linux/drivers/net/ethernet/sfc/farch.c
Ben Hutchings f72848021d sfc: Allow filter removal only with exactly matching priority
Currently a higher priority client can remove a lower priority
client's filter with equal match-expression.  This might happen if (a)
the higher priority client has a double-free bug, or (b) another
client with sufficient priority replaced and then removed an equal
filter, allowing the low priority client to insert an equal filter.

In neither case does it actually make sense to carry out the removal;
we should say the filter doesn't exist, as the filter currently
present is not the one that the high-priority client is referring to.

Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2013-12-12 22:07:24 +00:00

2936 lines
86 KiB
C

/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2013 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/crc32.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
#include "farch_regs.h"
#include "io.h"
#include "workarounds.h"
/* Falcon-architecture (SFC4000 and SFC9000-family) support */
/**************************************************************************
*
* Configurable values
*
**************************************************************************
*/
/* This is set to 16 for a good reason. In summary, if larger than
* 16, the descriptor cache holds more than a default socket
* buffer's worth of packets (for UDP we can only have at most one
* socket buffer's worth outstanding). This combined with the fact
* that we only get 1 TX event per descriptor cache means the NIC
* goes idle.
*/
#define TX_DC_ENTRIES 16
#define TX_DC_ENTRIES_ORDER 1
#define RX_DC_ENTRIES 64
#define RX_DC_ENTRIES_ORDER 3
/* If EFX_MAX_INT_ERRORS internal errors occur within
* EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
* disable it.
*/
#define EFX_INT_ERROR_EXPIRE 3600
#define EFX_MAX_INT_ERRORS 5
/* Depth of RX flush request fifo */
#define EFX_RX_FLUSH_COUNT 4
/* Driver generated events */
#define _EFX_CHANNEL_MAGIC_TEST 0x000101
#define _EFX_CHANNEL_MAGIC_FILL 0x000102
#define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
#define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
#define EFX_CHANNEL_MAGIC_TEST(_channel) \
_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
efx_rx_queue_index(_rx_queue))
#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
efx_rx_queue_index(_rx_queue))
#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
(_tx_queue)->queue)
static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
/**************************************************************************
*
* Hardware access
*
**************************************************************************/
static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
unsigned int index)
{
efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
value, index);
}
static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
const efx_oword_t *mask)
{
return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}
int efx_farch_test_registers(struct efx_nic *efx,
const struct efx_farch_register_test *regs,
size_t n_regs)
{
unsigned address = 0, i, j;
efx_oword_t mask, imask, original, reg, buf;
for (i = 0; i < n_regs; ++i) {
address = regs[i].address;
mask = imask = regs[i].mask;
EFX_INVERT_OWORD(imask);
efx_reado(efx, &original, address);
/* bit sweep on and off */
for (j = 0; j < 128; j++) {
if (!EFX_EXTRACT_OWORD32(mask, j, j))
continue;
/* Test this testable bit can be set in isolation */
EFX_AND_OWORD(reg, original, mask);
EFX_SET_OWORD32(reg, j, j, 1);
efx_writeo(efx, &reg, address);
efx_reado(efx, &buf, address);
if (efx_masked_compare_oword(&reg, &buf, &mask))
goto fail;
/* Test this testable bit can be cleared in isolation */
EFX_OR_OWORD(reg, original, mask);
EFX_SET_OWORD32(reg, j, j, 0);
efx_writeo(efx, &reg, address);
efx_reado(efx, &buf, address);
if (efx_masked_compare_oword(&reg, &buf, &mask))
goto fail;
}
efx_writeo(efx, &original, address);
}
return 0;
fail:
netif_err(efx, hw, efx->net_dev,
"wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
return -EIO;
}
/**************************************************************************
*
* Special buffer handling
* Special buffers are used for event queues and the TX and RX
* descriptor rings.
*
*************************************************************************/
/*
* Initialise a special buffer
*
* This will define a buffer (previously allocated via
* efx_alloc_special_buffer()) in the buffer table, allowing
* it to be used for event queues, descriptor rings etc.
*/
static void
efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
efx_qword_t buf_desc;
unsigned int index;
dma_addr_t dma_addr;
int i;
EFX_BUG_ON_PARANOID(!buffer->buf.addr);
/* Write buffer descriptors to NIC */
for (i = 0; i < buffer->entries; i++) {
index = buffer->index + i;
dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
netif_dbg(efx, probe, efx->net_dev,
"mapping special buffer %d at %llx\n",
index, (unsigned long long)dma_addr);
EFX_POPULATE_QWORD_3(buf_desc,
FRF_AZ_BUF_ADR_REGION, 0,
FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
FRF_AZ_BUF_OWNER_ID_FBUF, 0);
efx_write_buf_tbl(efx, &buf_desc, index);
}
}
/* Unmaps a buffer and clears the buffer table entries */
static void
efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
efx_oword_t buf_tbl_upd;
unsigned int start = buffer->index;
unsigned int end = (buffer->index + buffer->entries - 1);
if (!buffer->entries)
return;
netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
buffer->index, buffer->index + buffer->entries - 1);
EFX_POPULATE_OWORD_4(buf_tbl_upd,
FRF_AZ_BUF_UPD_CMD, 0,
FRF_AZ_BUF_CLR_CMD, 1,
FRF_AZ_BUF_CLR_END_ID, end,
FRF_AZ_BUF_CLR_START_ID, start);
efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
}
/*
* Allocate a new special buffer
*
* This allocates memory for a new buffer, clears it and allocates a
* new buffer ID range. It does not write into the buffer table.
*
* This call will allocate 4KB buffers, since 8KB buffers can't be
* used for event queues and descriptor rings.
*/
static int efx_alloc_special_buffer(struct efx_nic *efx,
struct efx_special_buffer *buffer,
unsigned int len)
{
len = ALIGN(len, EFX_BUF_SIZE);
if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
return -ENOMEM;
buffer->entries = len / EFX_BUF_SIZE;
BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
/* Select new buffer ID */
buffer->index = efx->next_buffer_table;
efx->next_buffer_table += buffer->entries;
#ifdef CONFIG_SFC_SRIOV
BUG_ON(efx_sriov_enabled(efx) &&
efx->vf_buftbl_base < efx->next_buffer_table);
#endif
netif_dbg(efx, probe, efx->net_dev,
"allocating special buffers %d-%d at %llx+%x "
"(virt %p phys %llx)\n", buffer->index,
buffer->index + buffer->entries - 1,
(u64)buffer->buf.dma_addr, len,
buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
return 0;
}
static void
efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
if (!buffer->buf.addr)
return;
netif_dbg(efx, hw, efx->net_dev,
"deallocating special buffers %d-%d at %llx+%x "
"(virt %p phys %llx)\n", buffer->index,
buffer->index + buffer->entries - 1,
(u64)buffer->buf.dma_addr, buffer->buf.len,
buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
efx_nic_free_buffer(efx, &buffer->buf);
buffer->entries = 0;
}
/**************************************************************************
*
* TX path
*
**************************************************************************/
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
unsigned write_ptr;
efx_dword_t reg;
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
efx_writed_page(tx_queue->efx, &reg,
FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
}
/* Write pointer and first descriptor for TX descriptor ring */
static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
const efx_qword_t *txd)
{
unsigned write_ptr;
efx_oword_t reg;
BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
FRF_AZ_TX_DESC_WPTR, write_ptr);
reg.qword[0] = *txd;
efx_writeo_page(tx_queue->efx, &reg,
FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
}
/* For each entry inserted into the software descriptor ring, create a
* descriptor in the hardware TX descriptor ring (in host memory), and
* write a doorbell.
