linux/drivers/gpu/drm/mediatek/mtk_dsi.c
Jitao Shi f6c8723970 drm/mediatek: fixed the calc method of data rate per lane
Tune dsi frame rate by pixel clock, dsi add some extra signal (i.e.
Tlpx, Ths-prepare, Ths-zero, Ths-trail,Ths-exit) when enter and exit LP
mode, those signals will cause h-time larger than normal and reduce FPS.
So need to multiply a coefficient to offset the extra signal's effect.
  coefficient = ((htotal*bpp/lane_number)+Tlpx+Ths_prep+Ths_zero+
		 Ths_trail+Ths_exit)/(htotal*bpp/lane_number)

Signed-off-by: Jitao Shi <jitao.shi@mediatek.com>
Reviewed-by: Daniel Kurtz <djkurtz@chromium.org>
2016-11-24 14:53:14 +08:00

935 lines
22 KiB
C

/*
* Copyright (c) 2015 MediaTek Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_panel.h>
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_graph.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <video/videomode.h>
#include "mtk_drm_ddp_comp.h"
#define DSI_VIDEO_FIFO_DEPTH (1920 / 4)
#define DSI_HOST_FIFO_DEPTH 64
#define DSI_START 0x00
#define DSI_CON_CTRL 0x10
#define DSI_RESET BIT(0)
#define DSI_EN BIT(1)
#define DSI_MODE_CTRL 0x14
#define MODE (3)
#define CMD_MODE 0
#define SYNC_PULSE_MODE 1
#define SYNC_EVENT_MODE 2
#define BURST_MODE 3
#define FRM_MODE BIT(16)
#define MIX_MODE BIT(17)
#define DSI_TXRX_CTRL 0x18
#define VC_NUM (2 << 0)
#define LANE_NUM (0xf << 2)
#define DIS_EOT BIT(6)
#define NULL_EN BIT(7)
#define TE_FREERUN BIT(8)
#define EXT_TE_EN BIT(9)
#define EXT_TE_EDGE BIT(10)
#define MAX_RTN_SIZE (0xf << 12)
#define HSTX_CKLP_EN BIT(16)
#define DSI_PSCTRL 0x1c
#define DSI_PS_WC 0x3fff
#define DSI_PS_SEL (3 << 16)
#define PACKED_PS_16BIT_RGB565 (0 << 16)
#define LOOSELY_PS_18BIT_RGB666 (1 << 16)
#define PACKED_PS_18BIT_RGB666 (2 << 16)
#define PACKED_PS_24BIT_RGB888 (3 << 16)
#define DSI_VSA_NL 0x20
#define DSI_VBP_NL 0x24
#define DSI_VFP_NL 0x28
#define DSI_VACT_NL 0x2C
#define DSI_HSA_WC 0x50
#define DSI_HBP_WC 0x54
#define DSI_HFP_WC 0x58
#define DSI_HSTX_CKL_WC 0x64
#define DSI_PHY_LCCON 0x104
#define LC_HS_TX_EN BIT(0)
#define LC_ULPM_EN BIT(1)
#define LC_WAKEUP_EN BIT(2)
#define DSI_PHY_LD0CON 0x108
#define LD0_HS_TX_EN BIT(0)
#define LD0_ULPM_EN BIT(1)
#define LD0_WAKEUP_EN BIT(2)
#define DSI_PHY_TIMECON0 0x110
#define LPX (0xff << 0)
#define HS_PREP (0xff << 8)
#define HS_ZERO (0xff << 16)
#define HS_TRAIL (0xff << 24)
#define DSI_PHY_TIMECON1 0x114
#define TA_GO (0xff << 0)
#define TA_SURE (0xff << 8)
#define TA_GET (0xff << 16)
#define DA_HS_EXIT (0xff << 24)
#define DSI_PHY_TIMECON2 0x118
#define CONT_DET (0xff << 0)
#define CLK_ZERO (0xff << 16)
#define CLK_TRAIL (0xff << 24)
#define DSI_PHY_TIMECON3 0x11c
#define CLK_HS_PREP (0xff << 0)
#define CLK_HS_POST (0xff << 8)
#define CLK_HS_EXIT (0xff << 16)
#define T_LPX 5
#define T_HS_PREP 6
#define T_HS_TRAIL 8
#define T_HS_EXIT 7
#define T_HS_ZERO 10
#define NS_TO_CYCLE(n, c) ((n) / (c) + (((n) % (c)) ? 1 : 0))
struct phy;
struct mtk_dsi {
struct mtk_ddp_comp ddp_comp;
struct device *dev;
struct mipi_dsi_host host;
struct drm_encoder encoder;
