linux/arch/parisc/kernel/setup.c
Linus Torvalds af7ddd8a62 DMA mapping updates for Linux 4.21
A huge update this time, but a lot of that is just consolidating or
 removing code:
 
  - provide a common DMA_MAPPING_ERROR definition and avoid indirect
    calls for dma_map_* error checking
  - use direct calls for the DMA direct mapping case, avoiding huge
    retpoline overhead for high performance workloads
  - merge the swiotlb dma_map_ops into dma-direct
  - provide a generic remapping DMA consistent allocator for architectures
    that have devices that perform DMA that is not cache coherent. Based
    on the existing arm64 implementation and also used for csky now.
  - improve the dma-debug infrastructure, including dynamic allocation
    of entries (Robin Murphy)
  - default to providing chaining scatterlist everywhere, with opt-outs
    for the few architectures (alpha, parisc, most arm32 variants) that
    can't cope with it
  - misc sparc32 dma-related cleanups
  - remove the dma_mark_clean arch hook used by swiotlb on ia64 and
    replace it with the generic noncoherent infrastructure
  - fix the return type of dma_set_max_seg_size (Niklas Söderlund)
  - move the dummy dma ops for not DMA capable devices from arm64 to
    common code (Robin Murphy)
  - ensure dma_alloc_coherent returns zeroed memory to avoid kernel data
    leaks through userspace.  We already did this for most common
    architectures, but this ensures we do it everywhere.
    dma_zalloc_coherent has been deprecated and can hopefully be
    removed after -rc1 with a coccinelle script.
 -----BEGIN PGP SIGNATURE-----
 
 iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlwctQgLHGhjaEBsc3Qu
 ZGUACgkQD55TZVIEUYMxgQ//dBpAfS4/J76CdAbYry2zqgcOUU9hIrD6NHiEMWov
 ltJxyvEl3LsUmIdEj3aCrYL9jZN0qsnCzn5BVj2c3jDIVgD64fAr7HDf/PbEEfKb
 j6/GgEnVLPZV+sQMvhNA5jOzHrkseaqPa4/pNLFZ/l8jnuZ2d+btusDWJpMoVDer
 TXVwtIfgeIu0gTygYOShLYXd5qptWKWsZEpbTZOO2sE6+x+ZJX7yQYUxYDTlcOIj
 JWVO2l5QNHPc5T9o2at+6L5aNUvnZOxT79sWgyZLn0Kc+FagKAVwfLqUEl0v7foG
 8k/xca5/8p3afB1DfrIrtplJqis7cVgdyGxriwuuoO8X4F0nPyWwpGmxsBhrWwwl
 xTqC4UorEJ7QwoP6Azopk/vYI2QXIUBLjuCJCuFXZj9+2BGf4IfvBY1S2cLM9qLs
 HMcxQonuXJii044KEFS96ePEuiT+igVINweIFBKWcgNCEG0UQtyL6RQ1U5297ipF
 JiWZAqD+p9X52UdKS+oKfAiZEekMXn6Xyo97+YCiNpfOo0GP5eEcwhL+JpY4AiRq
 apPXtsRy2o1s8yfjdraUIM2Mc2n62vFKb35oUbGCd/QO9piPrFQHl6T0HHcHk4YR
 XrUXcHieFZBCYqh7ZVa4RL8Msq1wvGuTL4Dxl43mXdsMoUFRR6eSNWLoAV4IpOLZ
 WgA=
 =in72
 -----END PGP SIGNATURE-----

Merge tag 'dma-mapping-4.21' of git://git.infradead.org/users/hch/dma-mapping

Pull DMA mapping updates from Christoph Hellwig:
 "A huge update this time, but a lot of that is just consolidating or
  removing code:

   - provide a common DMA_MAPPING_ERROR definition and avoid indirect
     calls for dma_map_* error checking

   - use direct calls for the DMA direct mapping case, avoiding huge
     retpoline overhead for high performance workloads

   - merge the swiotlb dma_map_ops into dma-direct

   - provide a generic remapping DMA consistent allocator for
     architectures that have devices that perform DMA that is not cache
     coherent. Based on the existing arm64 implementation and also used
     for csky now.

