linux/drivers/gpu/drm/i915/i915_irq.c
Ander Conselvan de Oliveira cc3f90f063 drm/i915/glk: Reuse broxton code for geminilake
Geminilake is mostly backwards compatible with broxton, so change most
of the IS_BROXTON() checks to IS_GEN9_LP(). Differences between the
platforms will be implemented in follow-up patches.

v2: Don't reuse broxton's path in intel_update_max_cdclk().
    Don't set plane count as in broxton.

v3: Rebase

v4: Include the check intel_bios_is_port_hpd_inverted().
    Commit message.

v5: Leave i915_dmc_info() out; glk's csr version != bxt's. (Rodrigo)

v6: Rebase.

v7: Convert a few mode IS_BROXTON() occurances in pps, ddi, dsi and pll
    code. (Rodrigo)

v8: Squash a couple of DDI patches with more conversions. (Rodrigo)

Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Reviewed-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: Ander Conselvan de Oliveira <ander.conselvan.de.oliveira@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1480667037-11215-2-git-send-email-ander.conselvan.de.oliveira@intel.com
2016-12-02 16:38:56 +02:00

4320 lines
120 KiB
C

/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
*/
/*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/sysrq.h>
#include <linux/slab.h>
#include <linux/circ_buf.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
/**
* DOC: interrupt handling
*
* These functions provide the basic support for enabling and disabling the
* interrupt handling support. There's a lot more functionality in i915_irq.c
* and related files, but that will be described in separate chapters.
*/
static const u32 hpd_ilk[HPD_NUM_PINS] = {
[HPD_PORT_A] = DE_DP_A_HOTPLUG,
};
static const u32 hpd_ivb[HPD_NUM_PINS] = {
[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
};
static const u32 hpd_bdw[HPD_NUM_PINS] = {
[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
};
static const u32 hpd_ibx[HPD_NUM_PINS] = {
[HPD_CRT] = SDE_CRT_HOTPLUG,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG
};
static const u32 hpd_cpt[HPD_NUM_PINS] = {
[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
};
static const u32 hpd_spt[HPD_NUM_PINS] = {
[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
};
static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
[HPD_CRT] = CRT_HOTPLUG_INT_EN,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
};
static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
static const u32 hpd_status_i915[HPD_NUM_PINS] = {
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
/* BXT hpd list */
static const u32 hpd_bxt[HPD_NUM_PINS] = {
[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
};
/* IIR can theoretically queue up two events. Be paranoid. */
#define GEN8_IRQ_RESET_NDX(type, which) do { \
I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
POSTING_READ(GEN8_##type##_IMR(which)); \
I915_WRITE(GEN8_##type##_IER(which), 0); \
I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
POSTING_READ(GEN8_##type##_IIR(which)); \
I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
POSTING_READ(GEN8_##type##_IIR(which)); \
} while (0)
#define GEN5_IRQ_RESET(type) do { \
I915_WRITE(type##IMR, 0xffffffff); \
POSTING_READ(type##IMR); \
I915_WRITE(type##IER, 0); \
I915_WRITE(type##IIR, 0xffffffff); \
POSTING_READ(type##IIR); \
I915_WRITE(type##IIR, 0xffffffff); \
POSTING_READ(type##IIR); \
} while (0)
/*
* We should clear IMR at preinstall/uninstall, and just check at postinstall.
*/
static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
i915_reg_t reg)
{
u32 val = I915_READ(reg);
if (val == 0)
return;
WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
i915_mmio_reg_offset(reg), val);
I915_WRITE(reg, 0xffffffff);
POSTING_READ(reg);
I915_WRITE(reg, 0xffffffff);
POSTING_READ(reg);
}
#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
POSTING_READ(GEN8_##type##_IMR(which)); \
} while (0)
#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
gen5_assert_iir_is_zero(dev_priv, type##IIR); \
I915_WRITE(type##IER, (ier_val)); \
I915_WRITE(type##IMR, (imr_val)); \
POSTING_READ(type##IMR); \
} while (0)
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
/* For display hotplug interrupt */
static inline void
i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
uint32_t mask,
uint32_t bits)
{
uint32_t val;
assert_spin_locked(&dev_priv->irq_lock);
WARN_ON(bits & ~mask);
val = I915_READ(PORT_HOTPLUG_EN);
val &= ~mask;
val |= bits;
I915_WRITE(PORT_HOTPLUG_EN, val);
}
/**
* i915_hotplug_interrupt_update - update hotplug interrupt enable
* @dev_priv: driver private
* @mask: bits to update
* @bits: bits to enable
* NOTE: the HPD enable bits are modified both inside and outside
* of an interrupt context. To avoid that read-modify-write cycles
* interfer, these bits are protected by a spinlock. Since this
* function is usually not called from a context where the lock is
* held already, this function acquires the lock itself. A non-locking
* version is also available.
*/
void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
uint32_t mask,
uint32_t bits)
{
spin_lock_irq(&dev_priv->irq_lock);
i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
spin_unlock_irq(&dev_priv->irq_lock);
}
/**
* ilk_update_display_irq - update DEIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
void ilk_update_display_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t new_val;
assert_spin_locked(&dev_priv->irq_lock);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
new_val = dev_priv->irq_mask;
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != dev_priv->irq_mask) {
dev_priv->irq_mask = new_val;
I915_WRITE(DEIMR, dev_priv->irq_mask);
POSTING_READ(DEIMR);
}
}
/**
* ilk_update_gt_irq - update GTIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
assert_spin_locked(&dev_priv->irq_lock);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
dev_priv->gt_irq_mask &= ~interrupt_mask;
dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
}
void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
{
ilk_update_gt_irq(dev_priv, mask, mask);
POSTING_READ_FW(GTIMR);
}
void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
{
ilk_update_gt_irq(dev_priv, mask, 0);
}
static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
{
return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
}
static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
{
return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
}
static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
{
return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
}
/**
* snb_update_pm_irq - update GEN6_PMIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t new_val;
WARN_ON(enabled_irq_mask & ~interrupt_mask);
assert_spin_locked(&dev_priv->irq_lock);
new_val = dev_priv->pm_imr;
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != dev_priv->pm_imr) {
dev_priv->pm_imr = new_val;
I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
POSTING_READ(gen6_pm_imr(dev_priv));
}
}
void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
{
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
snb_update_pm_irq(dev_priv, mask, mask);
}
static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
{
snb_update_pm_irq(dev_priv, mask, 0);
}
void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
{
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
__gen6_mask_pm_irq(dev_priv, mask);
}
void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
{
i915_reg_t reg = gen6_pm_iir(dev_priv);
assert_spin_locked(&dev_priv->irq_lock);
I915_WRITE(reg, reset_mask);
I915_WRITE(reg, reset_mask);
POSTING_READ(reg);
}
void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
{
assert_spin_locked(&dev_priv->irq_lock);
dev_priv->pm_ier |= enable_mask;
I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
gen6_unmask_pm_irq(dev_priv, enable_mask);
/* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
}
void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
{
assert_spin_locked(&dev_priv->irq_lock);
dev_priv->pm_ier &= ~disable_mask;
__gen6_mask_pm_irq(dev_priv, disable_mask);
I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
/* though a barrier is missing here, but don't really need a one */
}
void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
{
spin_lock_irq(&dev_priv->irq_lock);
gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
dev_priv->rps.pm_iir = 0;
spin_unlock_irq(&dev_priv->irq_lock);
}
void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
{
if (READ_ONCE(dev_priv->rps.interrupts_enabled))
return;
spin_lock_irq(&dev_priv->irq_lock);
WARN_ON_ONCE(dev_priv->rps.pm_iir);
WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
dev_priv->rps.interrupts_enabled = true;
gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
spin_unlock_irq(&dev_priv->irq_lock);
}
u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
{
return (mask & ~dev_priv->rps.pm_intr_keep);
}
void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
{
if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
return;
spin_lock_irq(&dev_priv->irq_lock);
dev_priv->rps.interrupts_enabled = false;
I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
spin_unlock_irq(&dev_priv->irq_lock);
synchronize_irq(dev_priv->drm.irq);
/* Now that we will not be generating any more work, flush any
* outsanding tasks. As we are called on the RPS idle path,
* we will reset the GPU to minimum frequencies, so the current
* state of the worker can be discarded.
*/
cancel_work_sync(&dev_priv->rps.work);
gen6_reset_rps_interrupts(dev_priv);
}
void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
{
spin_lock_irq(&dev_priv->irq_lock);
gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
spin_unlock_irq(&dev_priv->irq_lock);
}
void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
{
spin_lock_irq(&dev_priv->irq_lock);
if (!dev_priv->guc.interrupts_enabled) {
WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
dev_priv->pm_guc_events);
dev_priv->guc.interrupts_enabled = true;
gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
}
spin_unlock_irq(&dev_priv->irq_lock);
}
void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
{
spin_lock_irq(&dev_priv->irq_lock);
dev_priv->guc.interrupts_enabled = false;
gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
spin_unlock_irq(&dev_priv->irq_lock);
synchronize_irq(dev_priv->drm.irq);
gen9_reset_guc_interrupts(dev_priv);
}
/**
* bdw_update_port_irq - update DE port interrupt
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t new_val;
uint32_t old_val;
assert_spin_locked(&dev_priv->irq_lock);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
old_val = I915_READ(GEN8_DE_PORT_IMR);
new_val = old_val;
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != old_val) {
I915_WRITE(GEN8_DE_PORT_IMR, new_val);
POSTING_READ(GEN8_DE_PORT_IMR);
}
}
/**
* bdw_update_pipe_irq - update DE pipe interrupt
* @dev_priv: driver private
* @pipe: pipe whose interrupt to update
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
enum pipe pipe,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t new_val;
assert_spin_locked(&dev_priv->irq_lock);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
new_val = dev_priv->de_irq_mask[pipe];
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != dev_priv->de_irq_mask[pipe]) {
dev_priv->de_irq_mask[pipe] = new_val;
I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
}
}
/**
* ibx_display_interrupt_update - update SDEIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask)
{
uint32_t sdeimr = I915_READ(SDEIMR);
sdeimr &= ~interrupt_mask;
sdeimr |= (~enabled_irq_mask & interrupt_mask);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
assert_spin_locked(&dev_priv->irq_lock);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
I915_WRITE(SDEIMR, sdeimr);
POSTING_READ(SDEIMR);
}
static void
__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
u32 enable_mask, u32 status_mask)
{
i915_reg_t reg = PIPESTAT(pipe);
u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
assert_spin_locked(&dev_priv->irq_lock);
WARN_ON(!intel_irqs_enabled(dev_priv));
if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
status_mask & ~PIPESTAT_INT_STATUS_MASK,
"pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
pipe_name(pipe), enable_mask, status_mask))
return;
if ((pipestat & enable_mask) == enable_mask)
return;
dev_priv->pipestat_irq_mask[pipe] |= status_mask;
/* Enable the interrupt, clear any pending status */
pipestat |= enable_mask | status_mask;
I915_WRITE(reg, pipestat);
POSTING_READ(reg);
}
static void
__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
u32 enable_mask, u32 status_mask)
{
i915_reg_t reg = PIPESTAT(pipe);
u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
assert_spin_locked(&dev_priv->irq_lock);
WARN_ON(!intel_irqs_enabled(dev_priv));
if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
status_mask & ~PIPESTAT_INT_STATUS_MASK,
"pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
pipe_name(pipe), enable_mask, status_mask))
return;
if ((pipestat & enable_mask) == 0)
return;
dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
pipestat &= ~enable_mask;
I915_WRITE(reg, pipestat);
POSTING_READ(reg);
}
static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
{
u32 enable_mask = status_mask << 16;
/*
* On pipe A we don't support the PSR interrupt yet,
* on pipe B and C the same bit MBZ.
