linux/drivers/net/ethernet/chelsio/cxgb/subr.c
Jeff Kirsher 0ab75ae81d ethernet: Fix FSF address in file headers
Several files refer to an old address for the Free Software Foundation
in the file header comment.  Resolve by replacing the address with
the URL <http://www.gnu.org/licenses/> so that we do not have to keep
updating the header comments anytime the address changes.

CC: Santosh Raspatur <santosh@chelsio.com>
CC: Dimitris Michailidis <dm@chelsio.com>
CC: Michael Chan <mchan@broadcom.com>
CC: Santiago Leon <santil@linux.vnet.ibm.com>
CC: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
CC: Olof Johansson <olof@lixom.net>
CC: Manish Chopra <manish.chopra@qlogic.com>
CC: Sony Chacko <sony.chacko@qlogic.com>
CC: Rajesh Borundia <rajesh.borundia@qlogic.com>
CC: Nicolas Pitre <nico@fluxnic.net>
CC: Steve Glendinning <steve.glendinning@shawell.net>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-06 12:37:55 -05:00

1129 lines
31 KiB
C

/*****************************************************************************
* *
* File: subr.c *
* $Revision: 1.27 $ *
* $Date: 2005/06/22 01:08:36 $ *
* Description: *
* Various subroutines (intr,pio,etc.) used by Chelsio 10G Ethernet driver. *
* part of the Chelsio 10Gb Ethernet Driver. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License, version 2, as *
* published by the Free Software Foundation. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program; if not, see <http://www.gnu.org/licenses/>. *
* *
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
* *
* http://www.chelsio.com *
* *
* Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
* All rights reserved. *
* *
* Maintainers: maintainers@chelsio.com *
* *
* Authors: Dimitrios Michailidis <dm@chelsio.com> *
* Tina Yang <tainay@chelsio.com> *
* Felix Marti <felix@chelsio.com> *
* Scott Bardone <sbardone@chelsio.com> *
* Kurt Ottaway <kottaway@chelsio.com> *
* Frank DiMambro <frank@chelsio.com> *
* *
* History: *
* *
****************************************************************************/
#include "common.h"
#include "elmer0.h"
#include "regs.h"
#include "gmac.h"
#include "cphy.h"
#include "sge.h"
#include "tp.h"
#include "espi.h"
/**
* t1_wait_op_done - wait until an operation is completed
* @adapter: the adapter performing the operation
* @reg: the register to check for completion
* @mask: a single-bit field within @reg that indicates completion
* @polarity: the value of the field when the operation is completed
* @attempts: number of check iterations
* @delay: delay in usecs between iterations
*
* Wait until an operation is completed by checking a bit in a register
* up to @attempts times. Returns %0 if the operation completes and %1
* otherwise.
*/
static int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity,
int attempts, int delay)
{
while (1) {
u32 val = readl(adapter->regs + reg) & mask;
if (!!val == polarity)
return 0;
if (--attempts == 0)
return 1;
if (delay)
udelay(delay);
}
}
#define TPI_ATTEMPTS 50
/*
* Write a register over the TPI interface (unlocked and locked versions).
*/
int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
{
int tpi_busy;
writel(addr, adapter->regs + A_TPI_ADDR);
writel(value, adapter->regs + A_TPI_WR_DATA);
writel(F_TPIWR, adapter->regs + A_TPI_CSR);
tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
TPI_ATTEMPTS, 3);
if (tpi_busy)
pr_alert("%s: TPI write to 0x%x failed\n",
adapter->name, addr);
return tpi_busy;
}
int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
{
int ret;
spin_lock(&adapter->tpi_lock);
ret = __t1_tpi_write(adapter, addr, value);
spin_unlock(&adapter->tpi_lock);
return ret;
}
/*
* Read a register over the TPI interface (unlocked and locked versions).
*/
int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
{
int tpi_busy;
writel(addr, adapter->regs + A_TPI_ADDR);
writel(0, adapter->regs + A_TPI_CSR);
tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
TPI_ATTEMPTS, 3);
if (tpi_busy)
pr_alert("%s: TPI read from 0x%x failed\n",
adapter->name, addr);
else
*valp = readl(adapter->regs + A_TPI_RD_DATA);
return tpi_busy;
}
int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
{
int ret;
spin_lock(&adapter->tpi_lock);
ret = __t1_tpi_read(adapter, addr, valp);
spin_unlock(&adapter->tpi_lock);
return ret;
}
/*
* Set a TPI parameter.