   - improve the dma-debug infrastructure, including dynamic allocation
     of entries (Robin Murphy)

   - default to providing chaining scatterlist everywhere, with opt-outs
     for the few architectures (alpha, parisc, most arm32 variants) that
     can't cope with it

   - misc sparc32 dma-related cleanups

   - remove the dma_mark_clean arch hook used by swiotlb on ia64 and
     replace it with the generic noncoherent infrastructure

   - fix the return type of dma_set_max_seg_size (Niklas Söderlund)

   - move the dummy dma ops for not DMA capable devices from arm64 to
     common code (Robin Murphy)

   - ensure dma_alloc_coherent returns zeroed memory to avoid kernel
     data leaks through userspace. We already did this for most common
     architectures, but this ensures we do it everywhere.
     dma_zalloc_coherent has been deprecated and can hopefully be
     removed after -rc1 with a coccinelle script"

* tag 'dma-mapping-4.21' of git://git.infradead.org/users/hch/dma-mapping: (73 commits)
  dma-mapping: fix inverted logic in dma_supported
  dma-mapping: deprecate dma_zalloc_coherent
  dma-mapping: zero memory returned from dma_alloc_*
  sparc/iommu: fix ->map_sg return value
  sparc/io-unit: fix ->map_sg return value
  arm64: default to the direct mapping in get_arch_dma_ops
  PCI: Remove unused attr variable in pci_dma_configure
  ia64: only select ARCH_HAS_DMA_COHERENT_TO_PFN if swiotlb is enabled
  dma-mapping: bypass indirect calls for dma-direct
  vmd: use the proper dma_* APIs instead of direct methods calls
  dma-direct: merge swiotlb_dma_ops into the dma_direct code
  dma-direct: use dma_direct_map_page to implement dma_direct_map_sg
  dma-direct: improve addressability error reporting
  swiotlb: remove dma_mark_clean
  swiotlb: remove SWIOTLB_MAP_ERROR
  ACPI / scan: Refactor _CCA enforcement
  dma-mapping: factor out dummy DMA ops
  dma-mapping: always build the direct mapping code
  dma-mapping: move dma_cache_sync out of line
  dma-mapping: move various slow path functions out of line
  ...
2018-12-28 14:12:21 -08:00