*/
if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
return 0;
/*
* On pipe B and C we don't support the PSR interrupt yet, on pipe
* A the same bit is for perf counters which we don't use either.
*/
if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
return 0;
enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
SPRITE0_FLIP_DONE_INT_EN_VLV |
SPRITE1_FLIP_DONE_INT_EN_VLV);
if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
return enable_mask;
}
void
i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
u32 status_mask)
{
u32 enable_mask;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
status_mask);
else
enable_mask = status_mask << 16;
__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
}
void
i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
u32 status_mask)
{
u32 enable_mask;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
status_mask);
else
enable_mask = status_mask << 16;
__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
}
/**
* i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
* @dev_priv: i915 device private
*/
static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
{
if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
return;
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
if (INTEL_GEN(dev_priv) >= 4)
i915_enable_pipestat(dev_priv, PIPE_A,
PIPE_LEGACY_BLC_EVENT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
}
/*
* This timing diagram depicts the video signal in and
* around the vertical blanking period.
*
* Assumptions about the fictitious mode used in this example:
* vblank_start >= 3
* vsync_start = vblank_start + 1
* vsync_end = vblank_start + 2
* vtotal = vblank_start + 3
*
* start of vblank:
* latch double buffered registers
* increment frame counter (ctg+)
* generate start of vblank interrupt (gen4+)
* |
* | frame start:
* | generate frame start interrupt (aka. vblank interrupt) (gmch)
* | may be shifted forward 1-3 extra lines via PIPECONF
* | |
* | | start of vsync:
* | | generate vsync interrupt
* | | |
* ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
* . \hs/ . \hs/ \hs/ \hs/ . \hs/
* ----va---> <-----------------vb--------------------> <--------va-------------
* | | <----vs-----> |
* -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
* -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
* -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
* | | |
* last visible pixel first visible pixel
* | increment frame counter (gen3/4)
* pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
*
* x = horizontal active
* _ = horizontal blanking
* hs = horizontal sync
* va = vertical active
* vb = vertical blanking
* vs = vertical sync
* vbs = vblank_start (number)
*
* Summary:
* - most events happen at the start of horizontal sync
* - frame start happens at the start of horizontal blank, 1-4 lines
* (depending on PIPECONF settings) after the start of vblank
* - gen3/4 pixel and frame counter are synchronized with the start
* of horizontal active on the first line of vertical active
*/
/* Called from drm generic code, passed a 'crtc', which
* we use as a pipe index
*/
static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
i915_reg_t high_frame, low_frame;
u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
pipe);
const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
htotal = mode->crtc_htotal;
hsync_start = mode->crtc_hsync_start;
vbl_start = mode->crtc_vblank_start;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vbl_start = DIV_ROUND_UP(vbl_start, 2);
/* Convert to pixel count */
vbl_start *= htotal;
/* Start of vblank event occurs at start of hsync */
vbl_start -= htotal - hsync_start;
high_frame = PIPEFRAME(pipe);
low_frame = PIPEFRAMEPIXEL(pipe);
/*
* High & low register fields aren't synchronized, so make sure
* we get a low value that's stable across two reads of the high
* register.
*/
do {
high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
low = I915_READ(low_frame);
high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
} while (high1 != high2);
high1 >>= PIPE_FRAME_HIGH_SHIFT;
pixel = low & PIPE_PIXEL_MASK;
low >>= PIPE_FRAME_LOW_SHIFT;
/*
* The frame counter increments at beginning of active.
* Cook up a vblank counter by also checking the pixel
* counter against vblank start.
*/
return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
}
static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
}
/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
const struct drm_display_mode *mode = &crtc->base.hwmode;
enum pipe pipe = crtc->pipe;
int position, vtotal;
vtotal = mode->crtc_vtotal;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vtotal /= 2;
if (IS_GEN2(dev_priv))
position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
else
position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
/*
* On HSW, the DSL reg (0x70000) appears to return 0 if we
* read it just before the start of vblank. So try it again
* so we don't accidentally end up spanning a vblank frame
* increment, causing the pipe_update_end() code to squak at us.
*
* The nature of this problem means we can't simply check the ISR
* bit and return the vblank start value; nor can we use the scanline
* debug register in the transcoder as it appears to have the same
* problem. We may need to extend this to include other platforms,
* but so far testing only shows the problem on HSW.
*/
if (HAS_DDI(dev_priv) && !position) {
int i, temp;
for (i = 0; i < 100; i++) {
udelay(1);
temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
DSL_LINEMASK_GEN3;
if (temp != position) {
position = temp;
break;
}
}
}
/*
* See update_scanline_offset() for the details on the
* scanline_offset adjustment.
*/
return (position + crtc->scanline_offset) % vtotal;
}
static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
unsigned int flags, int *vpos, int *hpos,
ktime_t *stime, ktime_t *etime,
const struct drm_display_mode *mode)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
pipe);
int position;
int vbl_start, vbl_end, hsync_start, htotal, vtotal;
bool in_vbl = true;
int ret = 0;
unsigned long irqflags;
if (WARN_ON(!mode->crtc_clock)) {
DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
"pipe %c\n", pipe_name(pipe));
return 0;
}
htotal = mode->crtc_htotal;
hsync_start = mode->crtc_hsync_start;
vtotal = mode->crtc_vtotal;
vbl_start = mode->crtc_vblank_start;
vbl_end = mode->crtc_vblank_end;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
vbl_start = DIV_ROUND_UP(vbl_start, 2);
vbl_end /= 2;
vtotal /= 2;
}
ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
/*
* Lock uncore.lock, as we will do multiple timing critical raw
* register reads, potentially with preemption disabled, so the
* following code must not block on uncore.lock.
*/
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
/* Get optional system timestamp before query. */
if (stime)
*stime = ktime_get();
if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
/* No obvious pixelcount register. Only query vertical
* scanout position from Display scan line register.
*/
position = __intel_get_crtc_scanline(intel_crtc);
} else {
/* Have access to pixelcount since start of frame.
* We can split this into vertical and horizontal
* scanout position.
*/
position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
/* convert to pixel counts */
vbl_start *= htotal;
vbl_end *= htotal;
vtotal *= htotal;
/*
* In interlaced modes, the pixel counter counts all pixels,
* so one field will have htotal more pixels. In order to avoid
* the reported position from jumping backwards when the pixel
* counter is beyond the length of the shorter field, just
* clamp the position the length of the shorter field. This
* matches how the scanline counter based position works since
* the scanline counter doesn't count the two half lines.
*/
if (position >= vtotal)
position = vtotal - 1;
/*
* Start of vblank interrupt is triggered at start of hsync,
* just prior to the first active line of vblank. However we
* consider lines to start at the leading edge of horizontal
* active. So, should we get here before we've crossed into
* the horizontal active of the first line in vblank, we would
* not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
* always add htotal-hsync_start to the current pixel position.
*/
position = (position + htotal - hsync_start) % vtotal;
}
/* Get optional system timestamp after query. */
if (etime)
*etime = ktime_get();
/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
in_vbl = position >= vbl_start && position < vbl_end;
/*
* While in vblank, position will be negative
* counting up towards 0 at vbl_end. And outside
* vblank, position will be positive counting
* up since vbl_end.
*/
if (position >= vbl_start)
position -= vbl_end;
else
position += vtotal - vbl_end;
if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
*vpos = position;
*hpos = 0;
} else {
*vpos = position / htotal;
*hpos = position - (*vpos * htotal);
}
/* In vblank? */
if (in_vbl)
ret |= DRM_SCANOUTPOS_IN_VBLANK;
return ret;
}
int intel_get_crtc_scanline(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
unsigned long irqflags;
int position;
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
position = __intel_get_crtc_scanline(crtc);
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
return position;
}
static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
int *max_error,
struct timeval *vblank_time,
unsigned flags)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *crtc;
if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
DRM_ERROR("Invalid crtc %u\n", pipe);
return -EINVAL;
}
/* Get drm_crtc to timestamp: */
crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
if (crtc == NULL) {
DRM_ERROR("Invalid crtc %u\n", pipe);
return -EINVAL;
}
if (!crtc->base.hwmode.crtc_clock) {
DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
return -EBUSY;
}
/* Helper routine in DRM core does all the work: */
return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
vblank_time, flags,
&crtc->base.hwmode);
}
static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
{
u32 busy_up, busy_down, max_avg, min_avg;
u8 new_delay;
spin_lock(&mchdev_lock);
I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
new_delay = dev_priv->ips.cur_delay;
I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
busy_up = I915_READ(RCPREVBSYTUPAVG);
busy_down = I915_READ(RCPREVBSYTDNAVG);
max_avg = I915_READ(RCBMAXAVG);
min_avg = I915_READ(RCBMINAVG);
/* Handle RCS change request from hw */
if (busy_up > max_avg) {
if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
new_delay = dev_priv->ips.cur_delay - 1;
if (new_delay < dev_priv->ips.max_delay)
new_delay = dev_priv->ips.max_delay;
} else if (busy_down < min_avg) {
if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
new_delay = dev_priv->ips.cur_delay + 1;
if (new_delay > dev_priv->ips.min_delay)
new_delay = dev_priv->ips.min_delay;
}
if (ironlake_set_drps(dev_priv, new_delay))
dev_priv->ips.cur_delay = new_delay;
spin_unlock(&mchdev_lock);
return;
}
static void notify_ring(struct intel_engine_cs *engine)
{
smp_store_mb(engine->breadcrumbs.irq_posted, true);
if (intel_engine_wakeup(engine))
trace_i915_gem_request_notify(engine);
}
static void vlv_c0_read(struct drm_i915_private *dev_priv,
struct intel_rps_ei *ei)
{
ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
}
static bool vlv_c0_above(struct drm_i915_private *dev_priv,
const struct intel_rps_ei *old,
const struct intel_rps_ei *now,
int threshold)
{
u64 time, c0;
unsigned int mul = 100;
if (old->cz_clock == 0)
return false;
if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
mul <<= 8;
time = now->cz_clock - old->cz_clock;
time *= threshold * dev_priv->czclk_freq;
/* Workload can be split between render + media, e.g. SwapBuffers
* being blitted in X after being rendered in mesa. To account for
* this we need to combine both engines into our activity counter.