struct drm_connector conn;
struct drm_panel *panel;
struct drm_bridge *bridge;
struct phy *phy;
void __iomem *regs;
struct clk *engine_clk;
struct clk *digital_clk;
struct clk *hs_clk;
u32 data_rate;
unsigned long mode_flags;
enum mipi_dsi_pixel_format format;
unsigned int lanes;
struct videomode vm;
int refcount;
bool enabled;
};
static inline struct mtk_dsi *encoder_to_dsi(struct drm_encoder *e)
{
return container_of(e, struct mtk_dsi, encoder);
}
static inline struct mtk_dsi *connector_to_dsi(struct drm_connector *c)
{
return container_of(c, struct mtk_dsi, conn);
}
static inline struct mtk_dsi *host_to_dsi(struct mipi_dsi_host *h)
{
return container_of(h, struct mtk_dsi, host);
}
static void mtk_dsi_mask(struct mtk_dsi *dsi, u32 offset, u32 mask, u32 data)
{
u32 temp = readl(dsi->regs + offset);
writel((temp & ~mask) | (data & mask), dsi->regs + offset);
}
static void dsi_phy_timconfig(struct mtk_dsi *dsi)
{
u32 timcon0, timcon1, timcon2, timcon3;
u32 ui, cycle_time;
ui = 1000 / dsi->data_rate + 0x01;
cycle_time = 8000 / dsi->data_rate + 0x01;
timcon0 = T_LPX | T_HS_PREP << 8 | T_HS_ZERO << 16 | T_HS_TRAIL << 24;
timcon1 = 4 * T_LPX | (3 * T_LPX / 2) << 8 | 5 * T_LPX << 16 |
T_HS_EXIT << 24;
timcon2 = ((NS_TO_CYCLE(0x64, cycle_time) + 0xa) << 24) |
(NS_TO_CYCLE(0x150, cycle_time) << 16);
timcon3 = NS_TO_CYCLE(0x40, cycle_time) | (2 * T_LPX) << 16 |
NS_TO_CYCLE(80 + 52 * ui, cycle_time) << 8;
writel(timcon0, dsi->regs + DSI_PHY_TIMECON0);
writel(timcon1, dsi->regs + DSI_PHY_TIMECON1);
writel(timcon2, dsi->regs + DSI_PHY_TIMECON2);
writel(timcon3, dsi->regs + DSI_PHY_TIMECON3);
}
static void mtk_dsi_enable(struct mtk_dsi *dsi)
{
mtk_dsi_mask(dsi, DSI_CON_CTRL, DSI_EN, DSI_EN);
}
static void mtk_dsi_disable(struct mtk_dsi *dsi)
{
mtk_dsi_mask(dsi, DSI_CON_CTRL, DSI_EN, 0);
}
static void mtk_dsi_reset(struct mtk_dsi *dsi)
{
mtk_dsi_mask(dsi, DSI_CON_CTRL, DSI_RESET, DSI_RESET);
mtk_dsi_mask(dsi, DSI_CON_CTRL, DSI_RESET, 0);
}
static int mtk_dsi_poweron(struct mtk_dsi *dsi)
{
struct device *dev = dsi->dev;
int ret;
u64 pixel_clock, total_bits;
u32 htotal, htotal_bits, bit_per_pixel, overhead_cycles, overhead_bits;
if (++dsi->refcount != 1)
return 0;
switch (dsi->format) {
case MIPI_DSI_FMT_RGB565:
bit_per_pixel = 16;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
bit_per_pixel = 18;
break;
case MIPI_DSI_FMT_RGB666:
case MIPI_DSI_FMT_RGB888:
default:
bit_per_pixel = 24;
break;
}
/**
* vm.pixelclock is in kHz, pixel_clock unit is Hz, so multiply by 1000
* htotal_time = htotal * byte_per_pixel / num_lanes
* overhead_time = lpx + hs_prepare + hs_zero + hs_trail + hs_exit
* mipi_ratio = (htotal_time + overhead_time) / htotal_time
* data_rate = pixel_clock * bit_per_pixel * mipi_ratio / num_lanes;
*/
pixel_clock = dsi->vm.pixelclock * 1000;
htotal = dsi->vm.hactive + dsi->vm.hback_porch + dsi->vm.hfront_porch +
dsi->vm.hsync_len;
htotal_bits = htotal * bit_per_pixel;
overhead_cycles = T_LPX + T_HS_PREP + T_HS_ZERO + T_HS_TRAIL +
T_HS_EXIT;
overhead_bits = overhead_cycles * dsi->lanes * 8;