*/
void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
efx_qword_t *txd;
unsigned write_ptr;
unsigned old_write_count = tx_queue->write_count;
BUG_ON(tx_queue->write_count == tx_queue->insert_count);
do {
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
buffer = &tx_queue->buffer[write_ptr];
txd = efx_tx_desc(tx_queue, write_ptr);
++tx_queue->write_count;
EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
/* Create TX descriptor ring entry */
BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
EFX_POPULATE_QWORD_4(*txd,
FSF_AZ_TX_KER_CONT,
buffer->flags & EFX_TX_BUF_CONT,
FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
FSF_AZ_TX_KER_BUF_REGION, 0,
FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
} while (tx_queue->write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */
if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
txd = efx_tx_desc(tx_queue,
old_write_count & tx_queue->ptr_mask);
efx_farch_push_tx_desc(tx_queue, txd);
++tx_queue->pushes;
} else {
efx_farch_notify_tx_desc(tx_queue);
}
}
/* Allocate hardware resources for a TX queue */
int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
unsigned entries;
entries = tx_queue->ptr_mask + 1;
return efx_alloc_special_buffer(efx, &tx_queue->txd,
entries * sizeof(efx_qword_t));
}
void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t reg;
/* Pin TX descriptor ring */
efx_init_special_buffer(efx, &tx_queue->txd);
/* Push TX descriptor ring to card */
EFX_POPULATE_OWORD_10(reg,
FRF_AZ_TX_DESCQ_EN, 1,
FRF_AZ_TX_ISCSI_DDIG_EN, 0,
FRF_AZ_TX_ISCSI_HDIG_EN, 0,
FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
FRF_AZ_TX_DESCQ_EVQ_ID,
tx_queue->channel->channel,
FRF_AZ_TX_DESCQ_OWNER_ID, 0,
FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
FRF_AZ_TX_DESCQ_SIZE,
__ffs(tx_queue->txd.entries),
FRF_AZ_TX_DESCQ_TYPE, 0,
FRF_BZ_TX_NON_IP_DROP_DIS, 1);
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
!csum);
}
efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
tx_queue->queue);
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
/* Only 128 bits in this register */
BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
__clear_bit_le(tx_queue->queue, &reg);
else
__set_bit_le(tx_queue->queue, &reg);
efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
}
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
EFX_POPULATE_OWORD_1(reg,
FRF_BZ_TX_PACE,
(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
FFE_BZ_TX_PACE_OFF :
FFE_BZ_TX_PACE_RESERVED);
efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
tx_queue->queue);
}
}
static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t tx_flush_descq;
WARN_ON(atomic_read(&tx_queue->flush_outstanding));
atomic_set(&tx_queue->flush_outstanding, 1);
EFX_POPULATE_OWORD_2(tx_flush_descq,
FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
}
void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t tx_desc_ptr;
/* Remove TX descriptor ring from card */
EFX_ZERO_OWORD(tx_desc_ptr);
efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
tx_queue->queue);
/* Unpin TX descriptor ring */
efx_fini_special_buffer(efx, &tx_queue->txd);
}
/* Free buffers backing TX queue */
void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
{
efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}
/**************************************************************************
*
* RX path
*
**************************************************************************/
/* This creates an entry in the RX descriptor queue */
static inline void
efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
{
struct efx_rx_buffer *rx_buf;
efx_qword_t *rxd;
rxd = efx_rx_desc(rx_queue, index);
rx_buf = efx_rx_buffer(rx_queue, index);
EFX_POPULATE_QWORD_3(*rxd,
FSF_AZ_RX_KER_BUF_SIZE,
rx_buf->len -
rx_queue->efx->type->rx_buffer_padding,
FSF_AZ_RX_KER_BUF_REGION, 0,
FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}
/* This writes to the RX_DESC_WPTR register for the specified receive
* descriptor ring.
*/
void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
efx_dword_t reg;
unsigned write_ptr;
while (rx_queue->notified_count != rx_queue->added_count) {
efx_farch_build_rx_desc(
rx_queue,
rx_queue->notified_count & rx_queue->ptr_mask);
++rx_queue->notified_count;
}
wmb();
write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
efx_rx_queue_index(rx_queue));
}
int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned entries;
entries = rx_queue->ptr_mask + 1;
return efx_alloc_special_buffer(efx, &rx_queue->rxd,
entries * sizeof(efx_qword_t));
}
void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
{
efx_oword_t rx_desc_ptr;
struct efx_nic *efx = rx_queue->efx;
bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
bool iscsi_digest_en = is_b0;
bool jumbo_en;
/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
* DMA to continue after a PCIe page boundary (and scattering
* is not possible). In Falcon B0 and Siena, it enables
* scatter.
*/
jumbo_en = !is_b0 || efx->rx_scatter;
netif_dbg(efx, hw, efx->net_dev,
"RX queue %d ring in special buffers %d-%d\n",
efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
rx_queue->rxd.index + rx_queue->rxd.entries - 1);
rx_queue->scatter_n = 0;
/* Pin RX descriptor ring */
efx_init_special_buffer(efx, &rx_queue->rxd);
/* Push RX descriptor ring to card */
EFX_POPULATE_OWORD_10(rx_desc_ptr,
FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
FRF_AZ_RX_DESCQ_EVQ_ID,
efx_rx_queue_channel(rx_queue)->channel,
FRF_AZ_RX_DESCQ_OWNER_ID, 0,
FRF_AZ_RX_DESCQ_LABEL,
efx_rx_queue_index(rx_queue),
FRF_AZ_RX_DESCQ_SIZE,
__ffs(rx_queue->rxd.entries),
FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
FRF_AZ_RX_DESCQ_EN, 1);
efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
efx_rx_queue_index(rx_queue));
}
static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
efx_oword_t rx_flush_descq;
EFX_POPULATE_OWORD_2(rx_flush_descq,
FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
FRF_AZ_RX_FLUSH_DESCQ,
efx_rx_queue_index(rx_queue));
efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
}
void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
{
efx_oword_t rx_desc_ptr;
struct efx_nic *efx = rx_queue->efx;
/* Remove RX descriptor ring from card */
EFX_ZERO_OWORD(rx_desc_ptr);
efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
efx_rx_queue_index(rx_queue));
/* Unpin RX descriptor ring */
efx_fini_special_buffer(efx, &rx_queue->rxd);
}
/* Free buffers backing RX queue */
void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
{
efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}
/**************************************************************************
*
* Flush handling
*
**************************************************************************/
/* efx_farch_flush_queues() must be woken up when all flushes are completed,
* or more RX flushes can be kicked off.
*/
static bool efx_farch_flush_wake(struct efx_nic *efx)
{
/* Ensure that all updates are visible to efx_farch_flush_queues() */
smp_mb();
return (atomic_read(&efx->active_queues) == 0 ||
(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
&& atomic_read(&efx->rxq_flush_pending) > 0));
}
static bool efx_check_tx_flush_complete(struct efx_nic *efx)
{
bool i = true;
efx_oword_t txd_ptr_tbl;
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
efx_for_each_channel(channel, efx) {
efx_for_each_channel_tx_queue(tx_queue, channel) {
efx_reado_table(efx, &txd_ptr_tbl,
FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
if (EFX_OWORD_FIELD(txd_ptr_tbl,
FRF_AZ_TX_DESCQ_FLUSH) ||
EFX_OWORD_FIELD(txd_ptr_tbl,
FRF_AZ_TX_DESCQ_EN)) {
netif_dbg(efx, hw, efx->net_dev,
"flush did not complete on TXQ %d\n",
tx_queue->queue);
i = false;
} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
1, 0)) {
/* The flush is complete, but we didn't
* receive a flush completion event
*/
netif_dbg(efx, hw, efx->net_dev,
"flush complete on TXQ %d, so drain "
"the queue\n", tx_queue->queue);
/* Don't need to increment active_queues as it
* has already been incremented for the queues
* which did not drain
*/
efx_farch_magic_event(channel,
EFX_CHANNEL_MAGIC_TX_DRAIN(
tx_queue));
}
}
}
return i;
}
/* Flush all the transmit queues, and continue flushing receive queues until
* they're all flushed. Wait for the DRAIN events to be recieved so that there
* are no more RX and TX events left on any channel. */
static int efx_farch_do_flush(struct efx_nic *efx)
{
unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
struct efx_channel *channel;
struct efx_rx_queue *rx_queue;
struct efx_tx_queue *tx_queue;
int rc = 0;
efx_for_each_channel(channel, efx) {
efx_for_each_channel_tx_queue(tx_queue, channel) {
efx_farch_flush_tx_queue(tx_queue);
}
efx_for_each_channel_rx_queue(rx_queue, channel) {
rx_queue->flush_pending = true;
atomic_inc(&efx->rxq_flush_pending);
}
}
while (timeout && atomic_read(&efx->active_queues) > 0) {
/* If SRIOV is enabled, then offload receive queue flushing to
* the firmware (though we will still have to poll for
* completion). If that fails, fall back to the old scheme.
*/
if (efx_sriov_enabled(efx)) {
rc = efx_mcdi_flush_rxqs(efx);
if (!rc)
goto wait;
}
/* The hardware supports four concurrent rx flushes, each of
* which may need to be retried if there is an outstanding
* descriptor fetch
*/
efx_for_each_channel(channel, efx) {
efx_for_each_channel_rx_queue(rx_queue, channel) {
if (atomic_read(&efx->rxq_flush_outstanding) >=
EFX_RX_FLUSH_COUNT)
break;
if (rx_queue->flush_pending) {
rx_queue->flush_pending = false;
atomic_dec(&efx->rxq_flush_pending);
atomic_inc(&efx->rxq_flush_outstanding);
efx_farch_flush_rx_queue(rx_queue);
}
}
}
wait:
timeout = wait_event_timeout(efx->flush_wq,
efx_farch_flush_wake(efx),
timeout);
}
if (atomic_read(&efx->active_queues) &&
!efx_check_tx_flush_complete(efx)) {
netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
"(rx %d+%d)\n", atomic_read(&efx->active_queues),
atomic_read(&efx->rxq_flush_outstanding),
atomic_read(&efx->rxq_flush_pending));
rc = -ETIMEDOUT;
atomic_set(&efx->active_queues, 0);
atomic_set(&efx->rxq_flush_pending, 0);
atomic_set(&efx->rxq_flush_outstanding, 0);
}
return rc;
}
int efx_farch_fini_dmaq(struct efx_nic *efx)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int rc = 0;
/* Do not attempt to write to the NIC during EEH recovery */
if (efx->state != STATE_RECOVERY) {
/* Only perform flush if DMA is enabled */
if (efx->pci_dev->is_busmaster) {
efx->type->prepare_flush(efx);
rc = efx_farch_do_flush(efx);
efx->type->finish_flush(efx);
}
efx_for_each_channel(channel, efx) {
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_farch_rx_fini(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_farch_tx_fini(tx_queue);
}
}
return rc;
}
/**************************************************************************
*
* Event queue processing
* Event queues are processed by per-channel tasklets.