*/
c0 = now->render_c0 - old->render_c0;
c0 += now->media_c0 - old->media_c0;
c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
return c0 >= time;
}
void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
{
vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
dev_priv->rps.up_ei = dev_priv->rps.down_ei;
}
static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
{
struct intel_rps_ei now;
u32 events = 0;
if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
return 0;
vlv_c0_read(dev_priv, &now);
if (now.cz_clock == 0)
return 0;
if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
if (!vlv_c0_above(dev_priv,
&dev_priv->rps.down_ei, &now,
dev_priv->rps.down_threshold))
events |= GEN6_PM_RP_DOWN_THRESHOLD;
dev_priv->rps.down_ei = now;
}
if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
if (vlv_c0_above(dev_priv,
&dev_priv->rps.up_ei, &now,
dev_priv->rps.up_threshold))
events |= GEN6_PM_RP_UP_THRESHOLD;
dev_priv->rps.up_ei = now;
}
return events;
}
static bool any_waiters(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, dev_priv, id)
if (intel_engine_has_waiter(engine))
return true;
return false;
}
static void gen6_pm_rps_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, struct drm_i915_private, rps.work);
bool client_boost;
int new_delay, adj, min, max;
u32 pm_iir;
spin_lock_irq(&dev_priv->irq_lock);
/* Speed up work cancelation during disabling rps interrupts. */
if (!dev_priv->rps.interrupts_enabled) {
spin_unlock_irq(&dev_priv->irq_lock);
return;
}
pm_iir = dev_priv->rps.pm_iir;
dev_priv->rps.pm_iir = 0;
/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
client_boost = dev_priv->rps.client_boost;
dev_priv->rps.client_boost = false;
spin_unlock_irq(&dev_priv->irq_lock);
/* Make sure we didn't queue anything we're not going to process. */
WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
return;
mutex_lock(&dev_priv->rps.hw_lock);
pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
adj = dev_priv->rps.last_adj;
new_delay = dev_priv->rps.cur_freq;
min = dev_priv->rps.min_freq_softlimit;
max = dev_priv->rps.max_freq_softlimit;
if (client_boost || any_waiters(dev_priv))
max = dev_priv->rps.max_freq;
if (client_boost && new_delay < dev_priv->rps.boost_freq) {
new_delay = dev_priv->rps.boost_freq;
adj = 0;
} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
if (adj > 0)
adj *= 2;
else /* CHV needs even encode values */
adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
/*
* For better performance, jump directly
* to RPe if we're below it.
*/
if (new_delay < dev_priv->rps.efficient_freq - adj) {
new_delay = dev_priv->rps.efficient_freq;
adj = 0;
}
} else if (client_boost || any_waiters(dev_priv)) {
adj = 0;
} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
new_delay = dev_priv->rps.efficient_freq;
else
new_delay = dev_priv->rps.min_freq_softlimit;
adj = 0;
} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
if (adj < 0)
adj *= 2;
else /* CHV needs even encode values */
adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
} else { /* unknown event */
adj = 0;
}
dev_priv->rps.last_adj = adj;
/* sysfs frequency interfaces may have snuck in while servicing the
* interrupt
*/
new_delay += adj;
new_delay = clamp_t(int, new_delay, min, max);
intel_set_rps(dev_priv, new_delay);
mutex_unlock(&dev_priv->rps.hw_lock);
}
/**
* ivybridge_parity_work - Workqueue called when a parity error interrupt
* occurred.
* @work: workqueue struct
*
* Doesn't actually do anything except notify userspace. As a consequence of
* this event, userspace should try to remap the bad rows since statistically
* it is likely the same row is more likely to go bad again.
*/
static void ivybridge_parity_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, struct drm_i915_private, l3_parity.error_work);
u32 error_status, row, bank, subbank;
char *parity_event[6];
uint32_t misccpctl;
uint8_t slice = 0;
/* We must turn off DOP level clock gating to access the L3 registers.
* In order to prevent a get/put style interface, acquire struct mutex
* any time we access those registers.
*/
mutex_lock(&dev_priv->drm.struct_mutex);
/* If we've screwed up tracking, just let the interrupt fire again */
if (WARN_ON(!dev_priv->l3_parity.which_slice))
goto out;
misccpctl = I915_READ(GEN7_MISCCPCTL);
I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
POSTING_READ(GEN7_MISCCPCTL);
while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
i915_reg_t reg;
slice--;
if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
break;
dev_priv->l3_parity.which_slice &= ~(1<<slice);
reg = GEN7_L3CDERRST1(slice);
error_status = I915_READ(reg);
row = GEN7_PARITY_ERROR_ROW(error_status);
bank = GEN7_PARITY_ERROR_BANK(error_status);
subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
POSTING_READ(reg);
parity_event[0] = I915_L3_PARITY_UEVENT "=1";
parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
parity_event[5] = NULL;
kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
KOBJ_CHANGE, parity_event);
DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
slice, row, bank, subbank);
kfree(parity_event[4]);
kfree(parity_event[3]);
kfree(parity_event[2]);
kfree(parity_event[1]);
}
I915_WRITE(GEN7_MISCCPCTL, misccpctl);
out:
WARN_ON(dev_priv->l3_parity.which_slice);
spin_lock_irq(&dev_priv->irq_lock);
gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
spin_unlock_irq(&dev_priv->irq_lock);
mutex_unlock(&dev_priv->drm.struct_mutex);
}
static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
u32 iir)
{
if (!HAS_L3_DPF(dev_priv))
return;
spin_lock(&dev_priv->irq_lock);
gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
spin_unlock(&dev_priv->irq_lock);
iir &= GT_PARITY_ERROR(dev_priv);
if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
dev_priv->l3_parity.which_slice |= 1 << 1;
if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
dev_priv->l3_parity.which_slice |= 1 << 0;
queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
}
static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
u32 gt_iir)
{
if (gt_iir & GT_RENDER_USER_INTERRUPT)
notify_ring(dev_priv->engine[RCS]);
if (gt_iir & ILK_BSD_USER_INTERRUPT)
notify_ring(dev_priv->engine[VCS]);
}
static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
u32 gt_iir)
{
if (gt_iir & GT_RENDER_USER_INTERRUPT)
notify_ring(dev_priv->engine[RCS]);
if (gt_iir & GT_BSD_USER_INTERRUPT)
notify_ring(dev_priv->engine[VCS]);
if (gt_iir & GT_BLT_USER_INTERRUPT)
notify_ring(dev_priv->engine[BCS]);
if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
GT_BSD_CS_ERROR_INTERRUPT |
GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
if (gt_iir & GT_PARITY_ERROR(dev_priv))
ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
}
static __always_inline void
gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
{
if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
notify_ring(engine);
if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
tasklet_schedule(&engine->irq_tasklet);
}
static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
u32 master_ctl,
u32 gt_iir[4])
{
irqreturn_t ret = IRQ_NONE;
if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
if (gt_iir[0]) {
I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
ret = IRQ_HANDLED;
} else
DRM_ERROR("The master control interrupt lied (GT0)!\n");
}
if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
if (gt_iir[1]) {
I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
ret = IRQ_HANDLED;
} else
DRM_ERROR("The master control interrupt lied (GT1)!\n");
}
if (master_ctl & GEN8_GT_VECS_IRQ) {
gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
if (gt_iir[3]) {
I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
ret = IRQ_HANDLED;
} else
DRM_ERROR("The master control interrupt lied (GT3)!\n");
}
if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
if (gt_iir[2] & (dev_priv->pm_rps_events |
dev_priv->pm_guc_events)) {
I915_WRITE_FW(GEN8_GT_IIR(2),
gt_iir[2] & (dev_priv->pm_rps_events |
dev_priv->pm_guc_events));
ret = IRQ_HANDLED;
} else
DRM_ERROR("The master control interrupt lied (PM)!\n");
}
return ret;
}
static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
u32 gt_iir[4])
{
if (gt_iir[0]) {
gen8_cs_irq_handler(dev_priv->engine[RCS],
gt_iir[0], GEN8_RCS_IRQ_SHIFT);
gen8_cs_irq_handler(dev_priv->engine[BCS],
gt_iir[0], GEN8_BCS_IRQ_SHIFT);
}
if (gt_iir[1]) {
gen8_cs_irq_handler(dev_priv->engine[VCS],
gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
gen8_cs_irq_handler(dev_priv->engine[VCS2],
gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
}
if (gt_iir[3])
gen8_cs_irq_handler(dev_priv->engine[VECS],
gt_iir[3], GEN8_VECS_IRQ_SHIFT);
if (gt_iir[2] & dev_priv->pm_rps_events)
gen6_rps_irq_handler(dev_priv, gt_iir[2]);
if (gt_iir[2] & dev_priv->pm_guc_events)
gen9_guc_irq_handler(dev_priv, gt_iir[2]);
}
static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_A:
return val & PORTA_HOTPLUG_LONG_DETECT;
case PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_E:
return val & PORTE_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool spt_port_hotplug_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_A:
return val & PORTA_HOTPLUG_LONG_DETECT;
case PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
case PORT_D:
return val & PORTD_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_A:
return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool pch_port_hotplug_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
case PORT_D:
return val & PORTD_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
{
switch (port) {
case PORT_B:
return val & PORTB_HOTPLUG_INT_LONG_PULSE;
case PORT_C:
return val & PORTC_HOTPLUG_INT_LONG_PULSE;
case PORT_D:
return val & PORTD_HOTPLUG_INT_LONG_PULSE;
default:
return false;
}
}
/*
* Get a bit mask of pins that have triggered, and which ones may be long.