total_bits = htotal_bits + overhead_bits;
dsi->data_rate = DIV_ROUND_UP_ULL(pixel_clock * total_bits,
htotal * dsi->lanes);
ret = clk_set_rate(dsi->hs_clk, dsi->data_rate);
if (ret < 0) {
dev_err(dev, "Failed to set data rate: %d\n", ret);
goto err_refcount;
}
phy_power_on(dsi->phy);
ret = clk_prepare_enable(dsi->engine_clk);
if (ret < 0) {
dev_err(dev, "Failed to enable engine clock: %d\n", ret);
goto err_phy_power_off;
}
ret = clk_prepare_enable(dsi->digital_clk);
if (ret < 0) {
dev_err(dev, "Failed to enable digital clock: %d\n", ret);
goto err_disable_engine_clk;
}
mtk_dsi_enable(dsi);
mtk_dsi_reset(dsi);
dsi_phy_timconfig(dsi);
return 0;
err_disable_engine_clk:
clk_disable_unprepare(dsi->engine_clk);
err_phy_power_off:
phy_power_off(dsi->phy);
err_refcount:
dsi->refcount--;
return ret;
}
static void dsi_clk_ulp_mode_enter(struct mtk_dsi *dsi)
{
mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_HS_TX_EN, 0);
mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_ULPM_EN, 0);
}
static void dsi_clk_ulp_mode_leave(struct mtk_dsi *dsi)
{
mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_ULPM_EN, 0);
mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_WAKEUP_EN, LC_WAKEUP_EN);
mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_WAKEUP_EN, 0);
}
static void dsi_lane0_ulp_mode_enter(struct mtk_dsi *dsi)
{
mtk_dsi_mask(dsi, DSI_PHY_LD0CON, LD0_HS_TX_EN, 0);
mtk_dsi_mask(dsi, DSI_PHY_LD0CON, LD0_ULPM_EN, 0);
}
static void dsi_lane0_ulp_mode_leave(struct mtk_dsi *dsi)
{
mtk_dsi_mask(dsi, DSI_PHY_LD0CON, LD0_ULPM_EN, 0);
mtk_dsi_mask(dsi, DSI_PHY_LD0CON, LD0_WAKEUP_EN, LD0_WAKEUP_EN);
mtk_dsi_mask(dsi, DSI_PHY_LD0CON, LD0_WAKEUP_EN, 0);
}
static bool dsi_clk_hs_state(struct mtk_dsi *dsi)
{
u32 tmp_reg1;
tmp_reg1 = readl(dsi->regs + DSI_PHY_LCCON);
return ((tmp_reg1 & LC_HS_TX_EN) == 1) ? true : false;
}
static void dsi_clk_hs_mode(struct mtk_dsi *dsi, bool enter)
{
if (enter && !dsi_clk_hs_state(dsi))
mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_HS_TX_EN, LC_HS_TX_EN);
else if (!enter && dsi_clk_hs_state(dsi))
mtk_dsi_mask(dsi, DSI_PHY_LCCON, LC_HS_TX_EN, 0);
}
static void dsi_set_mode(struct mtk_dsi *dsi)
{
u32 vid_mode = CMD_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
vid_mode = SYNC_PULSE_MODE;
if ((dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) &&
!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE))
vid_mode = BURST_MODE;
}
writel(vid_mode, dsi->regs + DSI_MODE_CTRL);
}
static void dsi_ps_control_vact(struct mtk_dsi *dsi)
{
struct videomode *vm = &dsi->vm;
u32 dsi_buf_bpp, ps_wc;
u32 ps_bpp_mode;
if (dsi->format == MIPI_DSI_FMT_RGB565)
dsi_buf_bpp = 2;
else
dsi_buf_bpp = 3;
ps_wc = vm->hactive * dsi_buf_bpp;
ps_bpp_mode = ps_wc;
switch (dsi->format) {
case MIPI_DSI_FMT_RGB888:
ps_bpp_mode |= PACKED_PS_24BIT_RGB888;
break;
case MIPI_DSI_FMT_RGB666:
ps_bpp_mode |= PACKED_PS_18BIT_RGB666;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
ps_bpp_mode |= LOOSELY_PS_18BIT_RGB666;
break;
case MIPI_DSI_FMT_RGB565:
ps_bpp_mode |= PACKED_PS_16BIT_RGB565;