*
**************************************************************************/
/* Update a channel's event queue's read pointer (RPTR) register
*
* This writes the EVQ_RPTR_REG register for the specified channel's
* event queue.
*/
void efx_farch_ev_read_ack(struct efx_channel *channel)
{
efx_dword_t reg;
struct efx_nic *efx = channel->efx;
EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
channel->eventq_read_ptr & channel->eventq_mask);
/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
* of 4 bytes, but it is really 16 bytes just like later revisions.
*/
efx_writed(efx, &reg,
efx->type->evq_rptr_tbl_base +
FR_BZ_EVQ_RPTR_STEP * channel->channel);
}
/* Use HW to insert a SW defined event */
void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
efx_qword_t *event)
{
efx_oword_t drv_ev_reg;
BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
FRF_AZ_DRV_EV_DATA_WIDTH != 64);
drv_ev_reg.u32[0] = event->u32[0];
drv_ev_reg.u32[1] = event->u32[1];
drv_ev_reg.u32[2] = 0;
drv_ev_reg.u32[3] = 0;
EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
}
static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
{
efx_qword_t event;
EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
FSE_AZ_EV_CODE_DRV_GEN_EV,
FSF_AZ_DRV_GEN_EV_MAGIC, magic);
efx_farch_generate_event(channel->efx, channel->channel, &event);
}
/* Handle a transmit completion event
*
* The NIC batches TX completion events; the message we receive is of
* the form "complete all TX events up to this index".
*/
static int
efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
unsigned int tx_ev_desc_ptr;
unsigned int tx_ev_q_label;
struct efx_tx_queue *tx_queue;
struct efx_nic *efx = channel->efx;
int tx_packets = 0;
if (unlikely(ACCESS_ONCE(efx->reset_pending)))
return 0;
if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
/* Transmit completion */
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
tx_queue = efx_channel_get_tx_queue(
channel, tx_ev_q_label % EFX_TXQ_TYPES);
tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
tx_queue->ptr_mask);
efx_xmit_done(tx_queue, tx_ev_desc_ptr);
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
/* Rewrite the FIFO write pointer */
tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
tx_queue = efx_channel_get_tx_queue(
channel, tx_ev_q_label % EFX_TXQ_TYPES);
netif_tx_lock(efx->net_dev);
efx_farch_notify_tx_desc(tx_queue);
netif_tx_unlock(efx->net_dev);
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
} else {
netif_err(efx, tx_err, efx->net_dev,
"channel %d unexpected TX event "
EFX_QWORD_FMT"\n", channel->channel,
EFX_QWORD_VAL(*event));
}
return tx_packets;
}
/* Detect errors included in the rx_evt_pkt_ok bit. */
static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
const efx_qword_t *event)
{
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
struct efx_nic *efx = rx_queue->efx;
bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
bool rx_ev_other_err, rx_ev_pause_frm;
bool rx_ev_hdr_type, rx_ev_mcast_pkt;
unsigned rx_ev_pkt_type;
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
/* Every error apart from tobe_disc and pause_frm */
rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
/* Count errors that are not in MAC stats. Ignore expected
* checksum errors during self-test. */
if (rx_ev_frm_trunc)
++channel->n_rx_frm_trunc;
else if (rx_ev_tobe_disc)
++channel->n_rx_tobe_disc;
else if (!efx->loopback_selftest) {
if (rx_ev_ip_hdr_chksum_err)
++channel->n_rx_ip_hdr_chksum_err;
else if (rx_ev_tcp_udp_chksum_err)
++channel->n_rx_tcp_udp_chksum_err;
}
/* TOBE_DISC is expected on unicast mismatches; don't print out an
* error message. FRM_TRUNC indicates RXDP dropped the packet due
* to a FIFO overflow.
*/
#ifdef DEBUG
if (rx_ev_other_err && net_ratelimit()) {
netif_dbg(efx, rx_err, efx->net_dev,
" RX queue %d unexpected RX event "
EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
rx_ev_ip_hdr_chksum_err ?
" [IP_HDR_CHKSUM_ERR]" : "",
rx_ev_tcp_udp_chksum_err ?
" [TCP_UDP_CHKSUM_ERR]" : "",
rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
rx_ev_drib_nib ? " [DRIB_NIB]" : "",
rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
rx_ev_pause_frm ? " [PAUSE]" : "");
}
#endif
/* The frame must be discarded if any of these are true. */
return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
rx_ev_tobe_disc | rx_ev_pause_frm) ?
EFX_RX_PKT_DISCARD : 0;
}
/* Handle receive events that are not in-order. Return true if this
* can be handled as a partial packet discard, false if it's more
* serious.
*/
static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
{
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
struct efx_nic *efx = rx_queue->efx;
unsigned expected, dropped;
if (rx_queue->scatter_n &&
index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
rx_queue->ptr_mask)) {
++channel->n_rx_nodesc_trunc;
return true;
}
expected = rx_queue->removed_count & rx_queue->ptr_mask;
dropped = (index - expected) & rx_queue->ptr_mask;
netif_info(efx, rx_err, efx->net_dev,
"dropped %d events (index=%d expected=%d)\n",
dropped, index, expected);
efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
return false;
}
/* Handle a packet received event
*
* The NIC gives a "discard" flag if it's a unicast packet with the
* wrong destination address
* Also "is multicast" and "matches multicast filter" flags can be used to
* discard non-matching multicast packets.
*/
static void
efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
{
unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
unsigned expected_ptr;
bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
u16 flags;
struct efx_rx_queue *rx_queue;
struct efx_nic *efx = channel->efx;
if (unlikely(ACCESS_ONCE(efx->reset_pending)))
return;
rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
channel->channel);
rx_queue = efx_channel_get_rx_queue(channel);
rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
rx_queue->ptr_mask);
/* Check for partial drops and other errors */
if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
if (rx_ev_desc_ptr != expected_ptr &&
!efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
return;
/* Discard all pending fragments */
if (rx_queue->scatter_n) {
efx_rx_packet(
rx_queue,
rx_queue->removed_count & rx_queue->ptr_mask,
rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
rx_queue->removed_count += rx_queue->scatter_n;
rx_queue->scatter_n = 0;
}
/* Return if there is no new fragment */
if (rx_ev_desc_ptr != expected_ptr)
return;
/* Discard new fragment if not SOP */
if (!rx_ev_sop) {
efx_rx_packet(
rx_queue,
rx_queue->removed_count & rx_queue->ptr_mask,
1, 0, EFX_RX_PKT_DISCARD);
++rx_queue->removed_count;
return;
}
}
++rx_queue->scatter_n;
if (rx_ev_cont)
return;
rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
if (likely(rx_ev_pkt_ok)) {
/* If packet is marked as OK then we can rely on the
* hardware checksum and classification.
*/
flags = 0;
switch (rx_ev_hdr_type) {
case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
flags |= EFX_RX_PKT_TCP;
/* fall through */
case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
flags |= EFX_RX_PKT_CSUMMED;
/* fall through */
case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
break;
}
} else {
flags = efx_farch_handle_rx_not_ok(rx_queue, event);
}
/* Detect multicast packets that didn't match the filter */
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
if (rx_ev_mcast_pkt) {
unsigned int rx_ev_mcast_hash_match =
EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
if (unlikely(!rx_ev_mcast_hash_match)) {
++channel->n_rx_mcast_mismatch;
flags |= EFX_RX_PKT_DISCARD;
}
}
channel->irq_mod_score += 2;
/* Handle received packet */
efx_rx_packet(rx_queue,
rx_queue->removed_count & rx_queue->ptr_mask,
rx_queue->scatter_n, rx_ev_byte_cnt, flags);
rx_queue->removed_count += rx_queue->scatter_n;
rx_queue->scatter_n = 0;
}
/* If this flush done event corresponds to a &struct efx_tx_queue, then
* send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
* of all transmit completions.