* This can be called multiple times with the same masks to accumulate
* hotplug detection results from several registers.
*
* Note that the caller is expected to zero out the masks initially.
*/
static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
u32 hotplug_trigger, u32 dig_hotplug_reg,
const u32 hpd[HPD_NUM_PINS],
bool long_pulse_detect(enum port port, u32 val))
{
enum port port;
int i;
for_each_hpd_pin(i) {
if ((hpd[i] & hotplug_trigger) == 0)
continue;
*pin_mask |= BIT(i);
if (!intel_hpd_pin_to_port(i, &port))
continue;
if (long_pulse_detect(port, dig_hotplug_reg))
*long_mask |= BIT(i);
}
DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
hotplug_trigger, dig_hotplug_reg, *pin_mask);
}
static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
{
wake_up_all(&dev_priv->gmbus_wait_queue);
}
static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
{
wake_up_all(&dev_priv->gmbus_wait_queue);
}
#if defined(CONFIG_DEBUG_FS)
static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe,
uint32_t crc0, uint32_t crc1,
uint32_t crc2, uint32_t crc3,
uint32_t crc4)
{
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
struct intel_pipe_crc_entry *entry;
int head, tail;
spin_lock(&pipe_crc->lock);
if (!pipe_crc->entries) {
spin_unlock(&pipe_crc->lock);
DRM_DEBUG_KMS("spurious interrupt\n");
return;
}
head = pipe_crc->head;
tail = pipe_crc->tail;
if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
spin_unlock(&pipe_crc->lock);
DRM_ERROR("CRC buffer overflowing\n");
return;
}
entry = &pipe_crc->entries[head];
entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm,
pipe);
entry->crc[0] = crc0;
entry->crc[1] = crc1;
entry->crc[2] = crc2;
entry->crc[3] = crc3;
entry->crc[4] = crc4;
head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
pipe_crc->head = head;
spin_unlock(&pipe_crc->lock);
wake_up_interruptible(&pipe_crc->wq);
}
#else
static inline void
display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe,
uint32_t crc0, uint32_t crc1,
uint32_t crc2, uint32_t crc3,
uint32_t crc4) {}
#endif
static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
display_pipe_crc_irq_handler(dev_priv, pipe,
I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
0, 0, 0, 0);
}
static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
display_pipe_crc_irq_handler(dev_priv, pipe,
I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
}
static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
uint32_t res1, res2;
if (INTEL_GEN(dev_priv) >= 3)
res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
else
res1 = 0;
if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
else
res2 = 0;
display_pipe_crc_irq_handler(dev_priv, pipe,
I915_READ(PIPE_CRC_RES_RED(pipe)),
I915_READ(PIPE_CRC_RES_GREEN(pipe)),
I915_READ(PIPE_CRC_RES_BLUE(pipe)),
res1, res2);
}
/* The RPS events need forcewake, so we add them to a work queue and mask their
* IMR bits until the work is done. Other interrupts can be processed without
* the work queue. */
static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
{
if (pm_iir & dev_priv->pm_rps_events) {
spin_lock(&dev_priv->irq_lock);
gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
if (dev_priv->rps.interrupts_enabled) {
dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
schedule_work(&dev_priv->rps.work);
}
spin_unlock(&dev_priv->irq_lock);
}
if (INTEL_INFO(dev_priv)->gen >= 8)
return;
if (HAS_VEBOX(dev_priv)) {
if (pm_iir & PM_VEBOX_USER_INTERRUPT)
notify_ring(dev_priv->engine[VECS]);
if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
}
}
static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
{
if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
/* Sample the log buffer flush related bits & clear them out now
* itself from the message identity register to minimize the
* probability of losing a flush interrupt, when there are back
* to back flush interrupts.
* There can be a new flush interrupt, for different log buffer
* type (like for ISR), whilst Host is handling one (for DPC).
* Since same bit is used in message register for ISR & DPC, it
* could happen that GuC sets the bit for 2nd interrupt but Host
* clears out the bit on handling the 1st interrupt.
*/
u32 msg, flush;
msg = I915_READ(SOFT_SCRATCH(15));
flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
if (flush) {
/* Clear the message bits that are handled */
I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
/* Handle flush interrupt in bottom half */
queue_work(dev_priv->guc.log.flush_wq,
&dev_priv->guc.log.flush_work);
dev_priv->guc.log.flush_interrupt_count++;
} else {
/* Not clearing of unhandled event bits won't result in
* re-triggering of the interrupt.
*/
}
}
}
static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
bool ret;
ret = drm_handle_vblank(&dev_priv->drm, pipe);
if (ret)
intel_finish_page_flip_mmio(dev_priv, pipe);
return ret;
}
static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
u32 iir, u32 pipe_stats[I915_MAX_PIPES])
{
int pipe;
spin_lock(&dev_priv->irq_lock);
if (!dev_priv->display_irqs_enabled) {
spin_unlock(&dev_priv->irq_lock);
return;
}
for_each_pipe(dev_priv, pipe) {
i915_reg_t reg;
u32 mask, iir_bit = 0;
/*
* PIPESTAT bits get signalled even when the interrupt is
* disabled with the mask bits, and some of the status bits do
* not generate interrupts at all (like the underrun bit). Hence
* we need to be careful that we only handle what we want to
* handle.
*/
/* fifo underruns are filterered in the underrun handler. */
mask = PIPE_FIFO_UNDERRUN_STATUS;
switch (pipe) {
case PIPE_A:
iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
break;
case PIPE_B:
iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
break;
case PIPE_C:
iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
break;
}
if (iir & iir_bit)
mask |= dev_priv->pipestat_irq_mask[pipe];
if (!mask)
continue;
reg = PIPESTAT(pipe);
mask |= PIPESTAT_INT_ENABLE_MASK;
pipe_stats[pipe] = I915_READ(reg) & mask;
/*
* Clear the PIPE*STAT regs before the IIR
*/
if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
PIPESTAT_INT_STATUS_MASK))
I915_WRITE(reg, pipe_stats[pipe]);
}
spin_unlock(&dev_priv->irq_lock);
}
static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u32 pipe_stats[I915_MAX_PIPES])
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
intel_pipe_handle_vblank(dev_priv, pipe))
intel_check_page_flip(dev_priv, pipe);
if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
intel_finish_page_flip_cs(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
gmbus_irq_handler(dev_priv);
}
static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
{
u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
if (hotplug_status)
I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
return hotplug_status;
}
static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_status)
{
u32 pin_mask = 0, long_mask = 0;
if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)) {
u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
if (hotplug_trigger) {
intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
hotplug_trigger, hpd_status_g4x,
i9xx_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
dp_aux_irq_handler(dev_priv);
} else {
u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
if (hotplug_trigger) {
intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
hotplug_trigger, hpd_status_i915,
i9xx_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
}
}
static irqreturn_t valleyview_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
do {
u32 iir, gt_iir, pm_iir;
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 hotplug_status = 0;
u32 ier = 0;
gt_iir = I915_READ(GTIIR);
pm_iir = I915_READ(GEN6_PMIIR);
iir = I915_READ(VLV_IIR);
if (gt_iir == 0 && pm_iir == 0 && iir == 0)
break;
ret = IRQ_HANDLED;
/*
* Theory on interrupt generation, based on empirical evidence:
*
* x = ((VLV_IIR & VLV_IER) ||
* (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
* (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
*
* A CPU interrupt will only be raised when 'x' has a 0->1 edge.
* Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
* guarantee the CPU interrupt will be raised again even if we
* don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
* bits this time around.
*/
I915_WRITE(VLV_MASTER_IER, 0);
ier = I915_READ(VLV_IER);
I915_WRITE(VLV_IER, 0);
if (gt_iir)
I915_WRITE(GTIIR, gt_iir);
if (pm_iir)
I915_WRITE(GEN6_PMIIR, pm_iir);
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
/*
* VLV_IIR is single buffered, and reflects the level
* from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
*/
if (iir)
I915_WRITE(VLV_IIR, iir);
I915_WRITE(VLV_IER, ier);
I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
POSTING_READ(VLV_MASTER_IER);
if (gt_iir)
snb_gt_irq_handler(dev_priv, gt_iir);
if (pm_iir)
gen6_rps_irq_handler(dev_priv, pm_iir);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
} while (0);
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
static irqreturn_t cherryview_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
do {
u32 master_ctl, iir;
u32 gt_iir[4] = {};
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 hotplug_status = 0;
u32 ier = 0;
master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
iir = I915_READ(VLV_IIR);
if (master_ctl == 0 && iir == 0)
break;
ret = IRQ_HANDLED;
/*
* Theory on interrupt generation, based on empirical evidence:
*
* x = ((VLV_IIR & VLV_IER) ||
* ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
* (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
*
* A CPU interrupt will only be raised when 'x' has a 0->1 edge.
* Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
* guarantee the CPU interrupt will be raised again even if we
* don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
* bits this time around.
*/
I915_WRITE(GEN8_MASTER_IRQ, 0);
ier = I915_READ(VLV_IER);
I915_WRITE(VLV_IER, 0);
gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
/*
* VLV_IIR is single buffered, and reflects the level
* from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
*/
if (iir)
I915_WRITE(VLV_IIR, iir);
I915_WRITE(VLV_IER, ier);
I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
POSTING_READ(GEN8_MASTER_IRQ);
gen8_gt_irq_handler(dev_priv, gt_iir);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
} while (0);
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_trigger,
const u32 hpd[HPD_NUM_PINS])
{
u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
/*
* Somehow the PCH doesn't seem to really ack the interrupt to the CPU
* unless we touch the hotplug register, even if hotplug_trigger is
* zero. Not acking leads to "The master control interrupt lied (SDE)!"
* errors.
