linux/drivers/iio/temperature/mlx90632.c
David Frey 1c96a2f67c
regmap: split up regmap_config.use_single_rw
Split regmap_config.use_single_rw into use_single_read and
use_single_write. This change enables drivers of devices which only
support bulk operations in one direction to use the regmap_bulk_*()
functions for both directions and have their bulk operation split into
single operations only when necessary.

Update all struct regmap_config instances where use_single_rw==true to
instead set both use_single_read and use_single_write. No attempt was
made to evaluate whether it is possible to set only one of
use_single_read or use_single_write.

Signed-off-by: David Frey <dpfrey@gmail.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
2018-09-07 13:03:55 +01:00

754 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
*
* Copyright (c) 2017 Melexis <cmo@melexis.com>
*
* Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/math64.h>
#include <linux/of.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
/* Memory sections addresses */
#define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */
#define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */
/* EEPROM addresses - used at startup */
#define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */
#define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */
#define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */
#define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */
#define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */
#define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */
#define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */
#define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */
#define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */
#define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */
#define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */
#define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */
#define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */
#define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */
#define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */
#define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */
#define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */
#define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */
#define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */
#define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */
#define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */
#define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */
#define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */
#define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */
/* Register addresses - volatile */
#define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */
/* Control register address - volatile */
#define MLX90632_REG_CONTROL 0x3001 /* Control Register address */
#define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */
/* PowerModes statuses */
#define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
#define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
#define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
#define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
#define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
/* Device status register - volatile */
#define MLX90632_REG_STATUS 0x3fff /* Device status register */
#define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */
#define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */
#define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */
#define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */
#define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */
/* RAM_MEAS address-es for each channel */
#define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num)
#define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1)
#define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2)
/* Magic constants */
#define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */
#define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */
#define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */
#define MLX90632_REF_12 12LL /**< ResCtrlRef value of Ch 1 or Ch 2 */
#define MLX90632_REF_3 12LL /**< ResCtrlRef value of Channel 3 */
#define MLX90632_MAX_MEAS_NUM 31 /**< Maximum measurements in list */
#define MLX90632_SLEEP_DELAY_MS 3000 /**< Autosleep delay */
struct mlx90632_data {
struct i2c_client *client;
struct mutex lock; /* Multiple reads for single measurement */
struct regmap *regmap;
u16 emissivity;
};
static const struct regmap_range mlx90632_volatile_reg_range[] = {
regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
regmap_reg_range(MLX90632_RAM_1(0),
MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
};
static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
.yes_ranges = mlx90632_volatile_reg_range,
.n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
};
static const struct regmap_range mlx90632_read_reg_range[] = {
regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
regmap_reg_range(MLX90632_RAM_1(0),
MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
};
static const struct regmap_access_table mlx90632_readable_regs_tbl = {
.yes_ranges = mlx90632_read_reg_range,
.n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
};
static const struct regmap_range mlx90632_no_write_reg_range[] = {
regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
regmap_reg_range(MLX90632_RAM_1(0),
MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
};
static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
.no_ranges = mlx90632_no_write_reg_range,
.n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
};
static const struct regmap_config mlx90632_regmap = {
.reg_bits = 16,
.val_bits = 16,
.volatile_table = &mlx90632_volatile_regs_tbl,
.rd_table = &mlx90632_readable_regs_tbl,
.wr_table = &mlx90632_writeable_regs_tbl,
.use_single_read = true,
.use_single_write = true,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_BIG,
.cache_type = REGCACHE_RBTREE,
};
static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap)
{
return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
MLX90632_CFG_PWR_MASK,
MLX90632_PWR_STATUS_SLEEP_STEP);
}
static s32 mlx90632_pwr_continuous(struct regmap *regmap)
{
return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
MLX90632_CFG_PWR_MASK,
MLX90632_PWR_STATUS_CONTINUOUS);
}
/**
* mlx90632_perform_measurement - Trigger and retrieve current measurement cycle
* @*data: pointer to mlx90632_data object containing regmap information
*
* Perform a measurement and return latest measurement cycle position reported
* by sensor. This is a blocking function for 500ms, as that is default sensor
* refresh rate.
