linux/drivers/infiniband/core/addr.c
Bhaktipriya Shridhar f54816261c IB/addr: Remove deprecated create_singlethread_workqueue
The workqueue "addr_wq" queues a single work item &work and hence
doesn't require ordering. Also, it is being used on a memory reclaim
path. Hence, it has been converted to use alloc_workqueue with
WQ_MEM_RECLAIM set.

WQ_MEM_RECLAIM has been set to ensure forward progress under
memory pressure.

Signed-off-by: Bhaktipriya Shridhar <bhaktipriya96@gmail.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-10-07 16:54:25 -04:00

819 lines
20 KiB
C

/*
* Copyright (c) 2005 Voltaire Inc. All rights reserved.
* Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
* Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
* Copyright (c) 2005 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/mutex.h>
#include <linux/inetdevice.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/module.h>
#include <net/arp.h>
#include <net/neighbour.h>
#include <net/route.h>
#include <net/netevent.h>
#include <net/addrconf.h>
#include <net/ip6_route.h>
#include <rdma/ib_addr.h>
#include <rdma/ib.h>
#include <rdma/rdma_netlink.h>
#include <net/netlink.h>
#include "core_priv.h"
struct addr_req {
struct list_head list;
struct sockaddr_storage src_addr;
struct sockaddr_storage dst_addr;
struct rdma_dev_addr *addr;
struct rdma_addr_client *client;
void *context;
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context);
unsigned long timeout;
int status;
u32 seq;
};
static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
static void process_req(struct work_struct *work);
static DEFINE_MUTEX(lock);
static LIST_HEAD(req_list);
static DECLARE_DELAYED_WORK(work, process_req);
static struct workqueue_struct *addr_wq;
static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
.len = sizeof(struct rdma_nla_ls_gid)},
};
static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
{
struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
int ret;
if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
return false;
ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
nlmsg_len(nlh), ib_nl_addr_policy);
if (ret)
return false;
return true;
}
static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
{
const struct nlattr *head, *curr;
union ib_gid gid;
struct addr_req *req;
int len, rem;
int found = 0;
head = (const struct nlattr *)nlmsg_data(nlh);
len = nlmsg_len(nlh);
nla_for_each_attr(curr, head, len, rem) {
if (curr->nla_type == LS_NLA_TYPE_DGID)
memcpy(&gid, nla_data(curr), nla_len(curr));
}
mutex_lock(&lock);
list_for_each_entry(req, &req_list, list) {
if (nlh->nlmsg_seq != req->seq)
continue;
/* We set the DGID part, the rest was set earlier */
rdma_addr_set_dgid(req->addr, &gid);
req->status = 0;
found = 1;
break;
}
mutex_unlock(&lock);
if (!found)
pr_info("Couldn't find request waiting for DGID: %pI6\n",
&gid);
}
int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
struct netlink_callback *cb)
{
const struct nlmsghdr *nlh = (struct nlmsghdr *)cb->nlh;
if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
!(NETLINK_CB(skb).sk) ||
!netlink_capable(skb, CAP_NET_ADMIN))
return -EPERM;
if (ib_nl_is_good_ip_resp(nlh))
ib_nl_process_good_ip_rsep(nlh);
return skb->len;
}
static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
const void *daddr,
u32 seq, u16 family)
{
struct sk_buff *skb = NULL;
struct nlmsghdr *nlh;
struct rdma_ls_ip_resolve_header *header;
void *data;
size_t size;
int attrtype;
int len;
if (family == AF_INET) {
size = sizeof(struct in_addr);
attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
} else {
size = sizeof(struct in6_addr);
attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
}
len = nla_total_size(sizeof(size));
len += NLMSG_ALIGN(sizeof(*header));
skb = nlmsg_new(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
if (!data) {
nlmsg_free(skb);
return -ENODATA;
}
/* Construct the family header first */
header = (struct rdma_ls_ip_resolve_header *)
skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
header->ifindex = dev_addr->bound_dev_if;
nla_put(skb, attrtype, size, daddr);
/* Repair the nlmsg header length */
nlmsg_end(skb, nlh);
ibnl_multicast(skb, nlh, RDMA_NL_GROUP_LS, GFP_KERNEL);
/* Make the request retry, so when we get the response from userspace
* we will have something.