*/
static void
efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
struct efx_tx_queue *tx_queue;
int qid;
qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
qid % EFX_TXQ_TYPES);
if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
efx_farch_magic_event(tx_queue->channel,
EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
}
}
}
/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
* was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
* the RX queue back to the mask of RX queues in need of flushing.
*/
static void
efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
struct efx_channel *channel;
struct efx_rx_queue *rx_queue;
int qid;
bool failed;
qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
if (qid >= efx->n_channels)
return;
channel = efx_get_channel(efx, qid);
if (!efx_channel_has_rx_queue(channel))
return;
rx_queue = efx_channel_get_rx_queue(channel);
if (failed) {
netif_info(efx, hw, efx->net_dev,
"RXQ %d flush retry\n", qid);
rx_queue->flush_pending = true;
atomic_inc(&efx->rxq_flush_pending);
} else {
efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
}
atomic_dec(&efx->rxq_flush_outstanding);
if (efx_farch_flush_wake(efx))
wake_up(&efx->flush_wq);
}
static void
efx_farch_handle_drain_event(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
WARN_ON(atomic_read(&efx->active_queues) == 0);
atomic_dec(&efx->active_queues);
if (efx_farch_flush_wake(efx))
wake_up(&efx->flush_wq);
}
static void efx_farch_handle_generated_event(struct efx_channel *channel,
efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
struct efx_rx_queue *rx_queue =
efx_channel_has_rx_queue(channel) ?
efx_channel_get_rx_queue(channel) : NULL;
unsigned magic, code;
magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
code = _EFX_CHANNEL_MAGIC_CODE(magic);
if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
channel->event_test_cpu = raw_smp_processor_id();
} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
/* The queue must be empty, so we won't receive any rx
* events, so efx_process_channel() won't refill the
* queue. Refill it here */
efx_fast_push_rx_descriptors(rx_queue, true);
} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
efx_farch_handle_drain_event(channel);
} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
efx_farch_handle_drain_event(channel);
} else {
netif_dbg(efx, hw, efx->net_dev, "channel %d received "
"generated event "EFX_QWORD_FMT"\n",
channel->channel, EFX_QWORD_VAL(*event));
}
}
static void
efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
unsigned int ev_sub_code;
unsigned int ev_sub_data;
ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
switch (ev_sub_code) {
case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
channel->channel, ev_sub_data);
efx_farch_handle_tx_flush_done(efx, event);
efx_sriov_tx_flush_done(efx, event);
break;
case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
channel->channel, ev_sub_data);
efx_farch_handle_rx_flush_done(efx, event);
efx_sriov_rx_flush_done(efx, event);
break;
case FSE_AZ_EVQ_INIT_DONE_EV:
netif_dbg(efx, hw, efx->net_dev,
"channel %d EVQ %d initialised\n",
channel->channel, ev_sub_data);
break;
case FSE_AZ_SRM_UPD_DONE_EV:
netif_vdbg(efx, hw, efx->net_dev,
"channel %d SRAM update done\n", channel->channel);
break;
case FSE_AZ_WAKE_UP_EV:
netif_vdbg(efx, hw, efx->net_dev,
"channel %d RXQ %d wakeup event\n",
channel->channel, ev_sub_data);
break;
case FSE_AZ_TIMER_EV:
netif_vdbg(efx, hw, efx->net_dev,
"channel %d RX queue %d timer expired\n",
channel->channel, ev_sub_data);
break;
case FSE_AA_RX_RECOVER_EV:
netif_err(efx, rx_err, efx->net_dev,
"channel %d seen DRIVER RX_RESET event. "
"Resetting.\n", channel->channel);
atomic_inc(&efx->rx_reset);
efx_schedule_reset(efx,
EFX_WORKAROUND_6555(efx) ?
RESET_TYPE_RX_RECOVERY :
RESET_TYPE_DISABLE);
break;
case FSE_BZ_RX_DSC_ERROR_EV:
if (ev_sub_data < EFX_VI_BASE) {
netif_err(efx, rx_err, efx->net_dev,
"RX DMA Q %d reports descriptor fetch error."
" RX Q %d is disabled.\n", ev_sub_data,
ev_sub_data);
efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
} else
efx_sriov_desc_fetch_err(efx, ev_sub_data);
break;
case FSE_BZ_TX_DSC_ERROR_EV:
if (ev_sub_data < EFX_VI_BASE) {
netif_err(efx, tx_err, efx->net_dev,
"TX DMA Q %d reports descriptor fetch error."
" TX Q %d is disabled.\n", ev_sub_data,
ev_sub_data);
efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
} else
efx_sriov_desc_fetch_err(efx, ev_sub_data);
break;
default:
netif_vdbg(efx, hw, efx->net_dev,
"channel %d unknown driver event code %d "
"data %04x\n", channel->channel, ev_sub_code,
ev_sub_data);
break;
}
}
int efx_farch_ev_process(struct efx_channel *channel, int budget)
{
struct efx_nic *efx = channel->efx;
unsigned int read_ptr;
efx_qword_t event, *p_event;
int ev_code;
int tx_packets = 0;
int spent = 0;
read_ptr = channel->eventq_read_ptr;
for (;;) {
p_event = efx_event(channel, read_ptr);
event = *p_event;
if (!efx_event_present(&event))
/* End of events */
break;
netif_vdbg(channel->efx, intr, channel->efx->net_dev,
"channel %d event is "EFX_QWORD_FMT"\n",
channel->channel, EFX_QWORD_VAL(event));
/* Clear this event by marking it all ones */
EFX_SET_QWORD(*p_event);
++read_ptr;
ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
switch (ev_code) {
case FSE_AZ_EV_CODE_RX_EV:
efx_farch_handle_rx_event(channel, &event);
if (++spent == budget)
goto out;
break;
case FSE_AZ_EV_CODE_TX_EV:
tx_packets += efx_farch_handle_tx_event(channel,
&event);
if (tx_packets > efx->txq_entries) {
spent = budget;
goto out;
}
break;
case FSE_AZ_EV_CODE_DRV_GEN_EV:
efx_farch_handle_generated_event(channel, &event);
break;
case FSE_AZ_EV_CODE_DRIVER_EV:
efx_farch_handle_driver_event(channel, &event);
break;
case FSE_CZ_EV_CODE_USER_EV:
efx_sriov_event(channel, &event);
break;
case FSE_CZ_EV_CODE_MCDI_EV:
efx_mcdi_process_event(channel, &event);
break;
case FSE_AZ_EV_CODE_GLOBAL_EV:
if (efx->type->handle_global_event &&
efx->type->handle_global_event(channel, &event))
break;
/* else fall through */
default:
netif_err(channel->efx, hw, channel->efx->net_dev,
"channel %d unknown event type %d (data "
EFX_QWORD_FMT ")\n", channel->channel,
ev_code, EFX_QWORD_VAL(event));
}
}
out:
channel->eventq_read_ptr = read_ptr;
return spent;
}
/* Allocate buffer table entries for event queue */
int efx_farch_ev_probe(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
unsigned entries;
entries = channel->eventq_mask + 1;
return efx_alloc_special_buffer(efx, &channel->eventq,
entries * sizeof(efx_qword_t));
}
int efx_farch_ev_init(struct efx_channel *channel)
{
efx_oword_t reg;
struct efx_nic *efx = channel->efx;
netif_dbg(efx, hw, efx->net_dev,
"channel %d event queue in special buffers %d-%d\n",
channel->channel, channel->eventq.index,
channel->eventq.index + channel->eventq.entries - 1);
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
EFX_POPULATE_OWORD_3(reg,
FRF_CZ_TIMER_Q_EN, 1,
FRF_CZ_HOST_NOTIFY_MODE, 0,
FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
}
/* Pin event queue buffer */
efx_init_special_buffer(efx, &channel->eventq);
/* Fill event queue with all ones (i.e. empty events) */
memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
/* Push event queue to card */
EFX_POPULATE_OWORD_3(reg,
FRF_AZ_EVQ_EN, 1,
FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
channel->channel);
return 0;
}
void efx_farch_ev_fini(struct efx_channel *channel)
{
efx_oword_t reg;
struct efx_nic *efx = channel->efx;
/* Remove event queue from card */
EFX_ZERO_OWORD(reg);
efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
channel->channel);
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
/* Unpin event queue */
efx_fini_special_buffer(efx, &channel->eventq);
}
/* Free buffers backing event queue */
void efx_farch_ev_remove(struct efx_channel *channel)
{
efx_free_special_buffer(channel->efx, &channel->eventq);
}
void efx_farch_ev_test_generate(struct efx_channel *channel)
{
efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
}
void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
{
efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
EFX_CHANNEL_MAGIC_FILL(rx_queue));
}
/**************************************************************************
*
* Hardware interrupts
* The hardware interrupt handler does very little work; all the event
* queue processing is carried out by per-channel tasklets.
