The RTC core now has error messages in case of registration failure, there is no need to have other messages in the drivers. Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com> Link: https://lore.kernel.org/r/20190818220041.17833-2-alexandre.belloni@bootlin.com Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
		
			
				
	
	
		
			644 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			644 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * RTC Driver for X-Powers AC100
 | |
|  *
 | |
|  * Copyright (c) 2016 Chen-Yu Tsai
 | |
|  *
 | |
|  * Chen-Yu Tsai <wens@csie.org>
 | |
|  */
 | |
| 
 | |
| #include <linux/bcd.h>
 | |
| #include <linux/clk-provider.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mfd/ac100.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/rtc.h>
 | |
| #include <linux/types.h>
 | |
| 
 | |
| /* Control register */
 | |
| #define AC100_RTC_CTRL_24HOUR	BIT(0)
 | |
| 
 | |
| /* Clock output register bits */
 | |
| #define AC100_CLKOUT_PRE_DIV_SHIFT	5
 | |
| #define AC100_CLKOUT_PRE_DIV_WIDTH	3
 | |
| #define AC100_CLKOUT_MUX_SHIFT		4
 | |
| #define AC100_CLKOUT_MUX_WIDTH		1
 | |
| #define AC100_CLKOUT_DIV_SHIFT		1
 | |
| #define AC100_CLKOUT_DIV_WIDTH		3
 | |
| #define AC100_CLKOUT_EN			BIT(0)
 | |
| 
 | |
| /* RTC */
 | |
| #define AC100_RTC_SEC_MASK	GENMASK(6, 0)
 | |
| #define AC100_RTC_MIN_MASK	GENMASK(6, 0)
 | |
| #define AC100_RTC_HOU_MASK	GENMASK(5, 0)
 | |
| #define AC100_RTC_WEE_MASK	GENMASK(2, 0)
 | |
| #define AC100_RTC_DAY_MASK	GENMASK(5, 0)
 | |
| #define AC100_RTC_MON_MASK	GENMASK(4, 0)
 | |
| #define AC100_RTC_YEA_MASK	GENMASK(7, 0)
 | |
| #define AC100_RTC_YEA_LEAP	BIT(15)
 | |
| #define AC100_RTC_UPD_TRIGGER	BIT(15)
 | |
| 
 | |
| /* Alarm (wall clock) */
 | |
| #define AC100_ALM_INT_ENABLE	BIT(0)
 | |
| 
 | |
| #define AC100_ALM_SEC_MASK	GENMASK(6, 0)
 | |
| #define AC100_ALM_MIN_MASK	GENMASK(6, 0)
 | |
| #define AC100_ALM_HOU_MASK	GENMASK(5, 0)
 | |
| #define AC100_ALM_WEE_MASK	GENMASK(2, 0)
 | |
| #define AC100_ALM_DAY_MASK	GENMASK(5, 0)
 | |
| #define AC100_ALM_MON_MASK	GENMASK(4, 0)
 | |
| #define AC100_ALM_YEA_MASK	GENMASK(7, 0)
 | |
| #define AC100_ALM_ENABLE_FLAG	BIT(15)
 | |
| #define AC100_ALM_UPD_TRIGGER	BIT(15)
 | |
| 
 | |
| /*
 | |
|  * The year parameter passed to the driver is usually an offset relative to
 | |
|  * the year 1900. This macro is used to convert this offset to another one
 | |
|  * relative to the minimum year allowed by the hardware.
 | |
|  *
 | |
|  * The year range is 1970 - 2069. This range is selected to match Allwinner's
 | |
|  * driver.