*/
return -ENODATA;
}
int rdma_addr_size(struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return sizeof(struct sockaddr_in);
case AF_INET6:
return sizeof(struct sockaddr_in6);
case AF_IB:
return sizeof(struct sockaddr_ib);
default:
return 0;
}
}
EXPORT_SYMBOL(rdma_addr_size);
static struct rdma_addr_client self;
void rdma_addr_register_client(struct rdma_addr_client *client)
{
atomic_set(&client->refcount, 1);
init_completion(&client->comp);
}
EXPORT_SYMBOL(rdma_addr_register_client);
static inline void put_client(struct rdma_addr_client *client)
{
if (atomic_dec_and_test(&client->refcount))
complete(&client->comp);
}
void rdma_addr_unregister_client(struct rdma_addr_client *client)
{
put_client(client);
wait_for_completion(&client->comp);
}
EXPORT_SYMBOL(rdma_addr_unregister_client);
int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
const unsigned char *dst_dev_addr)
{
dev_addr->dev_type = dev->type;
memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
if (dst_dev_addr)
memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
dev_addr->bound_dev_if = dev->ifindex;
return 0;
}
EXPORT_SYMBOL(rdma_copy_addr);
int rdma_translate_ip(const struct sockaddr *addr,
struct rdma_dev_addr *dev_addr,
u16 *vlan_id)
{
struct net_device *dev;
int ret = -EADDRNOTAVAIL;
if (dev_addr->bound_dev_if) {
dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
if (!dev)
return -ENODEV;
ret = rdma_copy_addr(dev_addr, dev, NULL);
dev_put(dev);
return ret;
}
switch (addr->sa_family) {
case AF_INET:
dev = ip_dev_find(dev_addr->net,
((const struct sockaddr_in *)addr)->sin_addr.s_addr);
if (!dev)
return ret;
ret = rdma_copy_addr(dev_addr, dev, NULL);
if (vlan_id)
*vlan_id = rdma_vlan_dev_vlan_id(dev);
dev_put(dev);
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
rcu_read_lock();
for_each_netdev_rcu(dev_addr->net, dev) {
if (ipv6_chk_addr(dev_addr->net,
&((const struct sockaddr_in6 *)addr)->sin6_addr,
dev, 1)) {
ret = rdma_copy_addr(dev_addr, dev, NULL);
if (vlan_id)
*vlan_id = rdma_vlan_dev_vlan_id(dev);
break;
}
}
rcu_read_unlock();
break;
#endif
}
return ret;
}
EXPORT_SYMBOL(rdma_translate_ip);
static void set_timeout(unsigned long time)
{
unsigned long delay;
delay = time - jiffies;
if ((long)delay < 0)
delay = 0;
mod_delayed_work(addr_wq, &work, delay);
}
static void queue_req(struct addr_req *req)
{
struct addr_req *temp_req;
mutex_lock(&lock);
list_for_each_entry_reverse(temp_req, &req_list, list) {
if (time_after_eq(req->timeout, temp_req->timeout))
break;
}
list_add(&req->list, &temp_req->list);
if (req_list.next == &req->list)
set_timeout(req->timeout);
mutex_unlock(&lock);
}
static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
const void *daddr, u32 seq, u16 family)
{
if (ibnl_chk_listeners(RDMA_NL_GROUP_LS))
return -EADDRNOTAVAIL;
/* We fill in what we can, the response will fill the rest */
rdma_copy_addr(dev_addr, dst->dev, NULL);
return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
}
static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
const void *daddr)
{
struct neighbour *n;
int ret;
n = dst_neigh_lookup(dst, daddr);
rcu_read_lock();
if (!n || !(n->nud_state & NUD_VALID)) {
if (n)
neigh_event_send(n, NULL);
ret = -ENODATA;
} else {
ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
}
rcu_read_unlock();
if (n)
neigh_release(n);
return ret;
}
static bool has_gateway(struct dst_entry *dst, sa_family_t family)
{
struct rtable *rt;
struct rt6_info *rt6;
if (family == AF_INET) {
rt = container_of(dst, struct rtable, dst);
return rt->rt_uses_gateway;
}
rt6 = container_of(dst, struct rt6_info, dst);
return rt6->rt6i_flags & RTF_GATEWAY;
}
static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
const struct sockaddr *dst_in, u32 seq)
{
const struct sockaddr_in *dst_in4 =
(const struct sockaddr_in *)dst_in;
const struct sockaddr_in6 *dst_in6 =
(const struct sockaddr_in6 *)dst_in;
const void *daddr = (dst_in->sa_family == AF_INET) ?