*
**************************************************************************/
/* Enable/disable/generate interrupts */
static inline void efx_farch_interrupts(struct efx_nic *efx,
bool enabled, bool force)
{
efx_oword_t int_en_reg_ker;
EFX_POPULATE_OWORD_3(int_en_reg_ker,
FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
FRF_AZ_KER_INT_KER, force,
FRF_AZ_DRV_INT_EN_KER, enabled);
efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
}
void efx_farch_irq_enable_master(struct efx_nic *efx)
{
EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
efx_farch_interrupts(efx, true, false);
}
void efx_farch_irq_disable_master(struct efx_nic *efx)
{
/* Disable interrupts */
efx_farch_interrupts(efx, false, false);
}
/* Generate a test interrupt
* Interrupt must already have been enabled, otherwise nasty things
* may happen.
*/
void efx_farch_irq_test_generate(struct efx_nic *efx)
{
efx_farch_interrupts(efx, true, true);
}
/* Process a fatal interrupt
* Disable bus mastering ASAP and schedule a reset
*/
irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
efx_oword_t *int_ker = efx->irq_status.addr;
efx_oword_t fatal_intr;
int error, mem_perr;
efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
EFX_OWORD_VAL(fatal_intr),
error ? "disabling bus mastering" : "no recognised error");
/* If this is a memory parity error dump which blocks are offending */
mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
if (mem_perr) {
efx_oword_t reg;
efx_reado(efx, &reg, FR_AZ_MEM_STAT);
netif_err(efx, hw, efx->net_dev,
"SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
EFX_OWORD_VAL(reg));
}
/* Disable both devices */
pci_clear_master(efx->pci_dev);
if (efx_nic_is_dual_func(efx))
pci_clear_master(nic_data->pci_dev2);
efx_farch_irq_disable_master(efx);
/* Count errors and reset or disable the NIC accordingly */
if (efx->int_error_count == 0 ||
time_after(jiffies, efx->int_error_expire)) {
efx->int_error_count = 0;
efx->int_error_expire =
jiffies + EFX_INT_ERROR_EXPIRE * HZ;
}
if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
netif_err(efx, hw, efx->net_dev,
"SYSTEM ERROR - reset scheduled\n");
efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
} else {
netif_err(efx, hw, efx->net_dev,
"SYSTEM ERROR - max number of errors seen."
"NIC will be disabled\n");
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}
return IRQ_HANDLED;
}
/* Handle a legacy interrupt
* Acknowledges the interrupt and schedule event queue processing.
*/
irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
{
struct efx_nic *efx = dev_id;
bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
efx_oword_t *int_ker = efx->irq_status.addr;
irqreturn_t result = IRQ_NONE;
struct efx_channel *channel;
efx_dword_t reg;
u32 queues;
int syserr;
/* Read the ISR which also ACKs the interrupts */
efx_readd(efx, &reg, FR_BZ_INT_ISR0);
queues = EFX_EXTRACT_DWORD(reg, 0, 31);
/* Legacy interrupts are disabled too late by the EEH kernel
* code. Disable them earlier.
* If an EEH error occurred, the read will have returned all ones.
*/
if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
!efx->eeh_disabled_legacy_irq) {
disable_irq_nosync(efx->legacy_irq);
efx->eeh_disabled_legacy_irq = true;
}
/* Handle non-event-queue sources */
if (queues & (1U << efx->irq_level) && soft_enabled) {
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
return efx_farch_fatal_interrupt(efx);
efx->last_irq_cpu = raw_smp_processor_id();
}
if (queues != 0) {
efx->irq_zero_count = 0;
/* Schedule processing of any interrupting queues */
if (likely(soft_enabled)) {
efx_for_each_channel(channel, efx) {
if (queues & 1)
efx_schedule_channel_irq(channel);
queues >>= 1;
}
}
result = IRQ_HANDLED;
} else {
efx_qword_t *event;
/* Legacy ISR read can return zero once (SF bug 15783) */
/* We can't return IRQ_HANDLED more than once on seeing ISR=0
* because this might be a shared interrupt. */
if (efx->irq_zero_count++ == 0)
result = IRQ_HANDLED;
/* Ensure we schedule or rearm all event queues */
if (likely(soft_enabled)) {
efx_for_each_channel(channel, efx) {
event = efx_event(channel,
channel->eventq_read_ptr);
if (efx_event_present(event))
efx_schedule_channel_irq(channel);
else
efx_farch_ev_read_ack(channel);
}
}
}
if (result == IRQ_HANDLED)
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
return result;
}
/* Handle an MSI interrupt
*
* Handle an MSI hardware interrupt. This routine schedules event
* queue processing. No interrupt acknowledgement cycle is necessary.
* Also, we never need to check that the interrupt is for us, since
* MSI interrupts cannot be shared.
*/
irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
{
struct efx_msi_context *context = dev_id;
struct efx_nic *efx = context->efx;
efx_oword_t *int_ker = efx->irq_status.addr;
int syserr;
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
return IRQ_HANDLED;
/* Handle non-event-queue sources */
if (context->index == efx->irq_level) {
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
return efx_farch_fatal_interrupt(efx);
efx->last_irq_cpu = raw_smp_processor_id();
}
/* Schedule processing of the channel */
efx_schedule_channel_irq(efx->channel[context->index]);
return IRQ_HANDLED;
}
/* Setup RSS indirection table.
* This maps from the hash value of the packet to RXQ
*/
void efx_farch_rx_push_indir_table(struct efx_nic *efx)
{
size_t i = 0;
efx_dword_t dword;
BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
FR_BZ_RX_INDIRECTION_TBL_ROWS);
for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
efx->rx_indir_table[i]);
efx_writed(efx, &dword,
FR_BZ_RX_INDIRECTION_TBL +
FR_BZ_RX_INDIRECTION_TBL_STEP * i);
}
}
/* Looks at available SRAM resources and works out how many queues we
* can support, and where things like descriptor caches should live.
*
* SRAM is split up as follows:
* 0 buftbl entries for channels
* efx->vf_buftbl_base buftbl entries for SR-IOV
* efx->rx_dc_base RX descriptor caches
* efx->tx_dc_base TX descriptor caches
*/
void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
{
unsigned vi_count, buftbl_min;
/* Account for the buffer table entries backing the datapath channels
* and the descriptor caches for those channels.
*/
buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
efx->n_channels * EFX_MAX_EVQ_SIZE)
* sizeof(efx_qword_t) / EFX_BUF_SIZE);
vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
#ifdef CONFIG_SFC_SRIOV
if (efx_sriov_wanted(efx)) {
unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
efx->vf_buftbl_base = buftbl_min;
vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
vi_count = max(vi_count, EFX_VI_BASE);
buftbl_free = (sram_lim_qw - buftbl_min -
vi_count * vi_dc_entries);
entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
efx_vf_size(efx));
vf_limit = min(buftbl_free / entries_per_vf,
(1024U - EFX_VI_BASE) >> efx->vi_scale);
if (efx->vf_count > vf_limit) {
netif_err(efx, probe, efx->net_dev,
"Reducing VF count from from %d to %d\n",
efx->vf_count, vf_limit);
efx->vf_count = vf_limit;
}
vi_count += efx->vf_count * efx_vf_size(efx);
}
#endif
efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
}
u32 efx_farch_fpga_ver(struct efx_nic *efx)
{
efx_oword_t altera_build;
efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
}
void efx_farch_init_common(struct efx_nic *efx)
{
efx_oword_t temp;
/* Set positions of descriptor caches in SRAM. */
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
/* Set TX descriptor cache size. */
BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
/* Set RX descriptor cache size. Set low watermark to size-8, as
* this allows most efficient prefetching.
*/
BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
/* Program INT_KER address */
EFX_POPULATE_OWORD_2(temp,
FRF_AZ_NORM_INT_VEC_DIS_KER,
EFX_INT_MODE_USE_MSI(efx),
FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
/* Use an interrupt level unused by event queues */
efx->irq_level = 0x1f;
else
/* Use a valid MSI-X vector */
efx->irq_level = 0;
/* Enable all the genuinely fatal interrupts. (They are still
* masked by the overall interrupt mask, controlled by
* falcon_interrupts()).
*
* Note: All other fatal interrupts are enabled
*/
EFX_POPULATE_OWORD_3(temp,
FRF_AZ_ILL_ADR_INT_KER_EN, 1,
FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
EFX_INVERT_OWORD(temp);
efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
* controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
*/
efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
/* Enable SW_EV to inherit in char driver - assume harmless here */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
/* Prefetch threshold 2 => fetch when descriptor cache half empty */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
/* Disable hardware watchdog which can misfire */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
/* Squash TX of packets of 16 bytes or less */
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
EFX_POPULATE_OWORD_4(temp,
/* Default values */
FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
FRF_BZ_TX_PACE_SB_AF, 0xb,
FRF_BZ_TX_PACE_FB_BASE, 0,
/* Allow large pace values in the
* fast bin. */
FRF_BZ_TX_PACE_BIN_TH,
FFE_BZ_TX_PACE_RESERVED);
efx_writeo(efx, &temp, FR_BZ_TX_PACE);
}
}
/**************************************************************************
*
* Filter tables
*
**************************************************************************
*/
/* "Fudge factors" - difference between programmed value and actual depth.