*/
static void t1_tpi_par(adapter_t *adapter, u32 value)
{
writel(V_TPIPAR(value), adapter->regs + A_TPI_PAR);
}
/*
* Called when a port's link settings change to propagate the new values to the
* associated PHY and MAC. After performing the common tasks it invokes an
* OS-specific handler.
*/
void t1_link_changed(adapter_t *adapter, int port_id)
{
int link_ok, speed, duplex, fc;
struct cphy *phy = adapter->port[port_id].phy;
struct link_config *lc = &adapter->port[port_id].link_config;
phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
lc->speed = speed < 0 ? SPEED_INVALID : speed;
lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
if (!(lc->requested_fc & PAUSE_AUTONEG))
fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
/* Set MAC speed, duplex, and flow control to match PHY. */
struct cmac *mac = adapter->port[port_id].mac;
mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc);
lc->fc = (unsigned char)fc;
}
t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc);
}
static int t1_pci_intr_handler(adapter_t *adapter)
{
u32 pcix_cause;
pci_read_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, &pcix_cause);
if (pcix_cause) {
pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE,
pcix_cause);
t1_fatal_err(adapter); /* PCI errors are fatal */
}
return 0;
}
#ifdef CONFIG_CHELSIO_T1_1G
#include "fpga_defs.h"
/*
* PHY interrupt handler for FPGA boards.
*/
static int fpga_phy_intr_handler(adapter_t *adapter)
{
int p;
u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
for_each_port(adapter, p)
if (cause & (1 << p)) {
struct cphy *phy = adapter->port[p].phy;
int phy_cause = phy->ops->interrupt_handler(phy);
if (phy_cause & cphy_cause_link_change)
t1_link_changed(adapter, p);
}
writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
return 0;
}
/*
* Slow path interrupt handler for FPGAs.
*/
static int fpga_slow_intr(adapter_t *adapter)
{
u32 cause = readl(adapter->regs + A_PL_CAUSE);
cause &= ~F_PL_INTR_SGE_DATA;
if (cause & F_PL_INTR_SGE_ERR)
t1_sge_intr_error_handler(adapter->sge);
if (cause & FPGA_PCIX_INTERRUPT_GMAC)
fpga_phy_intr_handler(adapter);
if (cause & FPGA_PCIX_INTERRUPT_TP) {
/*
* FPGA doesn't support MC4 interrupts and it requires
* this odd layer of indirection for MC5.
*/
u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
/* Clear TP interrupt */
writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
}
if (cause & FPGA_PCIX_INTERRUPT_PCIX)
t1_pci_intr_handler(adapter);
/* Clear the interrupts just processed. */
if (cause)
writel(cause, adapter->regs + A_PL_CAUSE);
return cause != 0;
}
#endif
/*
* Wait until Elmer's MI1 interface is ready for new operations.
*/
static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg)
{
int attempts = 100, busy;
do {
u32 val;
__t1_tpi_read(adapter, mi1_reg, &val);
busy = val & F_MI1_OP_BUSY;
if (busy)
udelay(10);
} while (busy && --attempts);
if (busy)
pr_alert("%s: MDIO operation timed out\n", adapter->name);
return busy;
}
/*
* MI1 MDIO initialization.
*/
static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi)
{
u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1;
u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) |
V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv);
if (!(bi->caps & SUPPORTED_10000baseT_Full))
val |= V_MI1_SOF(1);
t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val);
}
#if defined(CONFIG_CHELSIO_T1_1G)
/*
* Elmer MI1 MDIO read/write operations.