 | |
|  */
 | |
| #define AC100_YEAR_MIN				1970
 | |
| #define AC100_YEAR_MAX				2069
 | |
| #define AC100_YEAR_OFF				(AC100_YEAR_MIN - 1900)
 | |
| 
 | |
| struct ac100_clkout {
 | |
| 	struct clk_hw hw;
 | |
| 	struct regmap *regmap;
 | |
| 	u8 offset;
 | |
| };
 | |
| 
 | |
| #define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw)
 | |
| 
 | |
| #define AC100_RTC_32K_NAME	"ac100-rtc-32k"
 | |
| #define AC100_RTC_32K_RATE	32768
 | |
| #define AC100_CLKOUT_NUM	3
 | |
| 
 | |
| static const char * const ac100_clkout_names[AC100_CLKOUT_NUM] = {
 | |
| 	"ac100-cko1-rtc",
 | |
| 	"ac100-cko2-rtc",
 | |
| 	"ac100-cko3-rtc",
 | |
| };
 | |
| 
 | |
| struct ac100_rtc_dev {
 | |
| 	struct rtc_device *rtc;
 | |
| 	struct device *dev;
 | |
| 	struct regmap *regmap;
 | |
| 	int irq;
 | |
| 	unsigned long alarm;
 | |
| 
 | |
| 	struct clk_hw *rtc_32k_clk;
 | |
| 	struct ac100_clkout clks[AC100_CLKOUT_NUM];
 | |
| 	struct clk_hw_onecell_data *clk_data;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Clock controls for 3 clock output pins
 | |
|  */
 | |
| 
 | |
| static const struct clk_div_table ac100_clkout_prediv[] = {
 | |
| 	{ .val = 0, .div = 1 },
 | |
| 	{ .val = 1, .div = 2 },
 | |
| 	{ .val = 2, .div = 4 },
 | |
| 	{ .val = 3, .div = 8 },
 | |
| 	{ .val = 4, .div = 16 },
 | |
| 	{ .val = 5, .div = 32 },
 | |
| 	{ .val = 6, .div = 64 },
 | |
| 	{ .val = 7, .div = 122 },
 | |
| 	{ },
 | |
| };
 | |
| 
 | |
| /* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */
 | |
| static unsigned long ac100_clkout_recalc_rate(struct clk_hw *hw,
 | |
| 					      unsigned long prate)
 | |
| {
 | |
| 	struct ac100_clkout *clk = to_ac100_clkout(hw);
 | |
| 	unsigned int reg, div;
 | |
| 
 | |
| 	regmap_read(clk->regmap, clk->offset, ®);
 | |
| 
 | |
| 	/* Handle pre-divider first */
 | |
| 	if (prate != AC100_RTC_32K_RATE) {
 | |
| 		div = (reg >> AC100_CLKOUT_PRE_DIV_SHIFT) &
 | |
| 			((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1);
 | |
| 		prate = divider_recalc_rate(hw, prate, div,
 | |
| 					    ac100_clkout_prediv, 0,
 | |
| 					    AC100_CLKOUT_PRE_DIV_WIDTH);
 | |
| 	}
 | |
| 
 | |
| 	div = (reg >> AC100_CLKOUT_DIV_SHIFT) &
 | |
| 		(BIT(AC100_CLKOUT_DIV_WIDTH) - 1);
 | |
| 	return divider_recalc_rate(hw, prate, div, NULL,
 | |
| 				   CLK_DIVIDER_POWER_OF_TWO,
 | |
| 				   AC100_CLKOUT_DIV_WIDTH);
 | |
| }
 | |
| 
 | |
| static long ac100_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
 | |
| 				    unsigned long prate)
 | |
| {
 | |
| 	unsigned long best_rate = 0, tmp_rate, tmp_prate;
 | |
| 	int i;
 | |
| 
 | |
| 	if (prate == AC100_RTC_32K_RATE)
 | |
| 		return divider_round_rate(hw, rate, &prate, NULL,
 | |
| 					  AC100_CLKOUT_DIV_WIDTH,
 | |
| 					  CLK_DIVIDER_POWER_OF_TWO);
 | |
| 
 | |
| 	for (i = 0; ac100_clkout_prediv[i].div; i++) {
 | |
| 		tmp_prate = DIV_ROUND_UP(prate, ac100_clkout_prediv[i].val);
 | |
| 		tmp_rate = divider_round_rate(hw, rate, &tmp_prate, NULL,
 | |
| 					      AC100_CLKOUT_DIV_WIDTH,
 | |
| 					      CLK_DIVIDER_POWER_OF_TWO);
 | |
| 
 | |
| 		if (tmp_rate > rate)
 | |
| 			continue;
 | |
| 		if (rate - tmp_rate < best_rate - tmp_rate)
 | |
| 			best_rate = tmp_rate;
 | |
| 	}
 | |
| 
 | |
| 	return best_rate;
 | |
| }
 | |
| 
 | |
| static int ac100_clkout_determine_rate(struct clk_hw *hw,
 | |
| 				       struct clk_rate_request *req)
 | |
| {
 | |
| 	struct clk_hw *best_parent;
 | |
| 	unsigned long best = 0;
 | |
| 	int i, num_parents = clk_hw_get_num_parents(hw);
 | |
| 
 | |
| 	for (i = 0; i < num_parents; i++) {
 | |
| 		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i);
 | |
| 		unsigned long tmp, prate;
 | |
| 
 | |
| 		/*
 | |
| 		 * The clock has two parents, one is a fixed clock which is
 | |
| 		 * internally registered by the ac100 driver. The other parent
 | |
| 		 * is a clock from the codec side of the chip, which we
 | |
| 		 * properly declare and reference in the devicetree and is
 | |
| 		 * not implemented in any driver right now.