* Due to pipelined implementation we need to program H/W with a value that
* is larger than the hop limit we want.
*/
#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
/* Hard maximum search limit. Hardware will time-out beyond 200-something.
* We also need to avoid infinite loops in efx_farch_filter_search() when the
* table is full.
*/
#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
/* Don't try very hard to find space for performance hints, as this is
* counter-productive. */
#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
enum efx_farch_filter_type {
EFX_FARCH_FILTER_TCP_FULL = 0,
EFX_FARCH_FILTER_TCP_WILD,
EFX_FARCH_FILTER_UDP_FULL,
EFX_FARCH_FILTER_UDP_WILD,
EFX_FARCH_FILTER_MAC_FULL = 4,
EFX_FARCH_FILTER_MAC_WILD,
EFX_FARCH_FILTER_UC_DEF = 8,
EFX_FARCH_FILTER_MC_DEF,
EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
};
enum efx_farch_filter_table_id {
EFX_FARCH_FILTER_TABLE_RX_IP = 0,
EFX_FARCH_FILTER_TABLE_RX_MAC,
EFX_FARCH_FILTER_TABLE_RX_DEF,
EFX_FARCH_FILTER_TABLE_TX_MAC,
EFX_FARCH_FILTER_TABLE_COUNT,
};
enum efx_farch_filter_index {
EFX_FARCH_FILTER_INDEX_UC_DEF,
EFX_FARCH_FILTER_INDEX_MC_DEF,
EFX_FARCH_FILTER_SIZE_RX_DEF,
};
struct efx_farch_filter_spec {
u8 type:4;
u8 priority:4;
u8 flags;
u16 dmaq_id;
u32 data[3];
};
struct efx_farch_filter_table {
enum efx_farch_filter_table_id id;
u32 offset; /* address of table relative to BAR */
unsigned size; /* number of entries */
unsigned step; /* step between entries */
unsigned used; /* number currently used */
unsigned long *used_bitmap;
struct efx_farch_filter_spec *spec;
unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
};
struct efx_farch_filter_state {
struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
};
static void
efx_farch_filter_table_clear_entry(struct efx_nic *efx,
struct efx_farch_filter_table *table,
unsigned int filter_idx);
/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
* key derived from the n-tuple. The initial LFSR state is 0xffff. */
static u16 efx_farch_filter_hash(u32 key)
{
u16 tmp;
/* First 16 rounds */
tmp = 0x1fff ^ key >> 16;
tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
tmp = tmp ^ tmp >> 9;
/* Last 16 rounds */
tmp = tmp ^ tmp << 13 ^ key;
tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
return tmp ^ tmp >> 9;
}
/* To allow for hash collisions, filter search continues at these
* increments from the first possible entry selected by the hash. */
static u16 efx_farch_filter_increment(u32 key)
{
return key * 2 - 1;
}
static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
{
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
(EFX_FARCH_FILTER_TCP_FULL >> 2));
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
(EFX_FARCH_FILTER_TCP_WILD >> 2));
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
(EFX_FARCH_FILTER_UDP_FULL >> 2));
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
(EFX_FARCH_FILTER_UDP_WILD >> 2));
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
(EFX_FARCH_FILTER_MAC_FULL >> 2));
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
(EFX_FARCH_FILTER_MAC_WILD >> 2));
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
}
static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
{
struct efx_farch_filter_state *state = efx->filter_state;
struct efx_farch_filter_table *table;
efx_oword_t filter_ctl;
efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
if (table->size) {
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
}
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
if (table->size) {
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
EFX_FILTER_FLAG_RX_RSS));
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
EFX_FILTER_FLAG_RX_RSS));
/* There is a single bit to enable RX scatter for all
* unmatched packets. Only set it if scatter is
* enabled in both filter specs.
*/
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
EFX_FILTER_FLAG_RX_SCATTER));
} else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
/* We don't expose 'default' filters because unmatched
* packets always go to the queue number found in the
* RSS table. But we still need to set the RX scatter
* bit here.
*/
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
efx->rx_scatter);
}
efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
}
static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
{
struct efx_farch_filter_state *state = efx->filter_state;
struct efx_farch_filter_table *table;
efx_oword_t tx_cfg;
efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
if (table->size) {
EFX_SET_OWORD_FIELD(
tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(
tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
}
efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
}
static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
const struct efx_filter_spec *gen_spec)
{
bool is_full = false;
if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
return -EINVAL;
spec->priority = gen_spec->priority;
spec->flags = gen_spec->flags;
spec->dmaq_id = gen_spec->dmaq_id;
switch (gen_spec->match_flags) {
case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
is_full = true;
/* fall through */
case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
__be32 rhost, host1, host2;
__be16 rport, port1, port2;
EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
if (gen_spec->ether_type != htons(ETH_P_IP))
return -EPROTONOSUPPORT;
if (gen_spec->loc_port == 0 ||
(is_full && gen_spec->rem_port == 0))
return -EADDRNOTAVAIL;
switch (gen_spec->ip_proto) {
case IPPROTO_TCP:
spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
EFX_FARCH_FILTER_TCP_WILD);
break;
case IPPROTO_UDP:
spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
EFX_FARCH_FILTER_UDP_WILD);
break;
default:
return -EPROTONOSUPPORT;
}
/* Filter is constructed in terms of source and destination,
* with the odd wrinkle that the ports are swapped in a UDP
* wildcard filter. We need to convert from local and remote
* (= zero for wildcard) addresses.
*/
rhost = is_full ? gen_spec->rem_host[0] : 0;
rport = is_full ? gen_spec->rem_port : 0;
host1 = rhost;
host2 = gen_spec->loc_host[0];
if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
port1 = gen_spec->loc_port;
port2 = rport;
} else {
port1 = rport;
port2 = gen_spec->loc_port;
}
spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
spec->data[2] = ntohl(host2);
break;
}
case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
is_full = true;
/* fall through */
case EFX_FILTER_MATCH_LOC_MAC:
spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
EFX_FARCH_FILTER_MAC_WILD);
spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
spec->data[1] = (gen_spec->loc_mac[2] << 24 |
gen_spec->loc_mac[3] << 16 |
gen_spec->loc_mac[4] << 8 |
gen_spec->loc_mac[5]);
spec->data[2] = (gen_spec->loc_mac[0] << 8 |
gen_spec->loc_mac[1]);
break;
case EFX_FILTER_MATCH_LOC_MAC_IG:
spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
EFX_FARCH_FILTER_MC_DEF :
EFX_FARCH_FILTER_UC_DEF);
memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
break;
default:
return -EPROTONOSUPPORT;
}
return 0;
}
static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
const struct efx_farch_filter_spec *spec)
{
bool is_full = false;
/* *gen_spec should be completely initialised, to be consistent
* with efx_filter_init_{rx,tx}() and in case we want to copy
* it back to userland.
*/
memset(gen_spec, 0, sizeof(*gen_spec));
gen_spec->priority = spec->priority;
gen_spec->flags = spec->flags;
gen_spec->dmaq_id = spec->dmaq_id;
switch (spec->type) {
case EFX_FARCH_FILTER_TCP_FULL:
case EFX_FARCH_FILTER_UDP_FULL:
is_full = true;
/* fall through */
case EFX_FARCH_FILTER_TCP_WILD:
case EFX_FARCH_FILTER_UDP_WILD: {
__be32 host1, host2;
__be16 port1, port2;
gen_spec->match_flags =
EFX_FILTER_MATCH_ETHER_TYPE |
EFX_FILTER_MATCH_IP_PROTO |
EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
if (is_full)
gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
EFX_FILTER_MATCH_REM_PORT);
gen_spec->ether_type = htons(ETH_P_IP);
gen_spec->ip_proto =
(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
IPPROTO_TCP : IPPROTO_UDP;
host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
port1 = htons(spec->data[0]);
host2 = htonl(spec->data[2]);
port2 = htons(spec->data[1] >> 16);
if (spec->flags & EFX_FILTER_FLAG_TX) {
gen_spec->loc_host[0] = host1;
gen_spec->rem_host[0] = host2;
} else {
gen_spec->loc_host[0] = host2;
gen_spec->rem_host[0] = host1;
}
if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
(!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
gen_spec->loc_port = port1;
gen_spec->rem_port = port2;
} else {
gen_spec->loc_port = port2;
gen_spec->rem_port = port1;
}
break;
}
case EFX_FARCH_FILTER_MAC_FULL:
is_full = true;
/* fall through */
case EFX_FARCH_FILTER_MAC_WILD:
gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
if (is_full)
gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
gen_spec->loc_mac[0] = spec->data[2] >> 8;
gen_spec->loc_mac[1] = spec->data[2];
gen_spec->loc_mac[2] = spec->data[1] >> 24;
gen_spec->loc_mac[3] = spec->data[1] >> 16;
gen_spec->loc_mac[4] = spec->data[1] >> 8;
gen_spec->loc_mac[5] = spec->data[1];
gen_spec->outer_vid = htons(spec->data[0]);
break;
case EFX_FARCH_FILTER_UC_DEF:
case EFX_FARCH_FILTER_MC_DEF:
gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
break;
default:
WARN_ON(1);
break;
}
}
static void
efx_farch_filter_init_rx_auto(struct efx_nic *efx,
struct efx_farch_filter_spec *spec)
{
/* If there's only one channel then disable RSS for non VF
* traffic, thereby allowing VFs to use RSS when the PF can't.