*/
static int mlx90632_perform_measurement(struct mlx90632_data *data)
{
int ret, tries = 100;
unsigned int reg_status;
ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
MLX90632_STAT_DATA_RDY, 0);
if (ret < 0)
return ret;
while (tries-- > 0) {
ret = regmap_read(data->regmap, MLX90632_REG_STATUS,
&reg_status);
if (ret < 0)
return ret;
if (reg_status & MLX90632_STAT_DATA_RDY)
break;
usleep_range(10000, 11000);
}
if (tries < 0) {
dev_err(&data->client->dev, "data not ready");
return -ETIMEDOUT;
}
return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
}
static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
uint8_t *channel_old)
{
switch (perform_ret) {
case 1:
*channel_new = 1;
*channel_old = 2;
break;
case 2:
*channel_new = 2;
*channel_old = 1;
break;
default:
return -EINVAL;
}
return 0;
}
static int mlx90632_read_ambient_raw(struct regmap *regmap,
s16 *ambient_new_raw, s16 *ambient_old_raw)
{
int ret;
unsigned int read_tmp;
ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
if (ret < 0)
return ret;
*ambient_new_raw = (s16)read_tmp;
ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
if (ret < 0)
return ret;
*ambient_old_raw = (s16)read_tmp;
return ret;
}
static int mlx90632_read_object_raw(struct regmap *regmap,
int perform_measurement_ret,
s16 *object_new_raw, s16 *object_old_raw)
{
int ret;
unsigned int read_tmp;
s16 read;
u8 channel = 0;
u8 channel_old = 0;
ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
&channel_old);
if (ret != 0)
return ret;
ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
if (ret < 0)
return ret;
read = (s16)read_tmp;
ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
if (ret < 0)
return ret;
*object_new_raw = (read + (s16)read_tmp) / 2;
ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
if (ret < 0)
return ret;
read = (s16)read_tmp;
ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
if (ret < 0)
return ret;
*object_old_raw = (read + (s16)read_tmp) / 2;
return ret;
}
static int mlx90632_read_all_channel(struct mlx90632_data *data,
s16 *ambient_new_raw, s16 *ambient_old_raw,
s16 *object_new_raw, s16 *object_old_raw)
{
s32 ret, measurement;
mutex_lock(&data->lock);
measurement = mlx90632_perform_measurement(data);
if (measurement < 0) {
ret = measurement;
goto read_unlock;
}
ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
ambient_old_raw);
if (ret < 0)
goto read_unlock;
ret = mlx90632_read_object_raw(data->regmap, measurement,
object_new_raw, object_old_raw);
read_unlock:
mutex_unlock(&data->lock);
return ret;
}
static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
s32 *reg_value)
{
s32 ret;
unsigned int read;
u32 value;
ret = regmap_read(regmap, reg_lsb, &read);
if (ret < 0)
return ret;
value = read;
ret = regmap_read(regmap, reg_lsb + 1, &read);
if (ret < 0)
return ret;
*reg_value = (read << 16) | (value & 0xffff);
return 0;
}
static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
s16 ambient_old_raw, s16 Gb)
{
s64 VR_Ta, kGb, tmp;
kGb = ((s64)Gb * 1000LL) >> 10ULL;
VR_Ta = (s64)ambient_old_raw * 1000000LL +
kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
(MLX90632_REF_3));
tmp = div64_s64(
div64_s64(((s64)ambient_new_raw * 1000000000000LL),
(MLX90632_REF_3)), VR_Ta);
return div64_s64(tmp << 19ULL, 1000LL);
}
static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
s16 ambient_new_raw,
s16 ambient_old_raw, s16 Ka)
{
s64 VR_IR, kKa, tmp;
kKa = ((s64)Ka * 1000LL) >> 10ULL;
VR_IR = (s64)ambient_old_raw * 1000000LL +
kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
(MLX90632_REF_3));
tmp = div64_s64(
div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
* 1000000000000LL), (MLX90632_REF_12)),
VR_IR);
return div64_s64((tmp << 19ULL), 1000LL);
}
static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
s32 P_T, s32 P_R, s32 P_G, s32 P_O,
s16 Gb)
{
s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
Gb);
Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
Ablock = Asub * (Bsub * Bsub);
Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
return div64_s64(sum, 10000000LL);