*/
static int mi1_mdio_read(struct net_device *dev, int phy_addr, int mmd_addr,
u16 reg_addr)
{
struct adapter *adapter = dev->ml_priv;
u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
unsigned int val;
spin_lock(&adapter->tpi_lock);
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
__t1_tpi_write(adapter,
A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ);
mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
__t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
spin_unlock(&adapter->tpi_lock);
return val;
}
static int mi1_mdio_write(struct net_device *dev, int phy_addr, int mmd_addr,
u16 reg_addr, u16 val)
{
struct adapter *adapter = dev->ml_priv;
u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
spin_lock(&adapter->tpi_lock);
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
__t1_tpi_write(adapter,
A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE);
mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
spin_unlock(&adapter->tpi_lock);
return 0;
}
static const struct mdio_ops mi1_mdio_ops = {
.init = mi1_mdio_init,
.read = mi1_mdio_read,
.write = mi1_mdio_write,
.mode_support = MDIO_SUPPORTS_C22
};
#endif
static int mi1_mdio_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
u16 reg_addr)
{
struct adapter *adapter = dev->ml_priv;
u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
unsigned int val;
spin_lock(&adapter->tpi_lock);
/* Write the address we want. */
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
MI1_OP_INDIRECT_ADDRESS);
mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
/* Write the operation we want. */
__t1_tpi_write(adapter,
A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ);
mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
/* Read the data. */
__t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
spin_unlock(&adapter->tpi_lock);
return val;
}
static int mi1_mdio_ext_write(struct net_device *dev, int phy_addr,
int mmd_addr, u16 reg_addr, u16 val)
{
struct adapter *adapter = dev->ml_priv;
u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
spin_lock(&adapter->tpi_lock);
/* Write the address we want. */
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
MI1_OP_INDIRECT_ADDRESS);
mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
/* Write the data. */
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE);
mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
spin_unlock(&adapter->tpi_lock);
return 0;
}
static const struct mdio_ops mi1_mdio_ext_ops = {
.init = mi1_mdio_init,
.read = mi1_mdio_ext_read,
.write = mi1_mdio_ext_write,
.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
};
enum {
CH_BRD_T110_1CU,
CH_BRD_N110_1F,
CH_BRD_N210_1F,
CH_BRD_T210_1F,
CH_BRD_T210_1CU,
CH_BRD_N204_4CU,
};
static const struct board_info t1_board[] = {
{
.board = CHBT_BOARD_CHT110,
.port_number = 1,
.caps = SUPPORTED_10000baseT_Full,
.chip_term = CHBT_TERM_T1,
.chip_mac = CHBT_MAC_PM3393,
.chip_phy = CHBT_PHY_MY3126,
.clock_core = 125000000,
.clock_mc3 = 150000000,
.clock_mc4 = 125000000,
.espi_nports = 1,
.clock_elmer0 = 44,
.mdio_mdien = 1,
.mdio_mdiinv = 1,
.mdio_mdc = 1,
.mdio_phybaseaddr = 1,
.gmac = &t1_pm3393_ops,
.gphy = &t1_my3126_ops,
.mdio_ops = &mi1_mdio_ext_ops,
.desc = "Chelsio T110 1x10GBase-CX4 TOE",
},
{
.board = CHBT_BOARD_N110,
.port_number = 1,
.caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
.chip_term = CHBT_TERM_T1,
.chip_mac = CHBT_MAC_PM3393,
.chip_phy = CHBT_PHY_88X2010,
.clock_core = 125000000,
.espi_nports = 1,
.clock_elmer0 = 44,
.mdio_mdien = 0,
.mdio_mdiinv = 0,
.mdio_mdc = 1,
.mdio_phybaseaddr = 0,
.gmac = &t1_pm3393_ops,
.gphy = &t1_mv88x201x_ops,
.mdio_ops = &mi1_mdio_ext_ops,
.desc = "Chelsio N110 1x10GBaseX NIC",
},
{
.board = CHBT_BOARD_N210,
.port_number = 1,
.caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
.chip_term = CHBT_TERM_T2,
.chip_mac = CHBT_MAC_PM3393,
.chip_phy = CHBT_PHY_88X2010,
.clock_core = 125000000,
.espi_nports = 1,
.clock_elmer0 = 44,
.mdio_mdien = 0,
.mdio_mdiinv = 0,
.mdio_mdc = 1,
.mdio_phybaseaddr = 0,
.gmac = &t1_pm3393_ops,
.gphy = &t1_mv88x201x_ops,
.mdio_ops = &mi1_mdio_ext_ops,
.desc = "Chelsio N210 1x10GBaseX NIC",
},
{
.board = CHBT_BOARD_CHT210,
.port_number = 1,
.caps = SUPPORTED_10000baseT_Full,
.chip_term = CHBT_TERM_T2,
.chip_mac = CHBT_MAC_PM3393,
.chip_phy = CHBT_PHY_88X2010,
.clock_core = 125000000,
.clock_mc3 = 133000000,
.clock_mc4 = 125000000,
.espi_nports = 1,
.clock_elmer0 = 44,
.mdio_mdien = 0,
.mdio_mdiinv = 0,
.mdio_mdc = 1,
.mdio_phybaseaddr = 0,
.gmac = &t1_pm3393_ops,
.gphy = &t1_mv88x201x_ops,
.mdio_ops = &mi1_mdio_ext_ops,
.desc = "Chelsio T210 1x10GBaseX TOE",
},
{
.board = CHBT_BOARD_CHT210,
.port_number = 1,
.caps = SUPPORTED_10000baseT_Full,
.chip_term = CHBT_TERM_T2,
.chip_mac = CHBT_MAC_PM3393,
.chip_phy = CHBT_PHY_MY3126,
.clock_core = 125000000,
.clock_mc3 = 133000000,
.clock_mc4 = 125000000,
.espi_nports = 1,
.clock_elmer0 = 44,
.mdio_mdien = 1,
.mdio_mdiinv = 1,
.mdio_mdc = 1,
.mdio_phybaseaddr = 1,
.gmac = &t1_pm3393_ops,
.gphy = &t1_my3126_ops,
.mdio_ops = &mi1_mdio_ext_ops,
.desc = "Chelsio T210 1x10GBase-CX4 TOE",
},
#ifdef CONFIG_CHELSIO_T1_1G
{
.board = CHBT_BOARD_CHN204,
.port_number = 4,
.caps = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg |
SUPPORTED_PAUSE | SUPPORTED_TP,
.chip_term = CHBT_TERM_T2,
.chip_mac = CHBT_MAC_VSC7321,
.chip_phy = CHBT_PHY_88E1111,
.clock_core = 100000000,
.espi_nports = 4,
.clock_elmer0 = 44,
.mdio_mdien = 0,
.mdio_mdiinv = 0,
.mdio_mdc = 0,
.mdio_phybaseaddr = 4,
.gmac = &t1_vsc7326_ops,
.gphy = &t1_mv88e1xxx_ops,
.mdio_ops = &mi1_mdio_ops,
.desc = "Chelsio N204 4x100/1000BaseT NIC",
},
#endif
};
DEFINE_PCI_DEVICE_TABLE(t1_pci_tbl) = {
CH_DEVICE(8, 0, CH_BRD_T110_1CU),
CH_DEVICE(8, 1, CH_BRD_T110_1CU),
CH_DEVICE(7, 0, CH_BRD_N110_1F),
CH_DEVICE(10, 1, CH_BRD_N210_1F),
CH_DEVICE(11, 1, CH_BRD_T210_1F),
CH_DEVICE(14, 1, CH_BRD_T210_1CU),
CH_DEVICE(16, 1, CH_BRD_N204_4CU),
{ 0 }
};
MODULE_DEVICE_TABLE(pci, t1_pci_tbl);
/*
* Return the board_info structure with a given index. Out-of-range indices
* return NULL.
*/
const struct board_info *t1_get_board_info(unsigned int board_id)
{
return board_id < ARRAY_SIZE(t1_board) ? &t1_board[board_id] : NULL;
}
struct chelsio_vpd_t {
u32 format_version;
u8 serial_number[16];
u8 mac_base_address[6];
u8 pad[2]; /* make multiple-of-4 size requirement explicit */
};
#define EEPROMSIZE (8 * 1024)
#define EEPROM_MAX_POLL 4
/*
* Read SEEPROM. A zero is written to the flag register when the address is
* written to the Control register. The hardware device will set the flag to a
* one when 4B have been transferred to the Data register.