*/
spec->priority = EFX_FILTER_PRI_AUTO;
spec->flags = (EFX_FILTER_FLAG_RX |
(efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
(efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
spec->dmaq_id = 0;
}
/* Build a filter entry and return its n-tuple key. */
static u32 efx_farch_filter_build(efx_oword_t *filter,
struct efx_farch_filter_spec *spec)
{
u32 data3;
switch (efx_farch_filter_spec_table_id(spec)) {
case EFX_FARCH_FILTER_TABLE_RX_IP: {
bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
spec->type == EFX_FARCH_FILTER_UDP_WILD);
EFX_POPULATE_OWORD_7(
*filter,
FRF_BZ_RSS_EN,
!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
FRF_BZ_SCATTER_EN,
!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
FRF_BZ_TCP_UDP, is_udp,
FRF_BZ_RXQ_ID, spec->dmaq_id,
EFX_DWORD_2, spec->data[2],
EFX_DWORD_1, spec->data[1],
EFX_DWORD_0, spec->data[0]);
data3 = is_udp;
break;
}
case EFX_FARCH_FILTER_TABLE_RX_MAC: {
bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
EFX_POPULATE_OWORD_7(
*filter,
FRF_CZ_RMFT_RSS_EN,
!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
FRF_CZ_RMFT_SCATTER_EN,
!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
data3 = is_wild;
break;
}
case EFX_FARCH_FILTER_TABLE_TX_MAC: {
bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
EFX_POPULATE_OWORD_5(*filter,
FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
data3 = is_wild | spec->dmaq_id << 1;
break;
}
default:
BUG();
}
return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
}
static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
const struct efx_farch_filter_spec *right)
{
if (left->type != right->type ||
memcmp(left->data, right->data, sizeof(left->data)))
return false;
if (left->flags & EFX_FILTER_FLAG_TX &&
left->dmaq_id != right->dmaq_id)
return false;
return true;
}
/*
* Construct/deconstruct external filter IDs. At least the RX filter
* IDs must be ordered by matching priority, for RX NFC semantics.
*
* Deconstruction needs to be robust against invalid IDs so that
* efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
* accept user-provided IDs.
*/
#define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
[EFX_FARCH_FILTER_TCP_FULL] = 0,
[EFX_FARCH_FILTER_UDP_FULL] = 0,
[EFX_FARCH_FILTER_TCP_WILD] = 1,
[EFX_FARCH_FILTER_UDP_WILD] = 1,
[EFX_FARCH_FILTER_MAC_FULL] = 2,
[EFX_FARCH_FILTER_MAC_WILD] = 3,
[EFX_FARCH_FILTER_UC_DEF] = 4,
[EFX_FARCH_FILTER_MC_DEF] = 4,
};
static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
EFX_FARCH_FILTER_TABLE_RX_IP,
EFX_FARCH_FILTER_TABLE_RX_MAC,
EFX_FARCH_FILTER_TABLE_RX_MAC,
EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
};
#define EFX_FARCH_FILTER_INDEX_WIDTH 13
#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
unsigned int index)
{
unsigned int range;
range = efx_farch_filter_type_match_pri[spec->type];
if (!(spec->flags & EFX_FILTER_FLAG_RX))
range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
}
static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)
{
unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
if (range < ARRAY_SIZE(efx_farch_filter_range_table))
return efx_farch_filter_range_table[range];
else
return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
}
static inline unsigned int efx_farch_filter_id_index(u32 id)
{
return id & EFX_FARCH_FILTER_INDEX_MASK;
}
u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
{
struct efx_farch_filter_state *state = efx->filter_state;
unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
enum efx_farch_filter_table_id table_id;
do {
table_id = efx_farch_filter_range_table[range];
if (state->table[table_id].size != 0)
return range << EFX_FARCH_FILTER_INDEX_WIDTH |
state->table[table_id].size;
} while (range--);
return 0;
}
s32 efx_farch_filter_insert(struct efx_nic *efx,
struct efx_filter_spec *gen_spec,
bool replace_equal)
{
struct efx_farch_filter_state *state = efx->filter_state;
struct efx_farch_filter_table *table;
struct efx_farch_filter_spec spec;
efx_oword_t filter;
int rep_index, ins_index;
unsigned int depth = 0;
int rc;
rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
if (rc)
return rc;
table = &state->table[efx_farch_filter_spec_table_id(&spec)];
if (table->size == 0)
return -EINVAL;
netif_vdbg(efx, hw, efx->net_dev,
"%s: type %d search_limit=%d", __func__, spec.type,
table->search_limit[spec.type]);
if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
/* One filter spec per type */
BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
ins_index = rep_index;
spin_lock_bh(&efx->filter_lock);
} else {
/* Search concurrently for
* (1) a filter to be replaced (rep_index): any filter
* with the same match values, up to the current
* search depth for this type, and
* (2) the insertion point (ins_index): (1) or any
* free slot before it or up to the maximum search
* depth for this priority
* We fail if we cannot find (2).
*
* We can stop once either
* (a) we find (1), in which case we have definitely
* found (2) as well; or
* (b) we have searched exhaustively for (1), and have
* either found (2) or searched exhaustively for it
*/
u32 key = efx_farch_filter_build(&filter, &spec);
unsigned int hash = efx_farch_filter_hash(key);
unsigned int incr = efx_farch_filter_increment(key);
unsigned int max_rep_depth = table->search_limit[spec.type];
unsigned int max_ins_depth =
spec.priority <= EFX_FILTER_PRI_HINT ?
EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
EFX_FARCH_FILTER_CTL_SRCH_MAX;
unsigned int i = hash & (table->size - 1);
ins_index = -1;
depth = 1;
spin_lock_bh(&efx->filter_lock);
for (;;) {
if (!test_bit(i, table->used_bitmap)) {
if (ins_index < 0)
ins_index = i;
} else if (efx_farch_filter_equal(&spec,
&table->spec[i])) {
/* Case (a) */
if (ins_index < 0)
ins_index = i;
rep_index = i;
break;
}
if (depth >= max_rep_depth &&
(ins_index >= 0 || depth >= max_ins_depth)) {
/* Case (b) */
if (ins_index < 0) {
rc = -EBUSY;
goto out;
}
rep_index = -1;
break;
}
i = (i + incr) & (table->size - 1);
++depth;
}
}
/* If we found a filter to be replaced, check whether we
* should do so
*/
if (rep_index >= 0) {
struct efx_farch_filter_spec *saved_spec =
&table->spec[rep_index];
if (spec.priority == saved_spec->priority && !replace_equal) {
rc = -EEXIST;
goto out;
}
if (spec.priority < saved_spec->priority) {
rc = -EPERM;
goto out;
}
if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
}
/* Insert the filter */
if (ins_index != rep_index) {
__set_bit(ins_index, table->used_bitmap);
++table->used;
}
table->spec[ins_index] = spec;
if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
efx_farch_filter_push_rx_config(efx);
} else {
if (table->search_limit[spec.type] < depth) {
table->search_limit[spec.type] = depth;
if (spec.flags & EFX_FILTER_FLAG_TX)
efx_farch_filter_push_tx_limits(efx);
else
efx_farch_filter_push_rx_config(efx);
}
efx_writeo(efx, &filter,
table->offset + table->step * ins_index);
/* If we were able to replace a filter by inserting
* at a lower depth, clear the replaced filter
*/
if (ins_index != rep_index && rep_index >= 0)
efx_farch_filter_table_clear_entry(efx, table,
rep_index);
}
netif_vdbg(efx, hw, efx->net_dev,
"%s: filter type %d index %d rxq %u set",
__func__, spec.type, ins_index, spec.dmaq_id);
rc = efx_farch_filter_make_id(&spec, ins_index);
out:
spin_unlock_bh(&efx->filter_lock);
return rc;
}
static void
efx_farch_filter_table_clear_entry(struct efx_nic *efx,
struct efx_farch_filter_table *table,
unsigned int filter_idx)
{
static efx_oword_t filter;
EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
BUG_ON(table->offset == 0); /* can't clear MAC default filters */
__clear_bit(filter_idx, table->used_bitmap);
--table->used;
memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
/* If this filter required a greater search depth than
* any other, the search limit for its type can now be
* decreased. However, it is hard to determine that
* unless the table has become completely empty - in
* which case, all its search limits can be set to 0.