*/
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
if (!hotplug_trigger) {
u32 mask = PORTA_HOTPLUG_STATUS_MASK |
PORTD_HOTPLUG_STATUS_MASK |
PORTC_HOTPLUG_STATUS_MASK |
PORTB_HOTPLUG_STATUS_MASK;
dig_hotplug_reg &= ~mask;
}
I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
if (!hotplug_trigger)
return;
intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd,
pch_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
int pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
if (pch_iir & SDE_AUDIO_POWER_MASK) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
SDE_AUDIO_POWER_SHIFT);
DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
port_name(port));
}
if (pch_iir & SDE_AUX_MASK)
dp_aux_irq_handler(dev_priv);
if (pch_iir & SDE_GMBUS)
gmbus_irq_handler(dev_priv);
if (pch_iir & SDE_AUDIO_HDCP_MASK)
DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
if (pch_iir & SDE_AUDIO_TRANS_MASK)
DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
if (pch_iir & SDE_POISON)
DRM_ERROR("PCH poison interrupt\n");
if (pch_iir & SDE_FDI_MASK)
for_each_pipe(dev_priv, pipe)
DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
I915_READ(FDI_RX_IIR(pipe)));
if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
if (pch_iir & SDE_TRANSA_FIFO_UNDER)
intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
if (pch_iir & SDE_TRANSB_FIFO_UNDER)
intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
}
static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
{
u32 err_int = I915_READ(GEN7_ERR_INT);
enum pipe pipe;
if (err_int & ERR_INT_POISON)
DRM_ERROR("Poison interrupt\n");
for_each_pipe(dev_priv, pipe) {
if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
if (IS_IVYBRIDGE(dev_priv))
ivb_pipe_crc_irq_handler(dev_priv, pipe);
else
hsw_pipe_crc_irq_handler(dev_priv, pipe);
}
}
I915_WRITE(GEN7_ERR_INT, err_int);
}
static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
{
u32 serr_int = I915_READ(SERR_INT);
if (serr_int & SERR_INT_POISON)
DRM_ERROR("PCH poison interrupt\n");
if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
I915_WRITE(SERR_INT, serr_int);
}
static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
int pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
SDE_AUDIO_POWER_SHIFT_CPT);
DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
port_name(port));
}
if (pch_iir & SDE_AUX_MASK_CPT)
dp_aux_irq_handler(dev_priv);
if (pch_iir & SDE_GMBUS_CPT)
gmbus_irq_handler(dev_priv);
if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
if (pch_iir & SDE_FDI_MASK_CPT)
for_each_pipe(dev_priv, pipe)
DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
I915_READ(FDI_RX_IIR(pipe)));
if (pch_iir & SDE_ERROR_CPT)
cpt_serr_int_handler(dev_priv);
}
static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
~SDE_PORTE_HOTPLUG_SPT;
u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
u32 pin_mask = 0, long_mask = 0;
if (hotplug_trigger) {
u32 dig_hotplug_reg;
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd_spt,
spt_port_hotplug_long_detect);
}
if (hotplug2_trigger) {
u32 dig_hotplug_reg;
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
dig_hotplug_reg, hpd_spt,
spt_port_hotplug2_long_detect);
}
if (pin_mask)
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
if (pch_iir & SDE_GMBUS_CPT)
gmbus_irq_handler(dev_priv);
}
static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_trigger,
const u32 hpd[HPD_NUM_PINS])
{
u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd,
ilk_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
u32 de_iir)
{
enum pipe pipe;
u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
if (hotplug_trigger)
ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
if (de_iir & DE_AUX_CHANNEL_A)
dp_aux_irq_handler(dev_priv);
if (de_iir & DE_GSE)
intel_opregion_asle_intr(dev_priv);
if (de_iir & DE_POISON)
DRM_ERROR("Poison interrupt\n");
for_each_pipe(dev_priv, pipe) {
if (de_iir & DE_PIPE_VBLANK(pipe) &&
intel_pipe_handle_vblank(dev_priv, pipe))
intel_check_page_flip(dev_priv, pipe);
if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
if (de_iir & DE_PIPE_CRC_DONE(pipe))
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
/* plane/pipes map 1:1 on ilk+ */
if (de_iir & DE_PLANE_FLIP_DONE(pipe))
intel_finish_page_flip_cs(dev_priv, pipe);
}
/* check event from PCH */
if (de_iir & DE_PCH_EVENT) {
u32 pch_iir = I915_READ(SDEIIR);
if (HAS_PCH_CPT(dev_priv))
cpt_irq_handler(dev_priv, pch_iir);
else
ibx_irq_handler(dev_priv, pch_iir);
/* should clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
ironlake_rps_change_irq_handler(dev_priv);
}
static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
u32 de_iir)
{
enum pipe pipe;
u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
if (hotplug_trigger)
ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
if (de_iir & DE_ERR_INT_IVB)
ivb_err_int_handler(dev_priv);
if (de_iir & DE_AUX_CHANNEL_A_IVB)
dp_aux_irq_handler(dev_priv);
if (de_iir & DE_GSE_IVB)
intel_opregion_asle_intr(dev_priv);
for_each_pipe(dev_priv, pipe) {
if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
intel_pipe_handle_vblank(dev_priv, pipe))
intel_check_page_flip(dev_priv, pipe);
/* plane/pipes map 1:1 on ilk+ */
if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
intel_finish_page_flip_cs(dev_priv, pipe);
}
/* check event from PCH */
if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
u32 pch_iir = I915_READ(SDEIIR);
cpt_irq_handler(dev_priv, pch_iir);
/* clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
}
/*
* To handle irqs with the minimum potential races with fresh interrupts, we:
* 1 - Disable Master Interrupt Control.
* 2 - Find the source(s) of the interrupt.
* 3 - Clear the Interrupt Identity bits (IIR).
* 4 - Process the interrupt(s) that had bits set in the IIRs.
* 5 - Re-enable Master Interrupt Control.
*/
static irqreturn_t ironlake_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 de_iir, gt_iir, de_ier, sde_ier = 0;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
/* disable master interrupt before clearing iir */
de_ier = I915_READ(DEIER);
I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
POSTING_READ(DEIER);
/* Disable south interrupts. We'll only write to SDEIIR once, so further
* interrupts will will be stored on its back queue, and then we'll be
* able to process them after we restore SDEIER (as soon as we restore
* it, we'll get an interrupt if SDEIIR still has something to process
* due to its back queue). */
if (!HAS_PCH_NOP(dev_priv)) {
sde_ier = I915_READ(SDEIER);
I915_WRITE(SDEIER, 0);
POSTING_READ(SDEIER);
}
/* Find, clear, then process each source of interrupt */
gt_iir = I915_READ(GTIIR);
if (gt_iir) {
I915_WRITE(GTIIR, gt_iir);
ret = IRQ_HANDLED;
if (INTEL_GEN(dev_priv) >= 6)
snb_gt_irq_handler(dev_priv, gt_iir);
else
ilk_gt_irq_handler(dev_priv, gt_iir);
}
de_iir = I915_READ(DEIIR);
if (de_iir) {
I915_WRITE(DEIIR, de_iir);
ret = IRQ_HANDLED;
if (INTEL_GEN(dev_priv) >= 7)
ivb_display_irq_handler(dev_priv, de_iir);
else
ilk_display_irq_handler(dev_priv, de_iir);
}
if (INTEL_GEN(dev_priv) >= 6) {
u32 pm_iir = I915_READ(GEN6_PMIIR);
if (pm_iir) {
I915_WRITE(GEN6_PMIIR, pm_iir);
ret = IRQ_HANDLED;
gen6_rps_irq_handler(dev_priv, pm_iir);
}
}
I915_WRITE(DEIER, de_ier);
POSTING_READ(DEIER);
if (!HAS_PCH_NOP(dev_priv)) {
I915_WRITE(SDEIER, sde_ier);
POSTING_READ(SDEIER);
}
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_trigger,
const u32 hpd[HPD_NUM_PINS])
{
u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd,
bxt_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
static irqreturn_t
gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
{
irqreturn_t ret = IRQ_NONE;
u32 iir;
enum pipe pipe;
if (master_ctl & GEN8_DE_MISC_IRQ) {
iir = I915_READ(GEN8_DE_MISC_IIR);
if (iir) {
I915_WRITE(GEN8_DE_MISC_IIR, iir);
ret = IRQ_HANDLED;
if (iir & GEN8_DE_MISC_GSE)
intel_opregion_asle_intr(dev_priv);
else
DRM_ERROR("Unexpected DE Misc interrupt\n");
}
else
DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
}
if (master_ctl & GEN8_DE_PORT_IRQ) {
iir = I915_READ(GEN8_DE_PORT_IIR);
if (iir) {
u32 tmp_mask;
bool found = false;
I915_WRITE(GEN8_DE_PORT_IIR, iir);
ret = IRQ_HANDLED;
tmp_mask = GEN8_AUX_CHANNEL_A;
if (INTEL_INFO(dev_priv)->gen >= 9)
tmp_mask |= GEN9_AUX_CHANNEL_B |
GEN9_AUX_CHANNEL_C |
GEN9_AUX_CHANNEL_D;
if (iir & tmp_mask) {
dp_aux_irq_handler(dev_priv);
found = true;
}
if (IS_GEN9_LP(dev_priv)) {
tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
if (tmp_mask) {
bxt_hpd_irq_handler(dev_priv, tmp_mask,
hpd_bxt);
found = true;
}
} else if (IS_BROADWELL(dev_priv)) {
tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
if (tmp_mask) {
ilk_hpd_irq_handler(dev_priv,
tmp_mask, hpd_bdw);
found = true;
}
}
if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
gmbus_irq_handler(dev_priv);
found = true;
}
if (!found)
DRM_ERROR("Unexpected DE Port interrupt\n");
}
else
DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
}
for_each_pipe(dev_priv, pipe) {
u32 flip_done, fault_errors;
if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
continue;
iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
if (!iir) {
DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
continue;
}
ret = IRQ_HANDLED;
I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
if (iir & GEN8_PIPE_VBLANK &&
intel_pipe_handle_vblank(dev_priv, pipe))
intel_check_page_flip(dev_priv, pipe);
flip_done = iir;
if (INTEL_INFO(dev_priv)->gen >= 9)
flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
else
flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
if (flip_done)
intel_finish_page_flip_cs(dev_priv, pipe);
if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
hsw_pipe_crc_irq_handler(dev_priv, pipe);
if (iir & GEN8_PIPE_FIFO_UNDERRUN)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
fault_errors = iir;
if (INTEL_INFO(dev_priv)->gen >= 9)
fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
else
fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
if (fault_errors)
DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
pipe_name(pipe),
fault_errors);
}
if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
master_ctl & GEN8_DE_PCH_IRQ) {
/*
* FIXME(BDW): Assume for now that the new interrupt handling
* scheme also closed the SDE interrupt handling race we've seen
* on older pch-split platforms. But this needs testing.