(const void *)&dst_in4->sin_addr.s_addr :
(const void *)&dst_in6->sin6_addr;
sa_family_t family = dst_in->sa_family;
/* Gateway + ARPHRD_INFINIBAND -> IB router */
if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
else
return dst_fetch_ha(dst, dev_addr, daddr);
}
static int addr4_resolve(struct sockaddr_in *src_in,
const struct sockaddr_in *dst_in,
struct rdma_dev_addr *addr,
struct rtable **prt)
{
__be32 src_ip = src_in->sin_addr.s_addr;
__be32 dst_ip = dst_in->sin_addr.s_addr;
struct rtable *rt;
struct flowi4 fl4;
int ret;
memset(&fl4, 0, sizeof(fl4));
fl4.daddr = dst_ip;
fl4.saddr = src_ip;
fl4.flowi4_oif = addr->bound_dev_if;
rt = ip_route_output_key(addr->net, &fl4);
if (IS_ERR(rt)) {
ret = PTR_ERR(rt);
goto out;
}
src_in->sin_family = AF_INET;
src_in->sin_addr.s_addr = fl4.saddr;
/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
* definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
* type accordingly.
*/
if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
addr->network = RDMA_NETWORK_IPV4;
addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
*prt = rt;
return 0;
out:
return ret;
}
#if IS_ENABLED(CONFIG_IPV6)
static int addr6_resolve(struct sockaddr_in6 *src_in,
const struct sockaddr_in6 *dst_in,
struct rdma_dev_addr *addr,
struct dst_entry **pdst)
{
struct flowi6 fl6;
struct dst_entry *dst;
struct rt6_info *rt;
int ret;
memset(&fl6, 0, sizeof fl6);
fl6.daddr = dst_in->sin6_addr;
fl6.saddr = src_in->sin6_addr;
fl6.flowi6_oif = addr->bound_dev_if;
dst = ip6_route_output(addr->net, NULL, &fl6);
if ((ret = dst->error))
goto put;
rt = (struct rt6_info *)dst;
if (ipv6_addr_any(&fl6.saddr)) {
ret = ipv6_dev_get_saddr(addr->net, ip6_dst_idev(dst)->dev,
&fl6.daddr, 0, &fl6.saddr);
if (ret)
goto put;
src_in->sin6_family = AF_INET6;
src_in->sin6_addr = fl6.saddr;
}
/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
* definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
* type accordingly.
