linux/arch/arm/lib/longlong.h
Russell King 3ade2fe0fd [PATCH] ARM: Lindent GCC helper functions
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2005-06-20 16:45:32 +01:00

184 lines
6.2 KiB
C

/* longlong.h -- based on code from gcc-2.95.3
definitions for mixed size 32/64 bit arithmetic.
Copyright (C) 1991, 92, 94, 95, 96, 1997, 1998 Free Software Foundation, Inc.
This definition file is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.
This definition file is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Borrowed from GCC 2.95.3, I Molton 29/07/01 */
#ifndef SI_TYPE_SIZE
#define SI_TYPE_SIZE 32
#endif
#define __BITS4 (SI_TYPE_SIZE / 4)
#define __ll_B (1L << (SI_TYPE_SIZE / 2))
#define __ll_lowpart(t) ((u32) (t) % __ll_B)
#define __ll_highpart(t) ((u32) (t) / __ll_B)
/* Define auxiliary asm macros.
1) umul_ppmm(high_prod, low_prod, multipler, multiplicand)
multiplies two u32 integers MULTIPLER and MULTIPLICAND,
and generates a two-part u32 product in HIGH_PROD and
LOW_PROD.
2) __umulsidi3(a,b) multiplies two u32 integers A and B,
and returns a u64 product. This is just a variant of umul_ppmm.
3) udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
denominator) divides a two-word unsigned integer, composed by the
integers HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and
places the quotient in QUOTIENT and the remainder in REMAINDER.
HIGH_NUMERATOR must be less than DENOMINATOR for correct operation.
If, in addition, the most significant bit of DENOMINATOR must be 1,
then the pre-processor symbol UDIV_NEEDS_NORMALIZATION is defined to 1.
4) sdiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
denominator). Like udiv_qrnnd but the numbers are signed. The
quotient is rounded towards 0.
5) count_leading_zeros(count, x) counts the number of zero-bits from
the msb to the first non-zero bit. This is the number of steps X
needs to be shifted left to set the msb. Undefined for X == 0.
6) add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
high_addend_2, low_addend_2) adds two two-word unsigned integers,
composed by HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and
LOW_ADDEND_2 respectively. The result is placed in HIGH_SUM and
LOW_SUM. Overflow (i.e. carry out) is not stored anywhere, and is
lost.
7) sub_ddmmss(high_difference, low_difference, high_minuend,
low_minuend, high_subtrahend, low_subtrahend) subtracts two
two-word unsigned integers, composed by HIGH_MINUEND_1 and
LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and LOW_SUBTRAHEND_2
respectively. The result is placed in HIGH_DIFFERENCE and
LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere,
and is lost.
If any of these macros are left undefined for a particular CPU,
C macros are used. */
#if defined (__arm__)
#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
__asm__ ("adds %1, %4, %5 \n\
adc %0, %2, %3" \
: "=r" ((u32) (sh)), \
"=&r" ((u32) (sl)) \
: "%r" ((u32) (ah)), \
"rI" ((u32) (bh)), \
"%r" ((u32) (al)), \
"rI" ((u32) (bl)))
#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
__asm__ ("subs %1, %4, %5 \n\
sbc %0, %2, %3" \
: "=r" ((u32) (sh)), \
"=&r" ((u32) (sl)) \
: "r" ((u32) (ah)), \
"rI" ((u32) (bh)), \
"r" ((u32) (al)), \
"rI" ((u32) (bl)))
#define umul_ppmm(xh, xl, a, b) \
{register u32 __t0, __t1, __t2; \
__asm__ ("%@ Inlined umul_ppmm \n\
mov %2, %5, lsr #16 \n\
mov %0, %6, lsr #16 \n\
bic %3, %5, %2, lsl #16 \n\
bic %4, %6, %0, lsl #16 \n\
mul %1, %3, %4 \n\
mul %4, %2, %4 \n\
mul %3, %0, %3 \n\
mul %0, %2, %0 \n\
adds %3, %4, %3 \n\
addcs %0, %0, #65536 \n\
adds %1, %1, %3, lsl #16 \n\
adc %0, %0, %3, lsr #16" \
: "=&r" ((u32) (xh)), \
"=r" ((u32) (xl)), \
"=&r" (__t0), "=&r" (__t1), "=r" (__t2) \
: "r" ((u32) (a)), \
"r" ((u32) (b)));}
#define UMUL_TIME 20
#define UDIV_TIME 100
#endif /* __arm__ */
#define __umulsidi3(u, v) \
({DIunion __w; \
umul_ppmm (__w.s.high, __w.s.low, u, v); \
__w.ll; })
#define __udiv_qrnnd_c(q, r, n1, n0, d) \
do { \
u32 __d1, __d0, __q1, __q0; \
u32 __r1, __r0, __m; \
__d1 = __ll_highpart (d); \
__d0 = __ll_lowpart (d); \
\
__r1 = (n1) % __d1; \
__q1 = (n1) / __d1; \
__m = (u32) __q1 * __d0; \
__r1 = __r1 * __ll_B | __ll_highpart (n0); \
if (__r1 < __m) \
{ \
__q1--, __r1 += (d); \
if (__r1 >= (d)) /* i.e. we didn't get carry when adding to __r1 */\
if (__r1 < __m) \
__q1--, __r1 += (d); \
} \
__r1 -= __m; \
\
__r0 = __r1 % __d1; \
__q0 = __r1 / __d1; \
__m = (u32) __q0 * __d0; \
__r0 = __r0 * __ll_B | __ll_lowpart (n0); \
if (__r0 < __m) \
{ \
__q0--, __r0 += (d); \
if (__r0 >= (d)) \
if (__r0 < __m) \
__q0--, __r0 += (d); \
} \
__r0 -= __m; \
\
(q) = (u32) __q1 * __ll_B | __q0; \
(r) = __r0; \
} while (0)
#define UDIV_NEEDS_NORMALIZATION 1
#define udiv_qrnnd __udiv_qrnnd_c
#define count_leading_zeros(count, x) \
do { \
u32 __xr = (x); \
u32 __a; \
\
if (SI_TYPE_SIZE <= 32) \
{ \
__a = __xr < ((u32)1<<2*__BITS4) \
? (__xr < ((u32)1<<__BITS4) ? 0 : __BITS4) \
: (__xr < ((u32)1<<3*__BITS4) ? 2*__BITS4 : 3*__BITS4); \
} \
else \
{ \
for (__a = SI_TYPE_SIZE - 8; __a > 0; __a -= 8) \
if (((__xr >> __a) & 0xff) != 0) \
break; \
} \
\
(count) = SI_TYPE_SIZE - (__clz_tab[__xr >> __a] + __a); \
} while (0)