*/
if (unlikely(table->used == 0)) {
memset(table->search_limit, 0, sizeof(table->search_limit));
if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
efx_farch_filter_push_tx_limits(efx);
else
efx_farch_filter_push_rx_config(efx);
}
}
static int efx_farch_filter_remove(struct efx_nic *efx,
struct efx_farch_filter_table *table,
unsigned int filter_idx,
enum efx_filter_priority priority)
{
struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
if (!test_bit(filter_idx, table->used_bitmap) ||
spec->priority != priority)
return -ENOENT;
if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
efx_farch_filter_init_rx_auto(efx, spec);
efx_farch_filter_push_rx_config(efx);
} else {
efx_farch_filter_table_clear_entry(efx, table, filter_idx);
}
return 0;
}
int efx_farch_filter_remove_safe(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
struct efx_farch_filter_table *table;
unsigned int filter_idx;
struct efx_farch_filter_spec *spec;
int rc;
table_id = efx_farch_filter_id_table_id(filter_id);
if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
return -ENOENT;
table = &state->table[table_id];
filter_idx = efx_farch_filter_id_index(filter_id);
if (filter_idx >= table->size)
return -ENOENT;
spec = &table->spec[filter_idx];
spin_lock_bh(&efx->filter_lock);
rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
spin_unlock_bh(&efx->filter_lock);
return rc;
}
int efx_farch_filter_get_safe(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id, struct efx_filter_spec *spec_buf)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
struct efx_farch_filter_table *table;
struct efx_farch_filter_spec *spec;
unsigned int filter_idx;
int rc;
table_id = efx_farch_filter_id_table_id(filter_id);
if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
return -ENOENT;
table = &state->table[table_id];
filter_idx = efx_farch_filter_id_index(filter_id);
if (filter_idx >= table->size)
return -ENOENT;
spec = &table->spec[filter_idx];
spin_lock_bh(&efx->filter_lock);
if (test_bit(filter_idx, table->used_bitmap) &&
spec->priority == priority) {
efx_farch_filter_to_gen_spec(spec_buf, spec);
rc = 0;
} else {
rc = -ENOENT;
}
spin_unlock_bh(&efx->filter_lock);
return rc;
}
static void
efx_farch_filter_table_clear(struct efx_nic *efx,
enum efx_farch_filter_table_id table_id,
enum efx_filter_priority priority)
{
struct efx_farch_filter_state *state = efx->filter_state;
struct efx_farch_filter_table *table = &state->table[table_id];
unsigned int filter_idx;
spin_lock_bh(&efx->filter_lock);
for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
efx_farch_filter_remove(efx, table,
filter_idx, priority);
}
spin_unlock_bh(&efx->filter_lock);
}
void efx_farch_filter_clear_rx(struct efx_nic *efx,
enum efx_filter_priority priority)
{
efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
priority);
efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
priority);
efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
priority);
}
u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
enum efx_filter_priority priority)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
struct efx_farch_filter_table *table;
unsigned int filter_idx;
u32 count = 0;
spin_lock_bh(&efx->filter_lock);
for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
table_id++) {
table = &state->table[table_id];
for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
if (test_bit(filter_idx, table->used_bitmap) &&
table->spec[filter_idx].priority == priority)
++count;
}
}
spin_unlock_bh(&efx->filter_lock);
return count;
}
s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 *buf, u32 size)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
struct efx_farch_filter_table *table;
unsigned int filter_idx;
s32 count = 0;
spin_lock_bh(&efx->filter_lock);
for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
table_id++) {
table = &state->table[table_id];
for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
if (test_bit(filter_idx, table->used_bitmap) &&
table->spec[filter_idx].priority == priority) {
if (count == size) {
count = -EMSGSIZE;
goto out;
}
buf[count++] = efx_farch_filter_make_id(
&table->spec[filter_idx], filter_idx);
}
}
}
out:
spin_unlock_bh(&efx->filter_lock);
return count;
}
/* Restore filter stater after reset */
void efx_farch_filter_table_restore(struct efx_nic *efx)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
struct efx_farch_filter_table *table;
efx_oword_t filter;
unsigned int filter_idx;
spin_lock_bh(&efx->filter_lock);
for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
table = &state->table[table_id];
/* Check whether this is a regular register table */
if (table->step == 0)
continue;
for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
if (!test_bit(filter_idx, table->used_bitmap))
continue;
efx_farch_filter_build(&filter, &table->spec[filter_idx]);
efx_writeo(efx, &filter,
table->offset + table->step * filter_idx);
}
}
efx_farch_filter_push_rx_config(efx);
efx_farch_filter_push_tx_limits(efx);
spin_unlock_bh(&efx->filter_lock);
}
void efx_farch_filter_table_remove(struct efx_nic *efx)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
kfree(state->table[table_id].used_bitmap);
vfree(state->table[table_id].spec);
}
kfree(state);
}
int efx_farch_filter_table_probe(struct efx_nic *efx)
{
struct efx_farch_filter_state *state;
struct efx_farch_filter_table *table;
unsigned table_id;
state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
if (!state)
return -ENOMEM;
efx->filter_state = state;
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
table->offset = FR_BZ_RX_FILTER_TBL0;
table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
table->step = FR_BZ_RX_FILTER_TBL0_STEP;
}
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
}
for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
table = &state->table[table_id];
if (table->size == 0)
continue;
table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
sizeof(unsigned long),
GFP_KERNEL);
if (!table->used_bitmap)
goto fail;
table->spec = vzalloc(table->size * sizeof(*table->spec));
if (!table->spec)
goto fail;
}
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
if (table->size) {
/* RX default filters must always exist */
struct efx_farch_filter_spec *spec;
unsigned i;
for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
spec = &table->spec[i];
spec->type = EFX_FARCH_FILTER_UC_DEF + i;
efx_farch_filter_init_rx_auto(efx, spec);
__set_bit(i, table->used_bitmap);
}
}
efx_farch_filter_push_rx_config(efx);
return 0;
fail:
efx_farch_filter_table_remove(efx);
return -ENOMEM;
}
/* Update scatter enable flags for filters pointing to our own RX queues */
void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
struct efx_farch_filter_table *table;
efx_oword_t filter;
unsigned int filter_idx;
spin_lock_bh(&efx->filter_lock);
for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
table_id++) {
table = &state->table[table_id];
for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
if (!test_bit(filter_idx, table->used_bitmap) ||
table->spec[filter_idx].dmaq_id >=
efx->n_rx_channels)
continue;
if (efx->rx_scatter)
table->spec[filter_idx].flags |=
EFX_FILTER_FLAG_RX_SCATTER;
else
table->spec[filter_idx].flags &=
~EFX_FILTER_FLAG_RX_SCATTER;
if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
/* Pushed by efx_farch_filter_push_rx_config() */
continue;
efx_farch_filter_build(&filter, &table->spec[filter_idx]);
efx_writeo(efx, &filter,
table->offset + table->step * filter_idx);
}
}
efx_farch_filter_push_rx_config(efx);
spin_unlock_bh(&efx->filter_lock);
}
#ifdef CONFIG_RFS_ACCEL
s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
struct efx_filter_spec *gen_spec)
{
return efx_farch_filter_insert(efx, gen_spec, true);
}
bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
unsigned int index)
{
struct efx_farch_filter_state *state = efx->filter_state;
struct efx_farch_filter_table *table =
&state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
if (test_bit(index, table->used_bitmap) &&
table->spec[index].priority == EFX_FILTER_PRI_HINT &&
rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
flow_id, index)) {
efx_farch_filter_table_clear_entry(efx, table, index);
return true;
}
return false;
}
#endif /* CONFIG_RFS_ACCEL */
void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
{
struct net_device *net_dev = efx->net_dev;
struct netdev_hw_addr *ha;
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
u32 crc;
int bit;
netif_addr_lock_bh(net_dev);
efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
/* Build multicast hash table */
if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
memset(mc_hash, 0xff, sizeof(*mc_hash));
} else {
memset(mc_hash, 0x00, sizeof(*mc_hash));
netdev_for_each_mc_addr(ha, net_dev) {
crc = ether_crc_le(ETH_ALEN, ha->addr);
bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
__set_bit_le(bit, mc_hash);
}
/* Broadcast packets go through the multicast hash filter.
* ether_crc_le() of the broadcast address is 0xbe2612ff
* so we always add bit 0xff to the mask.
*/
__set_bit_le(0xff, mc_hash);
}
netif_addr_unlock_bh(net_dev);
}