*/
if (rt->rt6i_flags & RTF_GATEWAY &&
ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
addr->network = RDMA_NETWORK_IPV6;
addr->hoplimit = ip6_dst_hoplimit(dst);
*pdst = dst;
return 0;
put:
dst_release(dst);
return ret;
}
#else
static int addr6_resolve(struct sockaddr_in6 *src_in,
const struct sockaddr_in6 *dst_in,
struct rdma_dev_addr *addr,
struct dst_entry **pdst)
{
return -EADDRNOTAVAIL;
}
#endif
static int addr_resolve_neigh(struct dst_entry *dst,
const struct sockaddr *dst_in,
struct rdma_dev_addr *addr,
u32 seq)
{
if (dst->dev->flags & IFF_LOOPBACK) {
int ret;
ret = rdma_translate_ip(dst_in, addr, NULL);
if (!ret)
memcpy(addr->dst_dev_addr, addr->src_dev_addr,
MAX_ADDR_LEN);
return ret;
}
/* If the device doesn't do ARP internally */
if (!(dst->dev->flags & IFF_NOARP))
return fetch_ha(dst, addr, dst_in, seq);
return rdma_copy_addr(addr, dst->dev, NULL);
}
static int addr_resolve(struct sockaddr *src_in,
const struct sockaddr *dst_in,
struct rdma_dev_addr *addr,
bool resolve_neigh,
u32 seq)
{
struct net_device *ndev;
struct dst_entry *dst;
int ret;
if (src_in->sa_family == AF_INET) {
struct rtable *rt = NULL;
const struct sockaddr_in *dst_in4 =
(const struct sockaddr_in *)dst_in;
ret = addr4_resolve((struct sockaddr_in *)src_in,
dst_in4, addr, &rt);
if (ret)
return ret;
if (resolve_neigh)
ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
ndev = rt->dst.dev;
dev_hold(ndev);
ip_rt_put(rt);
} else {
const struct sockaddr_in6 *dst_in6 =
(const struct sockaddr_in6 *)dst_in;
ret = addr6_resolve((struct sockaddr_in6 *)src_in,
dst_in6, addr,
&dst);
if (ret)
return ret;
if (resolve_neigh)
ret = addr_resolve_neigh(dst, dst_in, addr, seq);
ndev = dst->dev;
dev_hold(ndev);
dst_release(dst);
}
addr->bound_dev_if = ndev->ifindex;
addr->net = dev_net(ndev);
dev_put(ndev);
return ret;
}
static void process_req(struct work_struct *work)
{
struct addr_req *req, *temp_req;
struct sockaddr *src_in, *dst_in;
struct list_head done_list;
INIT_LIST_HEAD(&done_list);
mutex_lock(&lock);
list_for_each_entry_safe(req, temp_req, &req_list, list) {
if (req->status == -ENODATA) {
src_in = (struct sockaddr *) &req->src_addr;
dst_in = (struct sockaddr *) &req->dst_addr;
req->status = addr_resolve(src_in, dst_in, req->addr,
true, req->seq);
if (req->status && time_after_eq(jiffies, req->timeout))
req->status = -ETIMEDOUT;
else if (req->status == -ENODATA)
continue;
}
list_move_tail(&req->list, &done_list);
}
if (!list_empty(&req_list)) {
req = list_entry(req_list.next, struct addr_req, list);
set_timeout(req->timeout);
}
mutex_unlock(&lock);
list_for_each_entry_safe(req, temp_req, &done_list, list) {
list_del(&req->list);
req->callback(req->status, (struct sockaddr *) &req->src_addr,
req->addr, req->context);
put_client(req->client);
kfree(req);
}
}
int rdma_resolve_ip(struct rdma_addr_client *client,
struct sockaddr *src_addr, struct sockaddr *dst_addr,
struct rdma_dev_addr *addr, int timeout_ms,
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context),
void *context)
{
struct sockaddr *src_in, *dst_in;
struct addr_req *req;
int ret = 0;
req = kzalloc(sizeof *req, GFP_KERNEL);
if (!req)
return -ENOMEM;
src_in = (struct sockaddr *) &req->src_addr;
dst_in = (struct sockaddr *) &req->dst_addr;
if (src_addr) {
if (src_addr->sa_family != dst_addr->sa_family) {
ret = -EINVAL;
goto err;
}
memcpy(src_in, src_addr, rdma_addr_size(src_addr));
} else {
src_in->sa_family = dst_addr->sa_family;
}
memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
req->addr = addr;
req->callback = callback;
req->context = context;
req->client = client;
atomic_inc(&client->refcount);
req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