break;
}
writel(vm->vactive, dsi->regs + DSI_VACT_NL);
writel(ps_bpp_mode, dsi->regs + DSI_PSCTRL);
writel(ps_wc, dsi->regs + DSI_HSTX_CKL_WC);
}
static void dsi_rxtx_control(struct mtk_dsi *dsi)
{
u32 tmp_reg;
switch (dsi->lanes) {
case 1:
tmp_reg = 1 << 2;
break;
case 2:
tmp_reg = 3 << 2;
break;
case 3:
tmp_reg = 7 << 2;
break;
case 4:
tmp_reg = 0xf << 2;
break;
default:
tmp_reg = 0xf << 2;
break;
}
writel(tmp_reg, dsi->regs + DSI_TXRX_CTRL);
}
static void dsi_ps_control(struct mtk_dsi *dsi)
{
unsigned int dsi_tmp_buf_bpp;
u32 tmp_reg;
switch (dsi->format) {
case MIPI_DSI_FMT_RGB888:
tmp_reg = PACKED_PS_24BIT_RGB888;
dsi_tmp_buf_bpp = 3;
break;
case MIPI_DSI_FMT_RGB666:
tmp_reg = LOOSELY_PS_18BIT_RGB666;
dsi_tmp_buf_bpp = 3;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
tmp_reg = PACKED_PS_18BIT_RGB666;
dsi_tmp_buf_bpp = 3;
break;
case MIPI_DSI_FMT_RGB565:
tmp_reg = PACKED_PS_16BIT_RGB565;
dsi_tmp_buf_bpp = 2;
break;
default:
tmp_reg = PACKED_PS_24BIT_RGB888;
dsi_tmp_buf_bpp = 3;
break;
}
tmp_reg += dsi->vm.hactive * dsi_tmp_buf_bpp & DSI_PS_WC;
writel(tmp_reg, dsi->regs + DSI_PSCTRL);
}
static void dsi_config_vdo_timing(struct mtk_dsi *dsi)
{
unsigned int horizontal_sync_active_byte;
unsigned int horizontal_backporch_byte;
unsigned int horizontal_frontporch_byte;
unsigned int dsi_tmp_buf_bpp;
struct videomode *vm = &dsi->vm;
if (dsi->format == MIPI_DSI_FMT_RGB565)
dsi_tmp_buf_bpp = 2;
else
dsi_tmp_buf_bpp = 3;
writel(vm->vsync_len, dsi->regs + DSI_VSA_NL);
writel(vm->vback_porch, dsi->regs + DSI_VBP_NL);
writel(vm->vfront_porch, dsi->regs + DSI_VFP_NL);
writel(vm->vactive, dsi->regs + DSI_VACT_NL);
horizontal_sync_active_byte = (vm->hsync_len * dsi_tmp_buf_bpp - 10);
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
horizontal_backporch_byte =
(vm->hback_porch * dsi_tmp_buf_bpp - 10);
else
horizontal_backporch_byte = ((vm->hback_porch + vm->hsync_len) *
dsi_tmp_buf_bpp - 10);
horizontal_frontporch_byte = (vm->hfront_porch * dsi_tmp_buf_bpp - 12);
writel(horizontal_sync_active_byte, dsi->regs + DSI_HSA_WC);
writel(horizontal_backporch_byte, dsi->regs + DSI_HBP_WC);
writel(horizontal_frontporch_byte, dsi->regs + DSI_HFP_WC);
dsi_ps_control(dsi);
}
static void mtk_dsi_start(struct mtk_dsi *dsi)
{
writel(0, dsi->regs + DSI_START);
writel(1, dsi->regs + DSI_START);
}
static void mtk_dsi_poweroff(struct mtk_dsi *dsi)
{
if (WARN_ON(dsi->refcount == 0))
return;
if (--dsi->refcount != 0)
return;
dsi_lane0_ulp_mode_enter(dsi);
dsi_clk_ulp_mode_enter(dsi);
mtk_dsi_disable(dsi);
clk_disable_unprepare(dsi->engine_clk);
clk_disable_unprepare(dsi->digital_clk);
phy_power_off(dsi->phy);
}
static void mtk_output_dsi_enable(struct mtk_dsi *dsi)
{
int ret;
if (dsi->enabled)
return;
if (dsi->panel) {
if (drm_panel_prepare(dsi->panel)) {
DRM_ERROR("failed to setup the panel\n");
return;
}
}
ret = mtk_dsi_poweron(dsi);
if (ret < 0) {
DRM_ERROR("failed to power on dsi\n");
return;
}
dsi_rxtx_control(dsi);
dsi_clk_ulp_mode_leave(dsi);
dsi_lane0_ulp_mode_leave(dsi);
