. For RBI ring the response
* is separate buffer pointed by resp_buf_addr_hi and resp_buf_addr_lo.
*/
struct psp_gfx_resp resp; /* +864 response */
uint8_t reserved_2[1024 - 864 - sizeof(struct psp_gfx_resp)];
/* total size 1024 bytes */
};
#define FRAME_TYPE_DESTROY 1 /* frame sent by KMD driver when UMD Scheduler context is destroyed*/
/* Structure of the Ring Buffer Frame */
struct psp_gfx_rb_frame
{
uint32_t cmd_buf_addr_lo; /* +0 bits [31:0] of physical address of command buffer (must be 4 KB aligned) */
uint32_t cmd_buf_addr_hi; /* +4 bits [63:32] of physical address of command buffer */
uint32_t cmd_buf_size; /* +8 command buffer size in bytes */
uint32_t fence_addr_lo; /* +12 bits [31:0] of physical address of Fence for this frame */
uint32_t fence_addr_hi; /* +16 bits [63:32] of physical address of Fence for this frame */
uint32_t fence_value; /* +20 Fence value */
uint32_t sid_lo; /* +24 bits [31:0] of SID value (used only for RBI frames) */
uint32_t sid_hi; /* +28 bits [63:32] of SID value (used only for RBI frames) */
uint8_t vmid; /* +32 VMID value used for mapping of all addresses for this frame */
uint8_t frame_type; /* +33 1: destory context frame, 0: all other frames; used only for RBI frames */
uint8_t reserved1[2]; /* +34 reserved, must be 0 */
uint32_t reserved2[7]; /* +40 reserved, must be 0 */
/* total 64 bytes */
};
#endif /* _PSP_TEE_GFX_IF_H_ */