*/
int t1_seeprom_read(adapter_t *adapter, u32 addr, __le32 *data)
{
int i = EEPROM_MAX_POLL;
u16 val;
u32 v;
if (addr >= EEPROMSIZE || (addr & 3))
return -EINVAL;
pci_write_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, (u16)addr);
do {
udelay(50);
pci_read_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, &val);
} while (!(val & F_VPD_OP_FLAG) && --i);
if (!(val & F_VPD_OP_FLAG)) {
pr_err("%s: reading EEPROM address 0x%x failed\n",
adapter->name, addr);
return -EIO;
}
pci_read_config_dword(adapter->pdev, A_PCICFG_VPD_DATA, &v);
*data = cpu_to_le32(v);
return 0;
}
static int t1_eeprom_vpd_get(adapter_t *adapter, struct chelsio_vpd_t *vpd)
{
int addr, ret = 0;
for (addr = 0; !ret && addr < sizeof(*vpd); addr += sizeof(u32))
ret = t1_seeprom_read(adapter, addr,
(__le32 *)((u8 *)vpd + addr));
return ret;
}
/*
* Read a port's MAC address from the VPD ROM.
*/
static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[])
{
struct chelsio_vpd_t vpd;
if (t1_eeprom_vpd_get(adapter, &vpd))
return 1;
memcpy(mac_addr, vpd.mac_base_address, 5);
mac_addr[5] = vpd.mac_base_address[5] + index;
return 0;
}
/*
* Set up the MAC/PHY according to the requested link settings.
*
* If the PHY can auto-negotiate first decide what to advertise, then
* enable/disable auto-negotiation as desired and reset.
*
* If the PHY does not auto-negotiate we just reset it.
*
* If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
* otherwise do it later based on the outcome of auto-negotiation.
*/
int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
{
unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
if (lc->supported & SUPPORTED_Autoneg) {
lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE);
if (fc) {
if (fc == ((PAUSE_RX | PAUSE_TX) &
(mac->adapter->params.nports < 2)))
lc->advertising |= ADVERTISED_PAUSE;
else {
lc->advertising |= ADVERTISED_ASYM_PAUSE;
if (fc == PAUSE_RX)
lc->advertising |= ADVERTISED_PAUSE;
}
}
phy->ops->advertise(phy, lc->advertising);
if (lc->autoneg == AUTONEG_DISABLE) {
lc->speed = lc->requested_speed;
lc->duplex = lc->requested_duplex;
lc->fc = (unsigned char)fc;
mac->ops->set_speed_duplex_fc(mac, lc->speed,
lc->duplex, fc);
/* Also disables autoneg */
phy->state = PHY_AUTONEG_RDY;
phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
phy->ops->reset(phy, 0);
} else {
phy->state = PHY_AUTONEG_EN;
phy->ops->autoneg_enable(phy); /* also resets PHY */
}
} else {
phy->state = PHY_AUTONEG_RDY;
mac->ops->set_speed_duplex_fc(mac, -1, -1, fc);
lc->fc = (unsigned char)fc;
phy->ops->reset(phy, 0);
}
return 0;
}
/*
* External interrupt handler for boards using elmer0.
*/
int t1_elmer0_ext_intr_handler(adapter_t *adapter)
{
struct cphy *phy;
int phy_cause;
u32 cause;
t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause);
switch (board_info(adapter)->board) {
#ifdef CONFIG_CHELSIO_T1_1G
case CHBT_BOARD_CHT204:
case CHBT_BOARD_CHT204E:
case CHBT_BOARD_CHN204:
case CHBT_BOARD_CHT204V: {
int i, port_bit;
for_each_port(adapter, i) {
port_bit = i + 1;
if (!(cause & (1 << port_bit)))
continue;
phy = adapter->port[i].phy;
phy_cause = phy->ops->interrupt_handler(phy);
if (phy_cause & cphy_cause_link_change)
t1_link_changed(adapter, i);
}
break;
}
case CHBT_BOARD_CHT101:
if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */
phy = adapter->port[0].phy;
phy_cause = phy->ops->interrupt_handler(phy);
if (phy_cause & cphy_cause_link_change)
t1_link_changed(adapter, 0);
}
break;
case CHBT_BOARD_7500: {
int p;
/*
* Elmer0's interrupt cause isn't useful here because there is
* only one bit that can be set for all 4 ports. This means
* we are forced to check every PHY's interrupt status
* register to see who initiated the interrupt.