*/
iir = I915_READ(SDEIIR);
if (iir) {
I915_WRITE(SDEIIR, iir);
ret = IRQ_HANDLED;
if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
spt_irq_handler(dev_priv, iir);
else
cpt_irq_handler(dev_priv, iir);
} else {
/*
* Like on previous PCH there seems to be something
* fishy going on with forwarding PCH interrupts.
*/
DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
}
}
return ret;
}
static irqreturn_t gen8_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 master_ctl;
u32 gt_iir[4] = {};
irqreturn_t ret;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
if (!master_ctl)
return IRQ_NONE;
I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
/* Find, clear, then process each source of interrupt */
ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
gen8_gt_irq_handler(dev_priv, gt_iir);
ret |= gen8_de_irq_handler(dev_priv, master_ctl);
I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
POSTING_READ_FW(GEN8_MASTER_IRQ);
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
static void i915_error_wake_up(struct drm_i915_private *dev_priv)
{
/*
* Notify all waiters for GPU completion events that reset state has
* been changed, and that they need to restart their wait after
* checking for potential errors (and bail out to drop locks if there is
* a gpu reset pending so that i915_error_work_func can acquire them).
*/
/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
wake_up_all(&dev_priv->gpu_error.wait_queue);
/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
wake_up_all(&dev_priv->pending_flip_queue);
}
/**
* i915_reset_and_wakeup - do process context error handling work
* @dev_priv: i915 device private
*
* Fire an error uevent so userspace can see that a hang or error
* was detected.
*/
static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
{
struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
DRM_DEBUG_DRIVER("resetting chip\n");
kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
/*
* In most cases it's guaranteed that we get here with an RPM
* reference held, for example because there is a pending GPU
* request that won't finish until the reset is done. This
* isn't the case at least when we get here by doing a
* simulated reset via debugs, so get an RPM reference.
*/
intel_runtime_pm_get(dev_priv);
intel_prepare_reset(dev_priv);
do {
/*
* All state reset _must_ be completed before we update the
* reset counter, for otherwise waiters might miss the reset
* pending state and not properly drop locks, resulting in
* deadlocks with the reset work.
*/
if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
i915_reset(dev_priv);
mutex_unlock(&dev_priv->drm.struct_mutex);
}
/* We need to wait for anyone holding the lock to wakeup */
} while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
I915_RESET_IN_PROGRESS,
TASK_UNINTERRUPTIBLE,
HZ));
intel_finish_reset(dev_priv);
intel_runtime_pm_put(dev_priv);
if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
kobject_uevent_env(kobj,
KOBJ_CHANGE, reset_done_event);
/*
* Note: The wake_up also serves as a memory barrier so that
* waiters see the updated value of the dev_priv->gpu_error.
*/
wake_up_all(&dev_priv->gpu_error.reset_queue);
}
static inline void
i915_err_print_instdone(struct drm_i915_private *dev_priv,
struct intel_instdone *instdone)
{
int slice;
int subslice;
pr_err(" INSTDONE: 0x%08x\n", instdone->instdone);
if (INTEL_GEN(dev_priv) <= 3)
return;
pr_err(" SC_INSTDONE: 0x%08x\n", instdone->slice_common);
if (INTEL_GEN(dev_priv) <= 6)
return;
for_each_instdone_slice_subslice(dev_priv, slice, subslice)
pr_err(" SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
slice, subslice, instdone->sampler[slice][subslice]);
for_each_instdone_slice_subslice(dev_priv, slice, subslice)
pr_err(" ROW_INSTDONE[%d][%d]: 0x%08x\n",
slice, subslice, instdone->row[slice][subslice]);
}
static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
{
u32 eir;
if (!IS_GEN2(dev_priv))
I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
if (INTEL_GEN(dev_priv) < 4)
I915_WRITE(IPEIR, I915_READ(IPEIR));
else
I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
I915_WRITE(EIR, I915_READ(EIR));
eir = I915_READ(EIR);
if (eir) {
/*
* some errors might have become stuck,
* mask them.
*/
DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
I915_WRITE(EMR, I915_READ(EMR) | eir);
I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
}
}
/**
* i915_handle_error - handle a gpu error
* @dev_priv: i915 device private
* @engine_mask: mask representing engines that are hung
* Do some basic checking of register state at error time and
* dump it to the syslog. Also call i915_capture_error_state() to make
* sure we get a record and make it available in debugfs. Fire a uevent
* so userspace knows something bad happened (should trigger collection
* of a ring dump etc.).
* @fmt: Error message format string
*/
void i915_handle_error(struct drm_i915_private *dev_priv,
u32 engine_mask,
const char *fmt, ...)
{
va_list args;
char error_msg[80];
va_start(args, fmt);
vscnprintf(error_msg, sizeof(error_msg), fmt, args);
va_end(args);
i915_capture_error_state(dev_priv, engine_mask, error_msg);
i915_clear_error_registers(dev_priv);
if (!engine_mask)
return;
if (test_and_set_bit(I915_RESET_IN_PROGRESS,
&dev_priv->gpu_error.flags))
return;
/*
* Wakeup waiting processes so that the reset function
* i915_reset_and_wakeup doesn't deadlock trying to grab
* various locks. By bumping the reset counter first, the woken
* processes will see a reset in progress and back off,
* releasing their locks and then wait for the reset completion.
* We must do this for _all_ gpu waiters that might hold locks
* that the reset work needs to acquire.
*
* Note: The wake_up also provides a memory barrier to ensure that the
* waiters see the updated value of the reset flags.
*/
i915_error_wake_up(dev_priv);
i915_reset_and_wakeup(dev_priv);
}
/* Called from drm generic code, passed 'crtc' which
* we use as a pipe index
*/
static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ilk_enable_display_irq(dev_priv, bit);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
/* Called from drm generic code, passed 'crtc' which
* we use as a pipe index
*/
static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_disable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ilk_disable_display_irq(dev_priv, bit);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
{
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void ibx_irq_reset(struct drm_i915_private *dev_priv)
{
if (HAS_PCH_NOP(dev_priv))
return;
GEN5_IRQ_RESET(SDE);
if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
I915_WRITE(SERR_INT, 0xffffffff);
}
/*
* SDEIER is also touched by the interrupt handler to work around missed PCH
* interrupts. Hence we can't update it after the interrupt handler is enabled -
* instead we unconditionally enable all PCH interrupt sources here, but then
* only unmask them as needed with SDEIMR.
*
* This function needs to be called before interrupts are enabled.
*/
static void ibx_irq_pre_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (HAS_PCH_NOP(dev_priv))
return;
WARN_ON(I915_READ(SDEIER) != 0);
I915_WRITE(SDEIER, 0xffffffff);
POSTING_READ(SDEIER);
}
static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
{
GEN5_IRQ_RESET(GT);
if (INTEL_GEN(dev_priv) >= 6)
GEN5_IRQ_RESET(GEN6_PM);
}
static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
if (IS_CHERRYVIEW(dev_priv))
I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
else
I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
for_each_pipe(dev_priv, pipe) {
I915_WRITE(PIPESTAT(pipe),
PIPE_FIFO_UNDERRUN_STATUS |
PIPESTAT_INT_STATUS_MASK);
dev_priv->pipestat_irq_mask[pipe] = 0;
}
GEN5_IRQ_RESET(VLV_);
dev_priv->irq_mask = ~0;
}
static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
{
u32 pipestat_mask;
u32 enable_mask;
enum pipe pipe;
pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
PIPE_CRC_DONE_INTERRUPT_STATUS;
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
for_each_pipe(dev_priv, pipe)
i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
enable_mask = I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
if (IS_CHERRYVIEW(dev_priv))
enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
WARN_ON(dev_priv->irq_mask != ~0);
dev_priv->irq_mask = ~enable_mask;
GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
}
/* drm_dma.h hooks
*/
static void ironlake_irq_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE(HWSTAM, 0xffffffff);
GEN5_IRQ_RESET(DE);
if (IS_GEN7(dev_priv))
I915_WRITE(GEN7_ERR_INT, 0xffffffff);
gen5_gt_irq_reset(dev_priv);
ibx_irq_reset(dev_priv);
}
static void valleyview_irq_preinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE(VLV_MASTER_IER, 0);
POSTING_READ(VLV_MASTER_IER);
gen5_gt_irq_reset(dev_priv);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_reset(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
{
GEN8_IRQ_RESET_NDX(GT, 0);
GEN8_IRQ_RESET_NDX(GT, 1);
GEN8_IRQ_RESET_NDX(GT, 2);
GEN8_IRQ_RESET_NDX(GT, 3);
}
static void gen8_irq_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe;
I915_WRITE(GEN8_MASTER_IRQ, 0);
POSTING_READ(GEN8_MASTER_IRQ);
gen8_gt_irq_reset(dev_priv);
for_each_pipe(dev_priv, pipe)
if (intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(pipe)))
GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
GEN5_IRQ_RESET(GEN8_DE_PORT_);
GEN5_IRQ_RESET(GEN8_DE_MISC_);
GEN5_IRQ_RESET(GEN8_PCU_);
if (HAS_PCH_SPLIT(dev_priv))
ibx_irq_reset(dev_priv);
}
void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
unsigned int pipe_mask)
{
uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
enum pipe pipe;
spin_lock_irq(&dev_priv->irq_lock);
for_each_pipe_masked(dev_priv, pipe, pipe_mask)
GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
dev_priv->de_irq_mask[pipe],
~dev_priv->de_irq_mask[pipe] | extra_ier);
spin_unlock_irq(&dev_priv->irq_lock);
}
void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
unsigned int pipe_mask)
{
enum pipe pipe;
spin_lock_irq(&dev_priv->irq_lock);
for_each_pipe_masked(dev_priv, pipe, pipe_mask)
GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
spin_unlock_irq(&dev_priv->irq_lock);
/* make sure we're done processing display irqs */
synchronize_irq(dev_priv->drm.irq);
}
static void cherryview_irq_preinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE(GEN8_MASTER_IRQ, 0);
POSTING_READ(GEN8_MASTER_IRQ);
gen8_gt_irq_reset(dev_priv);
GEN5_IRQ_RESET(GEN8_PCU_);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_reset(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
}
static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
const u32 hpd[HPD_NUM_PINS])
{
struct intel_encoder *encoder;
u32 enabled_irqs = 0;
for_each_intel_encoder(&dev_priv->drm, encoder)
if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
enabled_irqs |= hpd[encoder->hpd_pin];
return enabled_irqs;
}
static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, hotplug, enabled_irqs;
if (HAS_PCH_IBX(dev_priv)) {
hotplug_irqs = SDE_HOTPLUG_MASK;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
} else {
hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
}
ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
/*
* Enable digital hotplug on the PCH, and configure the DP short pulse
* duration to 2ms (which is the minimum in the Display Port spec).