 | |
| 		 * If the clock core looks for the parent of that second
 | |
| 		 * missing clock, it can't find one that is registered and
 | |
| 		 * returns NULL.
 | |
| 		 * So we end up in a situation where clk_hw_get_num_parents
 | |
| 		 * returns the amount of clocks we can be parented to, but
 | |
| 		 * clk_hw_get_parent_by_index will not return the orphan
 | |
| 		 * clocks.
 | |
| 		 * Thus we need to check if the parent exists before
 | |
| 		 * we get the parent rate, so we could use the RTC
 | |
| 		 * without waiting for the codec to be supported.
 | |
| 		 */
 | |
| 		if (!parent)
 | |
| 			continue;
 | |
| 
 | |
| 		prate = clk_hw_get_rate(parent);
 | |
| 
 | |
| 		tmp = ac100_clkout_round_rate(hw, req->rate, prate);
 | |
| 
 | |
| 		if (tmp > req->rate)
 | |
| 			continue;
 | |
| 		if (req->rate - tmp < req->rate - best) {
 | |
| 			best = tmp;
 | |
| 			best_parent = parent;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!best)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	req->best_parent_hw = best_parent;
 | |
| 	req->best_parent_rate = best;
 | |
| 	req->rate = best;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ac100_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
 | |
| 				 unsigned long prate)
 | |
| {
 | |
| 	struct ac100_clkout *clk = to_ac100_clkout(hw);
 | |
| 	int div = 0, pre_div = 0;
 | |
| 
 | |
| 	do {
 | |
| 		div = divider_get_val(rate * ac100_clkout_prediv[pre_div].div,
 | |
| 				      prate, NULL, AC100_CLKOUT_DIV_WIDTH,
 | |
| 				      CLK_DIVIDER_POWER_OF_TWO);
 | |
| 		if (div >= 0)
 | |
| 			break;
 | |
| 	} while (prate != AC100_RTC_32K_RATE &&
 | |
| 		 ac100_clkout_prediv[++pre_div].div);
 | |
| 
 | |
| 	if (div < 0)
 | |
| 		return div;
 | |
| 
 | |
| 	pre_div = ac100_clkout_prediv[pre_div].val;
 | |
| 
 | |
| 	regmap_update_bits(clk->regmap, clk->offset,
 | |
| 			   ((1 << AC100_CLKOUT_DIV_WIDTH) - 1) << AC100_CLKOUT_DIV_SHIFT |
 | |
| 			   ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT,
 | |
| 			   (div - 1) << AC100_CLKOUT_DIV_SHIFT |
 | |
| 			   (pre_div - 1) << AC100_CLKOUT_PRE_DIV_SHIFT);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ac100_clkout_prepare(struct clk_hw *hw)
 | |
| {
 | |
| 	struct ac100_clkout *clk = to_ac100_clkout(hw);
 | |
| 
 | |
| 	return regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN,
 | |
| 				  AC100_CLKOUT_EN);
 | |
| }
 | |
| 
 | |
| static void ac100_clkout_unprepare(struct clk_hw *hw)
 | |
| {
 | |
| 	struct ac100_clkout *clk = to_ac100_clkout(hw);
 | |
| 
 | |
| 	regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 0);
 | |
| }
 | |
| 
 | |
| static int ac100_clkout_is_prepared(struct clk_hw *hw)
 | |
| {
 | |
| 	struct ac100_clkout *clk = to_ac100_clkout(hw);
 | |
| 	unsigned int reg;
 | |
| 
 | |
| 	regmap_read(clk->regmap, clk->offset, ®);
 | |
| 
 | |
| 	return reg & AC100_CLKOUT_EN;
 | |
| }
 | |
| 
 | |
| static u8 ac100_clkout_get_parent(struct clk_hw *hw)
 | |
| {
 | |
| 	struct ac100_clkout *clk = to_ac100_clkout(hw);
 | |
| 	unsigned int reg;