422 lines
10 KiB
C

/*
* Initial setup-routines for HP 9000 based hardware.
*
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
* Modifications for PA-RISC (C) 1999 Helge Deller <deller@gmx.de>
* Modifications copyright 1999 SuSE GmbH (Philipp Rumpf)
* Modifications copyright 2000 Martin K. Petersen <mkp@mkp.net>
* Modifications copyright 2000 Philipp Rumpf <prumpf@tux.org>
* Modifications copyright 2001 Ryan Bradetich <rbradetich@uswest.net>
*
* Initial PA-RISC Version: 04-23-1999 by Helge Deller
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <linux/kernel.h>
#include <linux/initrd.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/seq_file.h>
#define PCI_DEBUG
#include <linux/pci.h>
#undef PCI_DEBUG
#include <linux/proc_fs.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/start_kernel.h>
#include <asm/processor.h>
#include <asm/sections.h>
#include <asm/pdc.h>
#include <asm/led.h>
#include <asm/machdep.h> /* for pa7300lc_init() proto */
#include <asm/pdc_chassis.h>
#include <asm/io.h>
#include <asm/setup.h>
#include <asm/unwind.h>
#include <asm/smp.h>
static char __initdata command_line[COMMAND_LINE_SIZE];
/* Intended for ccio/sba/cpu statistics under /proc/bus/{runway|gsc} */
struct proc_dir_entry * proc_runway_root __read_mostly = NULL;
struct proc_dir_entry * proc_gsc_root __read_mostly = NULL;
struct proc_dir_entry * proc_mckinley_root __read_mostly = NULL;
void __init setup_cmdline(char **cmdline_p)
{
extern unsigned int boot_args[];
/* Collect stuff passed in from the boot loader */
/* boot_args[0] is free-mem start, boot_args[1] is ptr to command line */
if (boot_args[0] < 64) {
/* called from hpux boot loader */
boot_command_line[0] = '\0';
} else {
strlcpy(boot_command_line, (char *)__va(boot_args[1]),
COMMAND_LINE_SIZE);
#ifdef CONFIG_BLK_DEV_INITRD
if (boot_args[2] != 0) /* did palo pass us a ramdisk? */
{
initrd_start = (unsigned long)__va(boot_args[2]);
initrd_end = (unsigned long)__va(boot_args[3]);
}
#endif
}
strcpy(command_line, boot_command_line);
*cmdline_p = command_line;
}
#ifdef CONFIG_PA11
void __init dma_ops_init(void)
{
switch (boot_cpu_data.cpu_type) {
case pcx:
/*
* We've got way too many dependencies on 1.1 semantics
* to support 1.0 boxes at this point.
*/
panic( "PA-RISC Linux currently only supports machines that conform to\n"
"the PA-RISC 1.1 or 2.0 architecture specification.\n");
case pcxl2:
pa7300lc_init();
break;
default:
break;
}
}
#endif
extern void collect_boot_cpu_data(void);
void __init setup_arch(char **cmdline_p)
{
#ifdef CONFIG_64BIT
extern int parisc_narrow_firmware;
#endif
unwind_init();
init_per_cpu(smp_processor_id()); /* Set Modes & Enable FP */
#ifdef CONFIG_64BIT
printk(KERN_INFO "The 64-bit Kernel has started...\n");
#else
printk(KERN_INFO "The 32-bit Kernel has started...\n");
#endif
printk(KERN_INFO "Kernel default page size is %d KB. Huge pages ",
(int)(PAGE_SIZE / 1024));
#ifdef CONFIG_HUGETLB_PAGE
printk(KERN_CONT "enabled with %d MB physical and %d MB virtual size",
1 << (REAL_HPAGE_SHIFT - 20), 1 << (HPAGE_SHIFT - 20));
#else
printk(KERN_CONT "disabled");
#endif
printk(KERN_CONT ".\n");
/*
* Check if initial kernel page mappings are sufficient.
* panic early if not, else we may access kernel functions
* and variables which can't be reached.
*/
if (__pa((unsigned long) &_end) >= KERNEL_INITIAL_SIZE)
panic("KERNEL_INITIAL_ORDER too small!");
pdc_console_init();
#ifdef CONFIG_64BIT
if(parisc_narrow_firmware) {
printk(KERN_INFO "Kernel is using PDC in 32-bit mode.\n");
}
#endif
setup_pdc();
setup_cmdline(cmdline_p);
collect_boot_cpu_data();
do_memory_inventory(); /* probe for physical memory */
parisc_cache_init();
paging_init();
#ifdef CONFIG_CHASSIS_LCD_LED
/* initialize the LCD/LED after boot_cpu_data is available ! */
led_init(); /* LCD/LED initialization */
#endif
#ifdef CONFIG_PA11
dma_ops_init();
#endif
#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con; /* we use do_take_over_console() later ! */
#endif
clear_sched_clock_stable();
}
/*
* Display CPU info for all CPUs.
* for parisc this is in processor.c
*/
extern int show_cpuinfo (struct seq_file *m, void *v);
static void *
c_start (struct seq_file *m, loff_t *pos)
{
/* Looks like the caller will call repeatedly until we return
* 0, signaling EOF perhaps. This could be used to sequence
* through CPUs for example. Since we print all cpu info in our
* show_cpuinfo() disregarding 'pos' (which I assume is 'v' above)
* we only allow for one "position". */
return ((long)*pos < 1) ? (void *)1 : NULL;
}
static void *