* The pulse duration bits are reserved on LPT+.
*/
hotplug = I915_READ(PCH_PORT_HOTPLUG);
hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
/*
* When CPU and PCH are on the same package, port A
* HPD must be enabled in both north and south.
*/
if (HAS_PCH_LPT_LP(dev_priv))
hotplug |= PORTA_HOTPLUG_ENABLE;
I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
}
static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, hotplug, enabled_irqs;
hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
/* Enable digital hotplug on the PCH */
hotplug = I915_READ(PCH_PORT_HOTPLUG);
hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
hotplug = I915_READ(PCH_PORT_HOTPLUG2);
hotplug |= PORTE_HOTPLUG_ENABLE;
I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
}
static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, hotplug, enabled_irqs;
if (INTEL_GEN(dev_priv) >= 8) {
hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
} else if (INTEL_GEN(dev_priv) >= 7) {
hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
} else {
hotplug_irqs = DE_DP_A_HOTPLUG;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
}
/*
* Enable digital hotplug on the CPU, and configure the DP short pulse
* duration to 2ms (which is the minimum in the Display Port spec)
* The pulse duration bits are reserved on HSW+.
*/
hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
ibx_hpd_irq_setup(dev_priv);
}
static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, hotplug, enabled_irqs;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
hotplug = I915_READ(PCH_PORT_HOTPLUG);
hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
PORTA_HOTPLUG_ENABLE;
DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
hotplug, enabled_irqs);
hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
/*
* For BXT invert bit has to be set based on AOB design
* for HPD detection logic, update it based on VBT fields.
*/
if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
hotplug |= BXT_DDIA_HPD_INVERT;
if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
hotplug |= BXT_DDIB_HPD_INVERT;
if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
hotplug |= BXT_DDIC_HPD_INVERT;
I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
}
static void ibx_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 mask;
if (HAS_PCH_NOP(dev_priv))
return;
if (HAS_PCH_IBX(dev_priv))
mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
else
mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
gen5_assert_iir_is_zero(dev_priv, SDEIIR);
I915_WRITE(SDEIMR, ~mask);
}
static void gen5_gt_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 pm_irqs, gt_irqs;
pm_irqs = gt_irqs = 0;
dev_priv->gt_irq_mask = ~0;
if (HAS_L3_DPF(dev_priv)) {
/* L3 parity interrupt is always unmasked. */
dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
gt_irqs |= GT_PARITY_ERROR(dev_priv);
}
gt_irqs |= GT_RENDER_USER_INTERRUPT;
if (IS_GEN5(dev_priv)) {
gt_irqs |= ILK_BSD_USER_INTERRUPT;
} else {
gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
}
GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
if (INTEL_GEN(dev_priv) >= 6) {
/*
* RPS interrupts will get enabled/disabled on demand when RPS
* itself is enabled/disabled.
*/
if (HAS_VEBOX(dev_priv)) {
pm_irqs |= PM_VEBOX_USER_INTERRUPT;
dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
}
dev_priv->pm_imr = 0xffffffff;
GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
}
}
static int ironlake_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 display_mask, extra_mask;
if (INTEL_GEN(dev_priv) >= 7) {
display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
DE_PLANEB_FLIP_DONE_IVB |
DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
DE_DP_A_HOTPLUG_IVB);
} else {
display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
DE_AUX_CHANNEL_A |
DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
DE_POISON);
extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
DE_DP_A_HOTPLUG);
}
dev_priv->irq_mask = ~display_mask;
I915_WRITE(HWSTAM, 0xeffe);
ibx_irq_pre_postinstall(dev);
GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
gen5_gt_irq_postinstall(dev);
ibx_irq_postinstall(dev);
if (IS_IRONLAKE_M(dev_priv)) {
/* Enable PCU event interrupts
*
* spinlocking not required here for correctness since interrupt
* setup is guaranteed to run in single-threaded context. But we
* need it to make the assert_spin_locked happy. */
spin_lock_irq(&dev_priv->irq_lock);
ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
spin_unlock_irq(&dev_priv->irq_lock);
}
return 0;
}
void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
{
assert_spin_locked(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
return;
dev_priv->display_irqs_enabled = true;
if (intel_irqs_enabled(dev_priv)) {
vlv_display_irq_reset(dev_priv);
vlv_display_irq_postinstall(dev_priv);
}
}
void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
{
assert_spin_locked(&dev_priv->irq_lock);
if (!dev_priv->display_irqs_enabled)
return;
dev_priv->display_irqs_enabled = false;
if (intel_irqs_enabled(dev_priv))
vlv_display_irq_reset(dev_priv);
}
static int valleyview_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
gen5_gt_irq_postinstall(dev);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_postinstall(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
POSTING_READ(VLV_MASTER_IER);
return 0;
}
static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
{
/* These are interrupts we'll toggle with the ring mask register */
uint32_t gt_interrupts[] = {
GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
0,
GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
};
if (HAS_L3_DPF(dev_priv))
gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
dev_priv->pm_ier = 0x0;
dev_priv->pm_imr = ~dev_priv->pm_ier;
GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
/*
* RPS interrupts will get enabled/disabled on demand when RPS itself
* is enabled/disabled. Same wil be the case for GuC interrupts.
*/
GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
}
static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
{
uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
uint32_t de_pipe_enables;
u32 de_port_masked = GEN8_AUX_CHANNEL_A;
u32 de_port_enables;
u32 de_misc_masked = GEN8_DE_MISC_GSE;
enum pipe pipe;
if (INTEL_INFO(dev_priv)->gen >= 9) {
de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
GEN9_AUX_CHANNEL_D;
if (IS_GEN9_LP(dev_priv))
de_port_masked |= BXT_DE_PORT_GMBUS;
} else {
de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
}
de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
GEN8_PIPE_FIFO_UNDERRUN;
de_port_enables = de_port_masked;
if (IS_GEN9_LP(dev_priv))
de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
else if (IS_BROADWELL(dev_priv))
de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
for_each_pipe(dev_priv, pipe)
if (intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(pipe)))
GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
dev_priv->de_irq_mask[pipe],
de_pipe_enables);
GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
}
static int gen8_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (HAS_PCH_SPLIT(dev_priv))
ibx_irq_pre_postinstall(dev);
gen8_gt_irq_postinstall(dev_priv);
gen8_de_irq_postinstall(dev_priv);
if (HAS_PCH_SPLIT(dev_priv))
ibx_irq_postinstall(dev);
I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
POSTING_READ(GEN8_MASTER_IRQ);
return 0;
}
static int cherryview_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
gen8_gt_irq_postinstall(dev_priv);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_postinstall(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
POSTING_READ(GEN8_MASTER_IRQ);
return 0;
}
static void gen8_irq_uninstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (!dev_priv)
return;
gen8_irq_reset(dev);
}
static void valleyview_irq_uninstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (!dev_priv)
return;
I915_WRITE(VLV_MASTER_IER, 0);
POSTING_READ(VLV_MASTER_IER);
gen5_gt_irq_reset(dev_priv);
I915_WRITE(HWSTAM, 0xffffffff);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_reset(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void cherryview_irq_uninstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (!dev_priv)
return;
I915_WRITE(GEN8_MASTER_IRQ, 0);
POSTING_READ(GEN8_MASTER_IRQ);
gen8_gt_irq_reset(dev_priv);
GEN5_IRQ_RESET(GEN8_PCU_);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_reset(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void ironlake_irq_uninstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (!dev_priv)
return;
ironlake_irq_reset(dev);
}
static void i8xx_irq_preinstall(struct drm_device * dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe;
for_each_pipe(dev_priv, pipe)
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE16(IMR, 0xffff);
I915_WRITE16(IER, 0x0);
POSTING_READ16(IER);
}
static int i8xx_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
I915_WRITE16(EMR,
~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
I915_WRITE16(IMR, dev_priv->irq_mask);
I915_WRITE16(IER,
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_USER_INTERRUPT);
POSTING_READ16(IER);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
return 0;
}
/*
* Returns true when a page flip has completed.
*/
static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
int plane, int pipe, u32 iir)
{
u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
if (!intel_pipe_handle_vblank(dev_priv, pipe))
return false;
if ((iir & flip_pending) == 0)
goto check_page_flip;
/* We detect FlipDone by looking for the change in PendingFlip from '1'
* to '0' on the following vblank, i.e. IIR has the Pendingflip
* asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
* the flip is completed (no longer pending). Since this doesn't raise
* an interrupt per se, we watch for the change at vblank.
*/
if (I915_READ16(ISR) & flip_pending)
goto check_page_flip;
intel_finish_page_flip_cs(dev_priv, pipe);
return true;
check_page_flip:
intel_check_page_flip(dev_priv, pipe);
return false;
}
static irqreturn_t i8xx_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
u16 iir, new_iir;
u32 pipe_stats[2];
int pipe;
u16 flip_mask =
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
irqreturn_t ret;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
ret = IRQ_NONE;
iir = I915_READ16(IIR);
if (iir == 0)
goto out;
while (iir & ~flip_mask) {
/* Can't rely on pipestat interrupt bit in iir as it might
* have been cleared after the pipestat interrupt was received.
* It doesn't set the bit in iir again, but it still produces
* interrupts (for non-MSI).