dsi_clk_hs_mode(dsi, 0);
dsi_set_mode(dsi);
dsi_ps_control_vact(dsi);
dsi_config_vdo_timing(dsi);
dsi_set_mode(dsi);
dsi_clk_hs_mode(dsi, 1);
mtk_dsi_start(dsi);
dsi->enabled = true;
}
static void mtk_output_dsi_disable(struct mtk_dsi *dsi)
{
if (!dsi->enabled)
return;
if (dsi->panel) {
if (drm_panel_disable(dsi->panel)) {
DRM_ERROR("failed to disable the panel\n");
return;
}
}
mtk_dsi_poweroff(dsi);
dsi->enabled = false;
}
static void mtk_dsi_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_funcs mtk_dsi_encoder_funcs = {
.destroy = mtk_dsi_encoder_destroy,
};
static bool mtk_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static void mtk_dsi_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted)
{
struct mtk_dsi *dsi = encoder_to_dsi(encoder);
dsi->vm.pixelclock = adjusted->clock;
dsi->vm.hactive = adjusted->hdisplay;
dsi->vm.hback_porch = adjusted->htotal - adjusted->hsync_end;
dsi->vm.hfront_porch = adjusted->hsync_start - adjusted->hdisplay;
dsi->vm.hsync_len = adjusted->hsync_end - adjusted->hsync_start;
dsi->vm.vactive = adjusted->vdisplay;
dsi->vm.vback_porch = adjusted->vtotal - adjusted->vsync_end;
dsi->vm.vfront_porch = adjusted->vsync_start - adjusted->vdisplay;
dsi->vm.vsync_len = adjusted->vsync_end - adjusted->vsync_start;
}
static void mtk_dsi_encoder_disable(struct drm_encoder *encoder)
{
struct mtk_dsi *dsi = encoder_to_dsi(encoder);
mtk_output_dsi_disable(dsi);
}
static void mtk_dsi_encoder_enable(struct drm_encoder *encoder)
{
struct mtk_dsi *dsi = encoder_to_dsi(encoder);
mtk_output_dsi_enable(dsi);
}
static enum drm_connector_status mtk_dsi_connector_detect(
struct drm_connector *connector, bool force)
{
return connector_status_connected;
}
static int mtk_dsi_connector_get_modes(struct drm_connector *connector)
{
struct mtk_dsi *dsi = connector_to_dsi(connector);
return drm_panel_get_modes(dsi->panel);
}
static const struct drm_encoder_helper_funcs mtk_dsi_encoder_helper_funcs = {
.mode_fixup = mtk_dsi_encoder_mode_fixup,
.mode_set = mtk_dsi_encoder_mode_set,
.disable = mtk_dsi_encoder_disable,
.enable = mtk_dsi_encoder_enable,
};
static const struct drm_connector_funcs mtk_dsi_connector_funcs = {
.dpms = drm_atomic_helper_connector_dpms,
.detect = mtk_dsi_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static const struct drm_connector_helper_funcs
mtk_dsi_connector_helper_funcs = {
.get_modes = mtk_dsi_connector_get_modes,
};
static int mtk_drm_attach_bridge(struct drm_bridge *bridge,
struct drm_encoder *encoder)
{
int ret;
if (!bridge)
return -ENOENT;
encoder->bridge = bridge;
bridge->encoder = encoder;
ret = drm_bridge_attach(encoder->dev, bridge);
if (ret) {
DRM_ERROR("Failed to attach bridge to drm\n");
encoder->bridge = NULL;
bridge->encoder = NULL;
}
return ret;
}
static int mtk_dsi_create_connector(struct drm_device *drm, struct mtk_dsi *dsi)
{
int ret;
ret = drm_connector_init(drm, &dsi->conn, &mtk_dsi_connector_funcs,
DRM_MODE_CONNECTOR_DSI);
if (ret) {
DRM_ERROR("Failed to connector init to drm\n");
return ret;
}