*/
for_each_port(adapter, p) {
phy = adapter->port[p].phy;
phy_cause = phy->ops->interrupt_handler(phy);
if (phy_cause & cphy_cause_link_change)
t1_link_changed(adapter, p);
}
break;
}
#endif
case CHBT_BOARD_CHT210:
case CHBT_BOARD_N210:
case CHBT_BOARD_N110:
if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */
phy = adapter->port[0].phy;
phy_cause = phy->ops->interrupt_handler(phy);
if (phy_cause & cphy_cause_link_change)
t1_link_changed(adapter, 0);
}
break;
case CHBT_BOARD_8000:
case CHBT_BOARD_CHT110:
if (netif_msg_intr(adapter))
dev_dbg(&adapter->pdev->dev,
"External interrupt cause 0x%x\n", cause);
if (cause & ELMER0_GP_BIT1) { /* PMC3393 INTB */
struct cmac *mac = adapter->port[0].mac;
mac->ops->interrupt_handler(mac);
}
if (cause & ELMER0_GP_BIT5) { /* XPAK MOD_DETECT */
u32 mod_detect;
t1_tpi_read(adapter,
A_ELMER0_GPI_STAT, &mod_detect);
if (netif_msg_link(adapter))
dev_info(&adapter->pdev->dev, "XPAK %s\n",
mod_detect ? "removed" : "inserted");
}
break;
}
t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause);
return 0;
}
/* Enables all interrupts. */
void t1_interrupts_enable(adapter_t *adapter)
{
unsigned int i;
adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP;
t1_sge_intr_enable(adapter->sge);
t1_tp_intr_enable(adapter->tp);
if (adapter->espi) {
adapter->slow_intr_mask |= F_PL_INTR_ESPI;
t1_espi_intr_enable(adapter->espi);
}
/* Enable MAC/PHY interrupts for each port. */
for_each_port(adapter, i) {
adapter->port[i].mac->ops->interrupt_enable(adapter->port[i].mac);
adapter->port[i].phy->ops->interrupt_enable(adapter->port[i].phy);
}
/* Enable PCIX & external chip interrupts on ASIC boards. */
if (t1_is_asic(adapter)) {
u32 pl_intr = readl(adapter->regs + A_PL_ENABLE);
/* PCI-X interrupts */
pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE,
0xffffffff);
adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
writel(pl_intr, adapter->regs + A_PL_ENABLE);
}
}
/* Disables all interrupts. */
void t1_interrupts_disable(adapter_t* adapter)
{
unsigned int i;
t1_sge_intr_disable(adapter->sge);
t1_tp_intr_disable(adapter->tp);
if (adapter->espi)
t1_espi_intr_disable(adapter->espi);
/* Disable MAC/PHY interrupts for each port. */
for_each_port(adapter, i) {
adapter->port[i].mac->ops->interrupt_disable(adapter->port[i].mac);
adapter->port[i].phy->ops->interrupt_disable(adapter->port[i].phy);
}
/* Disable PCIX & external chip interrupts. */
if (t1_is_asic(adapter))
writel(0, adapter->regs + A_PL_ENABLE);
/* PCI-X interrupts */
pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0);
adapter->slow_intr_mask = 0;
}
/* Clears all interrupts */
void t1_interrupts_clear(adapter_t* adapter)
{
unsigned int i;
t1_sge_intr_clear(adapter->sge);
t1_tp_intr_clear(adapter->tp);
if (adapter->espi)
t1_espi_intr_clear(adapter->espi);
/* Clear MAC/PHY interrupts for each port. */
for_each_port(adapter, i) {
adapter->port[i].mac->ops->interrupt_clear(adapter->port[i].mac);
adapter->port[i].phy->ops->interrupt_clear(adapter->port[i].phy);
}
/* Enable interrupts for external devices. */
if (t1_is_asic(adapter)) {
u32 pl_intr = readl(adapter->regs + A_PL_CAUSE);
writel(pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX,
adapter->regs + A_PL_CAUSE);
}
/* PCI-X interrupts */
pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 0xffffffff);
}
/*
* Slow path interrupt handler for ASICs.