c_next (struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void
c_stop (struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo
};
static void __init parisc_proc_mkdir(void)
{
/*
** Can't call proc_mkdir() until after proc_root_init() has been
** called by start_kernel(). In other words, this code can't
** live in arch/.../setup.c because start_parisc() calls
** start_kernel().
*/
switch (boot_cpu_data.cpu_type) {
case pcxl:
case pcxl2:
if (NULL == proc_gsc_root)
{
proc_gsc_root = proc_mkdir("bus/gsc", NULL);
}
break;
case pcxt_:
case pcxu:
case pcxu_:
case pcxw:
case pcxw_:
case pcxw2:
if (NULL == proc_runway_root)
{
proc_runway_root = proc_mkdir("bus/runway", NULL);
}
break;
case mako:
case mako2:
if (NULL == proc_mckinley_root)
{
proc_mckinley_root = proc_mkdir("bus/mckinley", NULL);
}
break;
default:
/* FIXME: this was added to prevent the compiler
* complaining about missing pcx, pcxs and pcxt
* I'm assuming they have neither gsc nor runway */
break;
}
}
static struct resource central_bus = {
.name = "Central Bus",
.start = F_EXTEND(0xfff80000),
.end = F_EXTEND(0xfffaffff),
.flags = IORESOURCE_MEM,
};
static struct resource local_broadcast = {
.name = "Local Broadcast",
.start = F_EXTEND(0xfffb0000),
.end = F_EXTEND(0xfffdffff),
.flags = IORESOURCE_MEM,
};
static struct resource global_broadcast = {
.name = "Global Broadcast",
.start = F_EXTEND(0xfffe0000),
.end = F_EXTEND(0xffffffff),
.flags = IORESOURCE_MEM,
};
static int __init parisc_init_resources(void)
{
int result;
result = request_resource(&iomem_resource, &central_bus);
if (result < 0) {
printk(KERN_ERR
"%s: failed to claim %s address space!\n",
__FILE__, central_bus.name);
return result;
}
result = request_resource(&iomem_resource, &local_broadcast);
if (result < 0) {
printk(KERN_ERR
"%s: failed to claim %saddress space!\n",
__FILE__, local_broadcast.name);
return result;
}
result = request_resource(&iomem_resource, &global_broadcast);
if (result < 0) {
printk(KERN_ERR
"%s: failed to claim %s address space!\n",
__FILE__, global_broadcast.name);
return result;
}
return 0;
}
extern void gsc_init(void);
extern void processor_init(void);
extern void ccio_init(void);
extern void hppb_init(void);
extern void dino_init(void);
extern void iosapic_init(void);
extern void lba_init(void);
extern void sba_init(void);
extern void eisa_init(void);
static int __init parisc_init(void)
{
u32 osid = (OS_ID_LINUX << 16);
parisc_proc_mkdir();
parisc_init_resources();
do_device_inventory(); /* probe for hardware */
parisc_pdc_chassis_init();
/* set up a new led state on systems shipped LED State panel */
pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BSTART);
/* tell PDC we're Linux. Nevermind failure. */
pdc_stable_write(0x40, &osid, sizeof(osid));
/* start with known state */
flush_cache_all_local();
flush_tlb_all_local(NULL);
processor_init();
#ifdef CONFIG_SMP
pr_info("CPU(s): %d out of %d %s at %d.%06d MHz online\n",
num_online_cpus(), num_present_cpus(),
#else
pr_info("CPU(s): 1 x %s at %d.%06d MHz\n",
#endif
boot_cpu_data.cpu_name,
boot_cpu_data.cpu_hz / 1000000,
boot_cpu_data.cpu_hz % 1000000 );
apply_alternatives_all();
parisc_setup_cache_timing();
/* These are in a non-obvious order, will fix when we have an iotree */
#if defined(CONFIG_IOSAPIC)
iosapic_init();
#endif
#if defined(CONFIG_IOMMU_SBA)
sba_init();
#endif
#if defined(CONFIG_PCI_LBA)
lba_init();
#endif
/* CCIO before any potential subdevices */
#if defined(CONFIG_IOMMU_CCIO)
ccio_init();
#endif
/*
* Need to register Asp & Wax before the EISA adapters for the IRQ
* regions. EISA must come before PCI to be sure it gets IRQ region
* 0.
*/
#if defined(CONFIG_GSC_LASI) || defined(CONFIG_GSC_WAX)
gsc_init();
#endif
#ifdef CONFIG_EISA
eisa_init();
#endif
#if defined(CONFIG_HPPB)
hppb_init();
#endif
#if defined(CONFIG_GSC_DINO)
dino_init();
#endif
#ifdef CONFIG_CHASSIS_LCD_LED
register_led_regions(); /* register LED port info in procfs */
#endif
return 0;
}
arch_initcall(parisc_init);
void __init start_parisc(void)
{
extern void early_trap_init(void);
int ret, cpunum;
struct pdc_coproc_cfg coproc_cfg;
cpunum = smp_processor_id();
init_cpu_topology();
set_firmware_width_unlocked();
ret = pdc_coproc_cfg_unlocked(&coproc_cfg);
if (ret >= 0 && coproc_cfg.ccr_functional) {
mtctl(coproc_cfg.ccr_functional, 10);
per_cpu(cpu_data, cpunum).fp_rev = coproc_cfg.revision;
per_cpu(cpu_data, cpunum).fp_model = coproc_cfg.model;
asm volatile ("fstd %fr0,8(%sp)");
} else {
panic("must have an fpu to boot linux");
}
early_trap_init(); /* initialize checksum of fault_vector */
start_kernel();
// not reached
}