drm_connector_helper_add(&dsi->conn, &mtk_dsi_connector_helper_funcs);
dsi->conn.dpms = DRM_MODE_DPMS_OFF;
drm_mode_connector_attach_encoder(&dsi->conn, &dsi->encoder);
if (dsi->panel) {
ret = drm_panel_attach(dsi->panel, &dsi->conn);
if (ret) {
DRM_ERROR("Failed to attach panel to drm\n");
goto err_connector_cleanup;
}
}
return 0;
err_connector_cleanup:
drm_connector_cleanup(&dsi->conn);
return ret;
}
static int mtk_dsi_create_conn_enc(struct drm_device *drm, struct mtk_dsi *dsi)
{
int ret;
ret = drm_encoder_init(drm, &dsi->encoder, &mtk_dsi_encoder_funcs,
DRM_MODE_ENCODER_DSI, NULL);
if (ret) {
DRM_ERROR("Failed to encoder init to drm\n");
return ret;
}
drm_encoder_helper_add(&dsi->encoder, &mtk_dsi_encoder_helper_funcs);
/*
* Currently display data paths are statically assigned to a crtc each.
* crtc 0 is OVL0 -> COLOR0 -> AAL -> OD -> RDMA0 -> UFOE -> DSI0
*/
dsi->encoder.possible_crtcs = 1;
/* If there's a bridge, attach to it and let it create the connector */
ret = mtk_drm_attach_bridge(dsi->bridge, &dsi->encoder);
if (ret) {
/* Otherwise create our own connector and attach to a panel */
ret = mtk_dsi_create_connector(drm, dsi);
if (ret)
goto err_encoder_cleanup;
}
return 0;
err_encoder_cleanup:
drm_encoder_cleanup(&dsi->encoder);
return ret;
}
static void mtk_dsi_destroy_conn_enc(struct mtk_dsi *dsi)
{
drm_encoder_cleanup(&dsi->encoder);
/* Skip connector cleanup if creation was delegated to the bridge */
if (dsi->conn.dev)
drm_connector_cleanup(&dsi->conn);
}
static void mtk_dsi_ddp_start(struct mtk_ddp_comp *comp)
{
struct mtk_dsi *dsi = container_of(comp, struct mtk_dsi, ddp_comp);
mtk_dsi_poweron(dsi);
}
static void mtk_dsi_ddp_stop(struct mtk_ddp_comp *comp)
{
struct mtk_dsi *dsi = container_of(comp, struct mtk_dsi, ddp_comp);
mtk_dsi_poweroff(dsi);
}
static const struct mtk_ddp_comp_funcs mtk_dsi_funcs = {
.start = mtk_dsi_ddp_start,
.stop = mtk_dsi_ddp_stop,
};
static int mtk_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct mtk_dsi *dsi = host_to_dsi(host);
dsi->lanes = device->lanes;
dsi->format = device->format;
dsi->mode_flags = device->mode_flags;
if (dsi->conn.dev)
drm_helper_hpd_irq_event(dsi->conn.dev);
return 0;
}
static int mtk_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct mtk_dsi *dsi = host_to_dsi(host);
if (dsi->conn.dev)
drm_helper_hpd_irq_event(dsi->conn.dev);
return 0;
}
static const struct mipi_dsi_host_ops mtk_dsi_ops = {
.attach = mtk_dsi_host_attach,
.detach = mtk_dsi_host_detach,
};
static int mtk_dsi_bind(struct device *dev, struct device *master, void *data)
{
int ret;
struct drm_device *drm = data;
struct mtk_dsi *dsi = dev_get_drvdata(dev);
ret = mtk_ddp_comp_register(drm, &dsi->ddp_comp);
if (ret < 0) {
dev_err(dev, "Failed to register component %s: %d\n",
dev->of_node->full_name, ret);
return ret;
}
ret = mipi_dsi_host_register(&dsi->host);
if (ret < 0) {
dev_err(dev, "failed to register DSI host: %d\n", ret);
goto err_ddp_comp_unregister;
}
ret = mtk_dsi_create_conn_enc(drm, dsi);
if (ret) {
DRM_ERROR("Encoder create failed with %d\n", ret);
goto err_unregister;