*/
static int asic_slow_intr(adapter_t *adapter)
{
u32 cause = readl(adapter->regs + A_PL_CAUSE);
cause &= adapter->slow_intr_mask;
if (!cause)
return 0;
if (cause & F_PL_INTR_SGE_ERR)
t1_sge_intr_error_handler(adapter->sge);
if (cause & F_PL_INTR_TP)
t1_tp_intr_handler(adapter->tp);
if (cause & F_PL_INTR_ESPI)
t1_espi_intr_handler(adapter->espi);
if (cause & F_PL_INTR_PCIX)
t1_pci_intr_handler(adapter);
if (cause & F_PL_INTR_EXT)
t1_elmer0_ext_intr(adapter);
/* Clear the interrupts just processed. */
writel(cause, adapter->regs + A_PL_CAUSE);
readl(adapter->regs + A_PL_CAUSE); /* flush writes */
return 1;
}
int t1_slow_intr_handler(adapter_t *adapter)
{
#ifdef CONFIG_CHELSIO_T1_1G
if (!t1_is_asic(adapter))
return fpga_slow_intr(adapter);
#endif
return asic_slow_intr(adapter);
}
/* Power sequencing is a work-around for Intel's XPAKs. */
static void power_sequence_xpak(adapter_t* adapter)
{
u32 mod_detect;
u32 gpo;
/* Check for XPAK */
t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect);
if (!(ELMER0_GP_BIT5 & mod_detect)) {
/* XPAK is present */
t1_tpi_read(adapter, A_ELMER0_GPO, &gpo);
gpo |= ELMER0_GP_BIT18;
t1_tpi_write(adapter, A_ELMER0_GPO, gpo);
}
}
int t1_get_board_rev(adapter_t *adapter, const struct board_info *bi,
struct adapter_params *p)
{
p->chip_version = bi->chip_term;
p->is_asic = (p->chip_version != CHBT_TERM_FPGA);
if (p->chip_version == CHBT_TERM_T1 ||
p->chip_version == CHBT_TERM_T2 ||
p->chip_version == CHBT_TERM_FPGA) {
u32 val = readl(adapter->regs + A_TP_PC_CONFIG);
val = G_TP_PC_REV(val);
if (val == 2)
p->chip_revision = TERM_T1B;
else if (val == 3)
p->chip_revision = TERM_T2;
else
return -1;
} else
return -1;
return 0;
}
/*
* Enable board components other than the Chelsio chip, such as external MAC
* and PHY.
*/
static int board_init(adapter_t *adapter, const struct board_info *bi)
{
switch (bi->board) {
case CHBT_BOARD_8000:
case CHBT_BOARD_N110:
case CHBT_BOARD_N210:
case CHBT_BOARD_CHT210:
t1_tpi_par(adapter, 0xf);
t1_tpi_write(adapter, A_ELMER0_GPO, 0x800);
break;
case CHBT_BOARD_CHT110:
t1_tpi_par(adapter, 0xf);
t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800);
/* TBD XXX Might not need. This fixes a problem
* described in the Intel SR XPAK errata.
*/
power_sequence_xpak(adapter);
break;
#ifdef CONFIG_CHELSIO_T1_1G
case CHBT_BOARD_CHT204E:
/* add config space write here */
case CHBT_BOARD_CHT204:
case CHBT_BOARD_CHT204V:
case CHBT_BOARD_CHN204:
t1_tpi_par(adapter, 0xf);
t1_tpi_write(adapter, A_ELMER0_GPO, 0x804);
break;
case CHBT_BOARD_CHT101:
case CHBT_BOARD_7500:
t1_tpi_par(adapter, 0xf);
t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804);
break;
#endif
}
return 0;
}
/*
* Initialize and configure the Terminator HW modules. Note that external
* MAC and PHYs are initialized separately.
*/
int t1_init_hw_modules(adapter_t *adapter)
{
int err = -EIO;
const struct board_info *bi = board_info(adapter);
if (!bi->clock_mc4) {
u32 val = readl(adapter->regs + A_MC4_CFG);
writel(val | F_READY | F_MC4_SLOW, adapter->regs + A_MC4_CFG);
writel(F_M_BUS_ENABLE | F_TCAM_RESET,
adapter->regs + A_MC5_CONFIG);
}
if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac,
bi->espi_nports))
goto out_err;
if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core))
goto out_err;
err = t1_sge_configure(adapter->sge, &adapter->params.sge);
if (err)
goto out_err;
err = 0;
out_err:
return err;
}
/*
* Determine a card's PCI mode.