}
static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
s64 TAdut, s32 Fa, s32 Fb,
s32 Ga, s16 Ha, s16 Hb,
u16 emissivity)
{
s64 calcedKsTO, calcedKsTA, ir_Alpha, TAdut4, Alpha_corr;
s64 Ha_customer, Hb_customer;
Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
Hb_customer = ((s64)Hb * 100) >> 10ULL;
calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
* 1000LL)) >> 36LL;
calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
* Ha_customer), 1000LL);
Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
Alpha_corr = div64_s64(Alpha_corr, 1000LL);
ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
TAdut4 = (div64_s64(TAdut, 10000LL) + 27315) *
(div64_s64(TAdut, 10000LL) + 27315) *
(div64_s64(TAdut, 10000LL) + 27315) *
(div64_s64(TAdut, 10000LL) + 27315);
return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
- 27315 - Hb_customer) * 10;
}
static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
u16 tmp_emi)
{
s64 kTA, kTA0, TAdut;
s64 temp = 25000;
s8 i;
kTA = (Ea * 1000LL) >> 16LL;
kTA0 = (Eb * 1000LL) >> 8LL;
TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
/* Iterations of calculation as described in datasheet */
for (i = 0; i < 5; ++i) {
temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut,
Fa, Fb, Ga, Ha, Hb,
tmp_emi);
}
return temp;
}
static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
{
s32 ret;
s32 Ea, Eb, Fa, Fb, Ga;
unsigned int read_tmp;
s16 Ha, Hb, Gb, Ka;
s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
s64 object, ambient;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
if (ret < 0)
return ret;
ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
if (ret < 0)
return ret;
Ha = (s16)read_tmp;
ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
if (ret < 0)
return ret;
Hb = (s16)read_tmp;
ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
if (ret < 0)
return ret;
Gb = (s16)read_tmp;
ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
if (ret < 0)
return ret;
Ka = (s16)read_tmp;
ret = mlx90632_read_all_channel(data,
&ambient_new_raw, &ambient_old_raw,
&object_new_raw, &object_old_raw);
if (ret < 0)
return ret;
ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
ambient_old_raw, Gb);
object = mlx90632_preprocess_temp_obj(object_new_raw,
object_old_raw,
ambient_new_raw,
ambient_old_raw, Ka);
*val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
Ha, Hb, data->emissivity);
return 0;
}
static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
{
s32 ret;
unsigned int read_tmp;
s32 PT, PR, PG, PO;
s16 Gb;
s16 ambient_new_raw, ambient_old_raw;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
if (ret < 0)
return ret;
ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
if (ret < 0)
return ret;
ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
if (ret < 0)
return ret;
Gb = (s16)read_tmp;
ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
&ambient_old_raw);
if (ret < 0)
return ret;
*val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
PT, PR, PG, PO, Gb);
return ret;
}
static int mlx90632_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel, int *val,
int *val2, long mask)
{
struct mlx90632_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
switch (channel->channel2) {
case IIO_MOD_TEMP_AMBIENT:
ret = mlx90632_calc_ambient_dsp105(data, val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_MOD_TEMP_OBJECT:
ret = mlx90632_calc_object_dsp105(data, val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_CALIBEMISSIVITY:
if (data->emissivity == 1000) {
*val = 1;
*val2 = 0;
} else {
*val = 0;
*val2 = data->emissivity * 1000;
}
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static int mlx90632_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel, int val,
int val2, long mask)
{
struct mlx90632_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_CALIBEMISSIVITY:
/* Confirm we are within 0 and 1.0 */
if (val < 0 || val2 < 0 || val > 1 ||
(val == 1 && val2 != 0))
return -EINVAL;
data->emissivity = val * 1000 + val2 / 1000;
return 0;
default:
return -EINVAL;