}
return 0;
err_unregister:
mipi_dsi_host_unregister(&dsi->host);
err_ddp_comp_unregister:
mtk_ddp_comp_unregister(drm, &dsi->ddp_comp);
return ret;
}
static void mtk_dsi_unbind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = data;
struct mtk_dsi *dsi = dev_get_drvdata(dev);
mtk_dsi_destroy_conn_enc(dsi);
mipi_dsi_host_unregister(&dsi->host);
mtk_ddp_comp_unregister(drm, &dsi->ddp_comp);
}
static const struct component_ops mtk_dsi_component_ops = {
.bind = mtk_dsi_bind,
.unbind = mtk_dsi_unbind,
};
static int mtk_dsi_probe(struct platform_device *pdev)
{
struct mtk_dsi *dsi;
struct device *dev = &pdev->dev;
struct device_node *remote_node, *endpoint;
struct resource *regs;
int comp_id;
int ret;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
dsi->host.ops = &mtk_dsi_ops;
dsi->host.dev = dev;
endpoint = of_graph_get_next_endpoint(dev->of_node, NULL);
if (endpoint) {
remote_node = of_graph_get_remote_port_parent(endpoint);
if (!remote_node) {
dev_err(dev, "No panel connected\n");
return -ENODEV;
}
dsi->bridge = of_drm_find_bridge(remote_node);
dsi->panel = of_drm_find_panel(remote_node);
of_node_put(remote_node);
if (!dsi->bridge && !dsi->panel) {
dev_info(dev, "Waiting for bridge or panel driver\n");
return -EPROBE_DEFER;
}
}
dsi->engine_clk = devm_clk_get(dev, "engine");
if (IS_ERR(dsi->engine_clk)) {
ret = PTR_ERR(dsi->engine_clk);
dev_err(dev, "Failed to get engine clock: %d\n", ret);
return ret;
}
dsi->digital_clk = devm_clk_get(dev, "digital");
if (IS_ERR(dsi->digital_clk)) {
ret = PTR_ERR(dsi->digital_clk);
dev_err(dev, "Failed to get digital clock: %d\n", ret);
return ret;
}
dsi->hs_clk = devm_clk_get(dev, "hs");
if (IS_ERR(dsi->hs_clk)) {
ret = PTR_ERR(dsi->hs_clk);
dev_err(dev, "Failed to get hs clock: %d\n", ret);
return ret;
}
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dsi->regs = devm_ioremap_resource(dev, regs);
if (IS_ERR(dsi->regs)) {
ret = PTR_ERR(dsi->regs);
dev_err(dev, "Failed to ioremap memory: %d\n", ret);
return ret;
}
dsi->phy = devm_phy_get(dev, "dphy");
if (IS_ERR(dsi->phy)) {
ret = PTR_ERR(dsi->phy);
dev_err(dev, "Failed to get MIPI-DPHY: %d\n", ret);
return ret;
}
comp_id = mtk_ddp_comp_get_id(dev->of_node, MTK_DSI);
if (comp_id < 0) {
dev_err(dev, "Failed to identify by alias: %d\n", comp_id);
return comp_id;
}
ret = mtk_ddp_comp_init(dev, dev->of_node, &dsi->ddp_comp, comp_id,
&mtk_dsi_funcs);
if (ret) {
dev_err(dev, "Failed to initialize component: %d\n", ret);
return ret;
}
platform_set_drvdata(pdev, dsi);
return component_add(&pdev->dev, &mtk_dsi_component_ops);
}
static int mtk_dsi_remove(struct platform_device *pdev)
{
struct mtk_dsi *dsi = platform_get_drvdata(pdev);
mtk_output_dsi_disable(dsi);
component_del(&pdev->dev, &mtk_dsi_component_ops);
return 0;
}
static const struct of_device_id mtk_dsi_of_match[] = {
{ .compatible = "mediatek,mt8173-dsi" },
{ },
};
struct platform_driver mtk_dsi_driver = {
.probe = mtk_dsi_probe,
.remove = mtk_dsi_remove,
.driver = {
.name = "mtk-dsi",
.of_match_table = mtk_dsi_of_match,
},
};