switch (req->status) {
case 0:
req->timeout = jiffies;
queue_req(req);
break;
case -ENODATA:
req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
queue_req(req);
break;
default:
ret = req->status;
atomic_dec(&client->refcount);
goto err;
}
return ret;
err:
kfree(req);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_ip);
int rdma_resolve_ip_route(struct sockaddr *src_addr,
const struct sockaddr *dst_addr,
struct rdma_dev_addr *addr)
{
struct sockaddr_storage ssrc_addr = {};
struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
if (src_addr) {
if (src_addr->sa_family != dst_addr->sa_family)
return -EINVAL;
memcpy(src_in, src_addr, rdma_addr_size(src_addr));
} else {
src_in->sa_family = dst_addr->sa_family;
}
return addr_resolve(src_in, dst_addr, addr, false, 0);
}
EXPORT_SYMBOL(rdma_resolve_ip_route);
void rdma_addr_cancel(struct rdma_dev_addr *addr)
{
struct addr_req *req, *temp_req;
mutex_lock(&lock);
list_for_each_entry_safe(req, temp_req, &req_list, list) {
if (req->addr == addr) {
req->status = -ECANCELED;
req->timeout = jiffies;
list_move(&req->list, &req_list);
set_timeout(req->timeout);
break;
}
}
mutex_unlock(&lock);
}
EXPORT_SYMBOL(rdma_addr_cancel);
struct resolve_cb_context {
struct rdma_dev_addr *addr;
struct completion comp;
};
static void resolve_cb(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context)
{
memcpy(((struct resolve_cb_context *)context)->addr, addr, sizeof(struct
rdma_dev_addr));
complete(&((struct resolve_cb_context *)context)->comp);
}
int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
const union ib_gid *dgid,
u8 *dmac, u16 *vlan_id, int *if_index,
int *hoplimit)
{
int ret = 0;
struct rdma_dev_addr dev_addr;
struct resolve_cb_context ctx;
struct net_device *dev;
union {
struct sockaddr _sockaddr;
struct sockaddr_in _sockaddr_in;
struct sockaddr_in6 _sockaddr_in6;
} sgid_addr, dgid_addr;
rdma_gid2ip(&sgid_addr._sockaddr, sgid);
rdma_gid2ip(&dgid_addr._sockaddr, dgid);
memset(&dev_addr, 0, sizeof(dev_addr));
if (if_index)
dev_addr.bound_dev_if = *if_index;
dev_addr.net = &init_net;
ctx.addr = &dev_addr;
init_completion(&ctx.comp);
ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
&dev_addr, 1000, resolve_cb, &ctx);
if (ret)
return ret;
wait_for_completion(&ctx.comp);
memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
if (!dev)
return -ENODEV;
if (if_index)
*if_index = dev_addr.bound_dev_if;
if (vlan_id)
*vlan_id = rdma_vlan_dev_vlan_id(dev);
if (hoplimit)
*hoplimit = dev_addr.hoplimit;
dev_put(dev);
return ret;
}
EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
{
int ret = 0;
struct rdma_dev_addr dev_addr;
union {
struct sockaddr _sockaddr;
struct sockaddr_in _sockaddr_in;
struct sockaddr_in6 _sockaddr_in6;
} gid_addr;
rdma_gid2ip(&gid_addr._sockaddr, sgid);
memset(&dev_addr, 0, sizeof(dev_addr));
dev_addr.net = &init_net;
ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
if (ret)
return ret;
memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
return ret;
}
EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
static int netevent_callback(struct notifier_block *self, unsigned long event,
void *ctx)
{
if (event == NETEVENT_NEIGH_UPDATE) {
struct neighbour *neigh = ctx;
if (neigh->nud_state & NUD_VALID) {
set_timeout(jiffies);
}
}
return 0;
}
static struct notifier_block nb = {
.notifier_call = netevent_callback
};
int addr_init(void)
{
addr_wq = alloc_workqueue("ib_addr", WQ_MEM_RECLAIM, 0);
if (!addr_wq)
return -ENOMEM;
register_netevent_notifier(&nb);
rdma_addr_register_client(&self);
return 0;
}
void addr_cleanup(void)
{
rdma_addr_unregister_client(&self);
unregister_netevent_notifier(&nb);
destroy_workqueue(addr_wq);
}