 | |
| 
 | |
| 	regmap_read(clk->regmap, clk->offset, ®);
 | |
| 
 | |
| 	return (reg >> AC100_CLKOUT_MUX_SHIFT) & 0x1;
 | |
| }
 | |
| 
 | |
| static int ac100_clkout_set_parent(struct clk_hw *hw, u8 index)
 | |
| {
 | |
| 	struct ac100_clkout *clk = to_ac100_clkout(hw);
 | |
| 
 | |
| 	return regmap_update_bits(clk->regmap, clk->offset,
 | |
| 				  BIT(AC100_CLKOUT_MUX_SHIFT),
 | |
| 				  index ? BIT(AC100_CLKOUT_MUX_SHIFT) : 0);
 | |
| }
 | |
| 
 | |
| static const struct clk_ops ac100_clkout_ops = {
 | |
| 	.prepare	= ac100_clkout_prepare,
 | |
| 	.unprepare	= ac100_clkout_unprepare,
 | |
| 	.is_prepared	= ac100_clkout_is_prepared,
 | |
| 	.recalc_rate	= ac100_clkout_recalc_rate,
 | |
| 	.determine_rate	= ac100_clkout_determine_rate,
 | |
| 	.get_parent	= ac100_clkout_get_parent,
 | |
| 	.set_parent	= ac100_clkout_set_parent,
 | |
| 	.set_rate	= ac100_clkout_set_rate,
 | |
| };
 | |
| 
 | |
| static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip)
 | |
| {
 | |
| 	struct device_node *np = chip->dev->of_node;
 | |
| 	const char *parents[2] = {AC100_RTC_32K_NAME};
 | |
| 	int i, ret;
 | |
| 
 | |
| 	chip->clk_data = devm_kzalloc(chip->dev,
 | |
| 				      struct_size(chip->clk_data, hws,
 | |
| 						  AC100_CLKOUT_NUM),
 | |
| 				      GFP_KERNEL);
 | |
| 	if (!chip->clk_data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev,
 | |
| 						       AC100_RTC_32K_NAME,
 | |
| 						       NULL, 0,
 | |
| 						       AC100_RTC_32K_RATE);
 | |
| 	if (IS_ERR(chip->rtc_32k_clk)) {
 | |
| 		ret = PTR_ERR(chip->rtc_32k_clk);
 | |
| 		dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n",
 | |
| 			ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	parents[1] = of_clk_get_parent_name(np, 0);
 | |
| 	if (!parents[1]) {
 | |
| 		dev_err(chip->dev, "Failed to get ADDA 4M clock\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < AC100_CLKOUT_NUM; i++) {
 | |
| 		struct ac100_clkout *clk = &chip->clks[i];
 | |
| 		struct clk_init_data init = {
 | |
| 			.name = ac100_clkout_names[i],
 | |
| 			.ops = &ac100_clkout_ops,
 | |
| 			.parent_names = parents,
 | |
| 			.num_parents = ARRAY_SIZE(parents),
 | |
| 			.flags = 0,
 | |
| 		};
 | |
| 
 | |
| 		of_property_read_string_index(np, "clock-output-names",
 | |
| 					      i, &init.name);
 | |
| 		clk->regmap = chip->regmap;
 | |
| 		clk->offset = AC100_CLKOUT_CTRL1 + i;
 | |
| 		clk->hw.init = &init;
 | |
| 
 | |
| 		ret = devm_clk_hw_register(chip->dev, &clk->hw);
 | |
| 		if (ret) {
 | |
| 			dev_err(chip->dev, "Failed to register clk '%s': %d\n",
 | |
| 				init.name, ret);
 | |
| 			goto err_unregister_rtc_32k;
 | |
| 		}
 | |
| 
 | |
| 		chip->clk_data->hws[i] = &clk->hw;
 | |
| 	}
 | |
| 
 | |
| 	chip->clk_data->num = i;
 | |
| 	ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data);
 | |
| 	if (ret)
 | |
| 		goto err_unregister_rtc_32k;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_unregister_rtc_32k:
 | |
| 	clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip)
 | |
| {
 | |