*/
static void get_pci_mode(adapter_t *adapter, struct chelsio_pci_params *p)
{
static const unsigned short speed_map[] = { 33, 66, 100, 133 };
u32 pci_mode;
pci_read_config_dword(adapter->pdev, A_PCICFG_MODE, &pci_mode);
p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)];
p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32;
p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0;
}
/*
* Release the structures holding the SW per-Terminator-HW-module state.
*/
void t1_free_sw_modules(adapter_t *adapter)
{
unsigned int i;
for_each_port(adapter, i) {
struct cmac *mac = adapter->port[i].mac;
struct cphy *phy = adapter->port[i].phy;
if (mac)
mac->ops->destroy(mac);
if (phy)
phy->ops->destroy(phy);
}
if (adapter->sge)
t1_sge_destroy(adapter->sge);
if (adapter->tp)
t1_tp_destroy(adapter->tp);
if (adapter->espi)
t1_espi_destroy(adapter->espi);
}
static void init_link_config(struct link_config *lc,
const struct board_info *bi)
{
lc->supported = bi->caps;
lc->requested_speed = lc->speed = SPEED_INVALID;
lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
if (lc->supported & SUPPORTED_Autoneg) {
lc->advertising = lc->supported;
lc->autoneg = AUTONEG_ENABLE;
lc->requested_fc |= PAUSE_AUTONEG;
} else {
lc->advertising = 0;
lc->autoneg = AUTONEG_DISABLE;
}
}
/*
* Allocate and initialize the data structures that hold the SW state of
* the Terminator HW modules.
*/
int t1_init_sw_modules(adapter_t *adapter, const struct board_info *bi)
{
unsigned int i;
adapter->params.brd_info = bi;
adapter->params.nports = bi->port_number;
adapter->params.stats_update_period = bi->gmac->stats_update_period;
adapter->sge = t1_sge_create(adapter, &adapter->params.sge);
if (!adapter->sge) {
pr_err("%s: SGE initialization failed\n",
adapter->name);
goto error;
}
if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) {
pr_err("%s: ESPI initialization failed\n",
adapter->name);
goto error;
}
adapter->tp = t1_tp_create(adapter, &adapter->params.tp);
if (!adapter->tp) {
pr_err("%s: TP initialization failed\n",
adapter->name);
goto error;
}
board_init(adapter, bi);
bi->mdio_ops->init(adapter, bi);
if (bi->gphy->reset)
bi->gphy->reset(adapter);
if (bi->gmac->reset)
bi->gmac->reset(adapter);
for_each_port(adapter, i) {
u8 hw_addr[6];
struct cmac *mac;
int phy_addr = bi->mdio_phybaseaddr + i;
adapter->port[i].phy = bi->gphy->create(adapter->port[i].dev,
phy_addr, bi->mdio_ops);
if (!adapter->port[i].phy) {
pr_err("%s: PHY %d initialization failed\n",
adapter->name, i);
goto error;
}
adapter->port[i].mac = mac = bi->gmac->create(adapter, i);
if (!mac) {
pr_err("%s: MAC %d initialization failed\n",
adapter->name, i);
goto error;
}
/*
* Get the port's MAC addresses either from the EEPROM if one
* exists or the one hardcoded in the MAC.
*/
if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY)
mac->ops->macaddress_get(mac, hw_addr);
else if (vpd_macaddress_get(adapter, i, hw_addr)) {
pr_err("%s: could not read MAC address from VPD ROM\n",
adapter->port[i].dev->name);
goto error;
}
memcpy(adapter->port[i].dev->dev_addr, hw_addr, ETH_ALEN);
init_link_config(&adapter->port[i].link_config, bi);
}
get_pci_mode(adapter, &adapter->params.pci);
t1_interrupts_clear(adapter);
return 0;
error:
t1_free_sw_modules(adapter);
return -1;
}