}
}
static const struct iio_chan_spec mlx90632_channels[] = {
{
.type = IIO_TEMP,
.modified = 1,
.channel2 = IIO_MOD_TEMP_AMBIENT,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
},
{
.type = IIO_TEMP,
.modified = 1,
.channel2 = IIO_MOD_TEMP_OBJECT,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_CALIBEMISSIVITY),
},
};
static const struct iio_info mlx90632_info = {
.read_raw = mlx90632_read_raw,
.write_raw = mlx90632_write_raw,
};
static int mlx90632_sleep(struct mlx90632_data *data)
{
regcache_mark_dirty(data->regmap);
dev_dbg(&data->client->dev, "Requesting sleep");
return mlx90632_pwr_set_sleep_step(data->regmap);
}
static int mlx90632_wakeup(struct mlx90632_data *data)
{
int ret;
ret = regcache_sync(data->regmap);
if (ret < 0) {
dev_err(&data->client->dev,
"Failed to sync regmap registers: %d\n", ret);
return ret;
}
dev_dbg(&data->client->dev, "Requesting wake-up\n");
return mlx90632_pwr_continuous(data->regmap);
}
static int mlx90632_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct iio_dev *indio_dev;
struct mlx90632_data *mlx90632;
struct regmap *regmap;
int ret;
unsigned int read;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
if (!indio_dev) {
dev_err(&client->dev, "Failed to allocate device\n");
return -ENOMEM;
}
regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
if (IS_ERR(regmap)) {
ret = PTR_ERR(regmap);
dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
return ret;
}
mlx90632 = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
mlx90632->client = client;
mlx90632->regmap = regmap;
mutex_init(&mlx90632->lock);
indio_dev->dev.parent = &client->dev;
indio_dev->name = id->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &mlx90632_info;
indio_dev->channels = mlx90632_channels;
indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
ret = mlx90632_wakeup(mlx90632);
if (ret < 0) {
dev_err(&client->dev, "Wakeup failed: %d\n", ret);
return ret;
}
ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
if (ret < 0) {
dev_err(&client->dev, "read of version failed: %d\n", ret);
return ret;
}
if (read == MLX90632_ID_MEDICAL) {
dev_dbg(&client->dev,
"Detected Medical EEPROM calibration %x\n", read);
} else if (read == MLX90632_ID_CONSUMER) {
dev_dbg(&client->dev,
"Detected Consumer EEPROM calibration %x\n", read);
} else {
dev_err(&client->dev,
"EEPROM version mismatch %x (expected %x or %x)\n",
read, MLX90632_ID_CONSUMER, MLX90632_ID_MEDICAL);
return -EPROTONOSUPPORT;
}
mlx90632->emissivity = 1000;
pm_runtime_disable(&client->dev);
ret = pm_runtime_set_active(&client->dev);
if (ret < 0) {
mlx90632_sleep(mlx90632);
return ret;
}
pm_runtime_enable(&client->dev);
pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
pm_runtime_use_autosuspend(&client->dev);
return iio_device_register(indio_dev);
}
static int mlx90632_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct mlx90632_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
pm_runtime_put_noidle(&client->dev);
mlx90632_sleep(data);
return 0;
}
static const struct i2c_device_id mlx90632_id[] = {
{ "mlx90632", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mlx90632_id);
static const struct of_device_id mlx90632_of_match[] = {
{ .compatible = "melexis,mlx90632" },
{ }
};
MODULE_DEVICE_TABLE(of, mlx90632_of_match);
static int __maybe_unused mlx90632_pm_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct mlx90632_data *data = iio_priv(indio_dev);
return mlx90632_sleep(data);
}
static int __maybe_unused mlx90632_pm_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct mlx90632_data *data = iio_priv(indio_dev);
return mlx90632_wakeup(data);
}
static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend,
mlx90632_pm_resume, NULL);
static struct i2c_driver mlx90632_driver = {
.driver = {
.name = "mlx90632",
.of_match_table = mlx90632_of_match,
.pm = &mlx90632_pm_ops,
},
.probe = mlx90632_probe,
.remove = mlx90632_remove,
.id_table = mlx90632_id,
};
module_i2c_driver(mlx90632_driver);
MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
MODULE_LICENSE("GPL v2");