| 	of_clk_del_provider(chip->dev->of_node);
 | |
| 	clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * RTC related bits
 | |
|  */
 | |
| static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm)
 | |
| {
 | |
| 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
 | |
| 	struct regmap *regmap = chip->regmap;
 | |
| 	u16 reg[7];
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_bulk_read(regmap, AC100_RTC_SEC, reg, 7);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	rtc_tm->tm_sec  = bcd2bin(reg[0] & AC100_RTC_SEC_MASK);
 | |
| 	rtc_tm->tm_min  = bcd2bin(reg[1] & AC100_RTC_MIN_MASK);
 | |
| 	rtc_tm->tm_hour = bcd2bin(reg[2] & AC100_RTC_HOU_MASK);
 | |
| 	rtc_tm->tm_wday = bcd2bin(reg[3] & AC100_RTC_WEE_MASK);
 | |
| 	rtc_tm->tm_mday = bcd2bin(reg[4] & AC100_RTC_DAY_MASK);
 | |
| 	rtc_tm->tm_mon  = bcd2bin(reg[5] & AC100_RTC_MON_MASK) - 1;
 | |
| 	rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) +
 | |
| 			  AC100_YEAR_OFF;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm)
 | |
| {
 | |
| 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
 | |
| 	struct regmap *regmap = chip->regmap;
 | |
| 	int year;
 | |
| 	u16 reg[8];
 | |
| 
 | |
| 	/* our RTC has a limited year range... */
 | |
| 	year = rtc_tm->tm_year - AC100_YEAR_OFF;
 | |
| 	if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
 | |
| 		dev_err(dev, "rtc only supports year in range %d - %d\n",
 | |
| 			AC100_YEAR_MIN, AC100_YEAR_MAX);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* convert to BCD */
 | |
| 	reg[0] = bin2bcd(rtc_tm->tm_sec)     & AC100_RTC_SEC_MASK;
 | |
| 	reg[1] = bin2bcd(rtc_tm->tm_min)     & AC100_RTC_MIN_MASK;
 | |
| 	reg[2] = bin2bcd(rtc_tm->tm_hour)    & AC100_RTC_HOU_MASK;
 | |
| 	reg[3] = bin2bcd(rtc_tm->tm_wday)    & AC100_RTC_WEE_MASK;
 | |
| 	reg[4] = bin2bcd(rtc_tm->tm_mday)    & AC100_RTC_DAY_MASK;
 | |
| 	reg[5] = bin2bcd(rtc_tm->tm_mon + 1) & AC100_RTC_MON_MASK;
 | |
| 	reg[6] = bin2bcd(year)		     & AC100_RTC_YEA_MASK;
 | |
| 	/* trigger write */
 | |
| 	reg[7] = AC100_RTC_UPD_TRIGGER;
 | |
| 
 | |
| 	/* Is it a leap year? */
 | |
| 	if (is_leap_year(year + AC100_YEAR_OFF + 1900))
 | |
| 		reg[6] |= AC100_RTC_YEA_LEAP;
 | |
| 
 | |
| 	return regmap_bulk_write(regmap, AC100_RTC_SEC, reg, 8);
 | |
| }
 | |
| 
 | |
| static int ac100_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
 | |
| {
 | |
| 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
 | |
| 	struct regmap *regmap = chip->regmap;
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	val = en ? AC100_ALM_INT_ENABLE : 0;
 | |
| 
 | |
| 	return regmap_write(regmap, AC100_ALM_INT_ENA, val);
 | |
| }
 | |
| 
 | |
| static int ac100_rtc_get_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 | |
| {
 | |
| 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
 | |
| 	struct regmap *regmap = chip->regmap;
 | |
| 	struct rtc_time *alrm_tm = &alrm->time;
 | |
| 	u16 reg[7];
 | |
| 	unsigned int val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_read(regmap, AC100_ALM_INT_ENA, &val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	alrm->enabled = !!(val & AC100_ALM_INT_ENABLE);
 | |
| 
 | |
| 	ret = regmap_bulk_read(regmap, AC100_ALM_SEC, reg, 7);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	alrm_tm->tm_sec  = bcd2bin(reg[0] & AC100_ALM_SEC_MASK);
 | |
| 	alrm_tm->tm_min  = bcd2bin(reg[1] & AC100_ALM_MIN_MASK);
 | |
| 	alrm_tm->tm_hour = bcd2bin(reg[2] & AC100_ALM_HOU_MASK);
 | |
| 	alrm_tm->tm_wday = bcd2bin(reg[3] & AC100_ALM_WEE_MASK);
 | |
| 	alrm_tm->tm_mday = bcd2bin(reg[4] & AC100_ALM_DAY_MASK);
 | |
| 	alrm_tm->tm_mon  = bcd2bin(reg[5] & AC100_ALM_MON_MASK) - 1;
 | |
| 	alrm_tm->tm_year = bcd2bin(reg[6] & AC100_ALM_YEA_MASK) +
 | |
| 			   AC100_YEAR_OFF;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ac100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 | |
| {
 | |
| 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
 | |
| 	struct regmap *regmap = chip->regmap;
 | |
| 	struct rtc_time *alrm_tm = &alrm->time;
 | |
| 	u16 reg[8];
 | |
| 	int year;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* our alarm has a limited year range... */
 | |
| 	year = alrm_tm->tm_year - AC100_YEAR_OFF;
 | |
| 	if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
 | |
| 		dev_err(dev, "alarm only supports year in range %d - %d\n",
 | |
| 			AC100_YEAR_MIN, AC100_YEAR_MAX);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* convert to BCD */
 | |
| 	reg[0] = (bin2bcd(alrm_tm->tm_sec)  & AC100_ALM_SEC_MASK) |
 | |
| 			AC100_ALM_ENABLE_FLAG;
 | |
| 	reg[1] = (bin2bcd(alrm_tm->tm_min)  & AC100_ALM_MIN_MASK) |
 | |
| 			AC100_ALM_ENABLE_FLAG;
 | |
| 	reg[2] = (bin2bcd(alrm_tm->tm_hour) & AC100_ALM_HOU_MASK) |
 | |
| 			AC100_ALM_ENABLE_FLAG;
 | |
| 	/* Do not enable weekday alarm */
 | |
| 	reg[3] = bin2bcd(alrm_tm->tm_wday) & AC100_ALM_WEE_MASK;
 | |
| 	reg[4] = (bin2bcd(alrm_tm->tm_mday) & AC100_ALM_DAY_MASK) |
 | |
| 			AC100_ALM_ENABLE_FLAG;
 | |
| 	reg[5] = (bin2bcd(alrm_tm->tm_mon + 1)  & AC100_ALM_MON_MASK) |
 | |
| 			AC100_ALM_ENABLE_FLAG;
 | |
| 	reg[6] = (bin2bcd(year) & AC100_ALM_YEA_MASK) |
 | |
| 			AC100_ALM_ENABLE_FLAG;
 | |
| 	/* trigger write */
 | |
| 	reg[7] = AC100_ALM_UPD_TRIGGER;
 | |
| 
 | |
| 	ret = regmap_bulk_write(regmap, AC100_ALM_SEC, reg, 8);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return ac100_rtc_alarm_irq_enable(dev, alrm->enabled);
 | |
| }
 | |
| 
 | |
| static irqreturn_t ac100_rtc_irq(int irq, void *data)
 | |
| {
 | |
| 	struct ac100_rtc_dev *chip = data;
 | |
| 	struct regmap *regmap = chip->regmap;
 | |
| 	unsigned int val = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&chip->rtc->ops_lock);
 | |
| 
 | |
| 	/* read status */
 | |
| 	ret = regmap_read(regmap, AC100_ALM_INT_STA, &val);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (val & AC100_ALM_INT_ENABLE) {
 | |
| 		/* signal rtc framework */
 | |
| 		rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
 | |
| 
 | |
| 		/* clear status */
 | |
| 		ret = regmap_write(regmap, AC100_ALM_INT_STA, val);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* disable interrupt */
 | |
| 		ret = ac100_rtc_alarm_irq_enable(chip->dev, 0);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&chip->rtc->ops_lock);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static const struct rtc_class_ops ac100_rtc_ops = {
 | |
| 	.read_time	  = ac100_rtc_get_time,
 | |
| 	.set_time	  = ac100_rtc_set_time,
 | |
| 	.read_alarm	  = ac100_rtc_get_alarm,
 | |
| 	.set_alarm	  = ac100_rtc_set_alarm,
 | |
| 	.alarm_irq_enable = ac100_rtc_alarm_irq_enable,
 | |
| };
 | |
| 
 | |
| static int ac100_rtc_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct ac100_dev *ac100 = dev_get_drvdata(pdev->dev.parent);
 | |
| 	struct ac100_rtc_dev *chip;
 | |
| 	int ret;
 | |
| 
 | |
| 	chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
 | |
| 	if (!chip)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	platform_set_drvdata(pdev, chip);
 | |
| 	chip->dev = &pdev->dev;
 | |
| 	chip->regmap = ac100->regmap;
 | |
| 
 | |
| 	chip->irq = platform_get_irq(pdev, 0);
 | |
| 	if (chip->irq < 0)
 | |
| 		return chip->irq;
 | |
| 
 | |
| 	chip->rtc = devm_rtc_allocate_device(&pdev->dev);
 | |
| 	if (IS_ERR(chip->rtc))
 | |
| 		return PTR_ERR(chip->rtc);
 | |
| 
 | |
| 	chip->rtc->ops = &ac100_rtc_ops;
 | |
| 
 | |
| 	ret = devm_request_threaded_irq(&pdev->dev, chip->irq, NULL,
 | |
| 					ac100_rtc_irq,
 | |
| 					IRQF_SHARED | IRQF_ONESHOT,
 | |
| 					dev_name(&pdev->dev), chip);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "Could not request IRQ\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* always use 24 hour mode */
 | |
| 	regmap_write_bits(chip->regmap, AC100_RTC_CTRL, AC100_RTC_CTRL_24HOUR,
 | |
| 			  AC100_RTC_CTRL_24HOUR);
 | |
| 
 | |
| 	/* disable counter alarm interrupt */
 | |
| 	regmap_write(chip->regmap, AC100_ALM_INT_ENA, 0);
 | |
| 
 | |
| 	/* clear counter alarm pending interrupts */
 | |
| 	regmap_write(chip->regmap, AC100_ALM_INT_STA, AC100_ALM_INT_ENABLE);
 | |
| 
 | |
| 	ret = ac100_rtc_register_clks(chip);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return rtc_register_device(chip->rtc);
 | |
| }
 | |
| 
 | |
| static int ac100_rtc_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct ac100_rtc_dev *chip = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	ac100_rtc_unregister_clks(chip);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id ac100_rtc_match[] = {
 | |
| 	{ .compatible = "x-powers,ac100-rtc" },
 | |
| 	{ },
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, ac100_rtc_match);
 | |
| 
 | |
| static struct platform_driver ac100_rtc_driver = {
 | |
| 	.probe		= ac100_rtc_probe,
 | |
| 	.remove		= ac100_rtc_remove,
 | |
| 	.driver		= {
 | |
| 		.name		= "ac100-rtc",
 | |
| 		.of_match_table	= of_match_ptr(ac100_rtc_match),
 | |
| 	},
 | |
| };
 | |
| module_platform_driver(ac100_rtc_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("X-Powers AC100 RTC driver");
 | |
| MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>");
 | |
| MODULE_LICENSE("GPL v2");
 |