*/
spin_lock(&dev_priv->irq_lock);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
for_each_pipe(dev_priv, pipe) {
i915_reg_t reg = PIPESTAT(pipe);
pipe_stats[pipe] = I915_READ(reg);
/*
* Clear the PIPE*STAT regs before the IIR
*/
if (pipe_stats[pipe] & 0x8000ffff)
I915_WRITE(reg, pipe_stats[pipe]);
}
spin_unlock(&dev_priv->irq_lock);
I915_WRITE16(IIR, iir & ~flip_mask);
new_iir = I915_READ16(IIR); /* Flush posted writes */
if (iir & I915_USER_INTERRUPT)
notify_ring(dev_priv->engine[RCS]);
for_each_pipe(dev_priv, pipe) {
int plane = pipe;
if (HAS_FBC(dev_priv))
plane = !plane;
if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
i8xx_handle_vblank(dev_priv, plane, pipe, iir))
flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv,
pipe);
}
iir = new_iir;
}
ret = IRQ_HANDLED;
out:
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
static void i8xx_irq_uninstall(struct drm_device * dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe;
for_each_pipe(dev_priv, pipe) {
/* Clear enable bits; then clear status bits */
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
}
I915_WRITE16(IMR, 0xffff);
I915_WRITE16(IER, 0x0);
I915_WRITE16(IIR, I915_READ16(IIR));
}
static void i915_irq_preinstall(struct drm_device * dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe;
if (I915_HAS_HOTPLUG(dev_priv)) {
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
}
I915_WRITE16(HWSTAM, 0xeffe);
for_each_pipe(dev_priv, pipe)
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(IMR, 0xffffffff);
I915_WRITE(IER, 0x0);
POSTING_READ(IER);
}
static int i915_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 enable_mask;
I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
enable_mask =
I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_USER_INTERRUPT;
if (I915_HAS_HOTPLUG(dev_priv)) {
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
POSTING_READ(PORT_HOTPLUG_EN);
/* Enable in IER... */
enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
/* and unmask in IMR */
dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
}
I915_WRITE(IMR, dev_priv->irq_mask);
I915_WRITE(IER, enable_mask);
POSTING_READ(IER);
i915_enable_asle_pipestat(dev_priv);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
return 0;
}
/*
* Returns true when a page flip has completed.
*/
static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
int plane, int pipe, u32 iir)
{
u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
if (!intel_pipe_handle_vblank(dev_priv, pipe))
return false;
if ((iir & flip_pending) == 0)
goto check_page_flip;
/* We detect FlipDone by looking for the change in PendingFlip from '1'
* to '0' on the following vblank, i.e. IIR has the Pendingflip
* asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
* the flip is completed (no longer pending). Since this doesn't raise
* an interrupt per se, we watch for the change at vblank.
*/
if (I915_READ(ISR) & flip_pending)
goto check_page_flip;
intel_finish_page_flip_cs(dev_priv, pipe);
return true;
check_page_flip:
intel_check_page_flip(dev_priv, pipe);
return false;
}
static irqreturn_t i915_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
u32 flip_mask =
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
int pipe, ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
iir = I915_READ(IIR);
do {
bool irq_received = (iir & ~flip_mask) != 0;
bool blc_event = false;
/* Can't rely on pipestat interrupt bit in iir as it might
* have been cleared after the pipestat interrupt was received.
* It doesn't set the bit in iir again, but it still produces
* interrupts (for non-MSI).
*/
spin_lock(&dev_priv->irq_lock);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
for_each_pipe(dev_priv, pipe) {
i915_reg_t reg = PIPESTAT(pipe);
pipe_stats[pipe] = I915_READ(reg);
/* Clear the PIPE*STAT regs before the IIR */
if (pipe_stats[pipe] & 0x8000ffff) {
I915_WRITE(reg, pipe_stats[pipe]);
irq_received = true;
}
}
spin_unlock(&dev_priv->irq_lock);
if (!irq_received)
break;
/* Consume port. Then clear IIR or we'll miss events */
if (I915_HAS_HOTPLUG(dev_priv) &&
iir & I915_DISPLAY_PORT_INTERRUPT) {
u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
}
I915_WRITE(IIR, iir & ~flip_mask);
new_iir = I915_READ(IIR); /* Flush posted writes */
if (iir & I915_USER_INTERRUPT)
notify_ring(dev_priv->engine[RCS]);
for_each_pipe(dev_priv, pipe) {
int plane = pipe;
if (HAS_FBC(dev_priv))
plane = !plane;
if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
i915_handle_vblank(dev_priv, plane, pipe, iir))
flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
blc_event = true;
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv,
pipe);
}
if (blc_event || (iir & I915_ASLE_INTERRUPT))
intel_opregion_asle_intr(dev_priv);
/* With MSI, interrupts are only generated when iir
* transitions from zero to nonzero. If another bit got
* set while we were handling the existing iir bits, then
* we would never get another interrupt.
*
* This is fine on non-MSI as well, as if we hit this path
* we avoid exiting the interrupt handler only to generate
* another one.
*
* Note that for MSI this could cause a stray interrupt report
* if an interrupt landed in the time between writing IIR and
* the posting read. This should be rare enough to never
* trigger the 99% of 100,000 interrupts test for disabling
* stray interrupts.
*/
ret = IRQ_HANDLED;
iir = new_iir;
} while (iir & ~flip_mask);
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
static void i915_irq_uninstall(struct drm_device * dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe;
if (I915_HAS_HOTPLUG(dev_priv)) {
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
}
I915_WRITE16(HWSTAM, 0xffff);
for_each_pipe(dev_priv, pipe) {
/* Clear enable bits; then clear status bits */
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
}
I915_WRITE(IMR, 0xffffffff);
I915_WRITE(IER, 0x0);
I915_WRITE(IIR, I915_READ(IIR));
}
static void i965_irq_preinstall(struct drm_device * dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe;
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
I915_WRITE(HWSTAM, 0xeffe);
for_each_pipe(dev_priv, pipe)
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(IMR, 0xffffffff);
I915_WRITE(IER, 0x0);
POSTING_READ(IER);
}
static int i965_irq_postinstall(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
u32 enable_mask;
u32 error_mask;
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
enable_mask = ~dev_priv->irq_mask;
enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
enable_mask |= I915_USER_INTERRUPT;
if (IS_G4X(dev_priv))
enable_mask |= I915_BSD_USER_INTERRUPT;
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
/*
* Enable some error detection, note the instruction error mask
* bit is reserved, so we leave it masked.
*/
if (IS_G4X(dev_priv)) {
error_mask = ~(GM45_ERROR_PAGE_TABLE |
GM45_ERROR_MEM_PRIV |
GM45_ERROR_CP_PRIV |
I915_ERROR_MEMORY_REFRESH);
} else {
error_mask = ~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH);
}
I915_WRITE(EMR, error_mask);
I915_WRITE(IMR, dev_priv->irq_mask);
I915_WRITE(IER, enable_mask);
POSTING_READ(IER);
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
POSTING_READ(PORT_HOTPLUG_EN);
i915_enable_asle_pipestat(dev_priv);
return 0;
}
static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_en;
assert_spin_locked(&dev_priv->irq_lock);
/* Note HDMI and DP share hotplug bits */
/* enable bits are the same for all generations */
hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
/* Programming the CRT detection parameters tends
to generate a spurious hotplug event about three
seconds later. So just do it once.
*/
if (IS_G4X(dev_priv))
hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
/* Ignore TV since it's buggy */
i915_hotplug_interrupt_update_locked(dev_priv,
HOTPLUG_INT_EN_MASK |
CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
CRT_HOTPLUG_ACTIVATION_PERIOD_64,
hotplug_en);
}
static irqreturn_t i965_irq_handler(int irq, void *arg)
{
struct drm_device *dev = arg;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 iir, new_iir;
u32 pipe_stats[I915_MAX_PIPES];
int ret = IRQ_NONE, pipe;
u32 flip_mask =
I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(dev_priv);
iir = I915_READ(IIR);
for (;;) {
bool irq_received = (iir & ~flip_mask) != 0;
bool blc_event = false;
/* Can't rely on pipestat interrupt bit in iir as it might
* have been cleared after the pipestat interrupt was received.
* It doesn't set the bit in iir again, but it still produces
* interrupts (for non-MSI).
*/
spin_lock(&dev_priv->irq_lock);
if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
for_each_pipe(dev_priv, pipe) {
i915_reg_t reg = PIPESTAT(pipe);
pipe_stats[pipe] = I915_READ(reg);
/*
* Clear the PIPE*STAT regs before the IIR
*/
if (pipe_stats[pipe] & 0x8000ffff) {
I915_WRITE(reg, pipe_stats[pipe]);
irq_received = true;
}
}
spin_unlock(&dev_priv->irq_lock);
if (!irq_received)
break;
ret = IRQ_HANDLED;
/* Consume port. Then clear IIR or we'll miss events */
if (iir & I915_DISPLAY_PORT_INTERRUPT) {
u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
}
I915_WRITE(IIR, iir & ~flip_mask);
new_iir = I915_READ(IIR); /* Flush posted writes */
if (iir & I915_USER_INTERRUPT)
notify_ring(dev_priv->engine[RCS]);
if (iir & I915_BSD_USER_INTERRUPT)
notify_ring(dev_priv->engine[VCS]);
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
i915_handle_vblank(dev_priv, pipe, pipe, iir))
flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
blc_event = true;
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
if (blc_event || (iir & I915_ASLE_INTERRUPT))
intel_opregion_asle_intr(dev_priv);
if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
gmbus_irq_handler(dev_priv);
/* With MSI, interrupts are only generated when iir
* transitions from zero to nonzero. If another bit got
* set while we were handling the existing iir bits, then
* we would never get another interrupt.
*
* This is fine on non-MSI as well, as if we hit this path
* we avoid exiting the interrupt handler only to generate
* another one.
*
* Note that for MSI this could cause a stray interrupt report
* if an interrupt landed in the time between writing IIR and
* the posting read. This should be rare enough to never
* trigger the 99% of 100,000 interrupts test for disabling
* stray interrupts.
*/
iir = new_iir;
}
enable_rpm_wakeref_asserts(dev_priv);
return ret;
}
static void i965_irq_uninstall(struct drm_device * dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe;
if (!dev_priv)
return;
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
I915_WRITE(HWSTAM, 0xffffffff);
for_each_pipe(dev_priv, pipe)
I915_WRITE(PIPESTAT(pipe), 0);
I915_WRITE(IMR, 0xffffffff);
I915_WRITE(IER, 0x0);
for_each_pipe(dev_priv, pipe)
I915_WRITE(PIPESTAT(pipe),
I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
I915_WRITE(IIR, I915_READ(IIR));
}
/**
* intel_irq_init - initializes irq support
* @dev_priv: i915 device instance
*
* This function initializes all the irq support including work items, timers
* and all the vtables. It does not setup the interrupt itself though.
*/
void intel_irq_init(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
intel_hpd_init_work(dev_priv);
INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
if (HAS_GUC_SCHED(dev_priv))
dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
/* Let's track the enabled rps events */
if (IS_VALLEYVIEW(dev_priv))
/* WaGsvRC0ResidencyMethod:vlv */
dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
else
dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
dev_priv->rps.pm_intr_keep = 0;
/*
* SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
* if GEN6_PM_UP_EI_EXPIRED is masked.
*
* TODO: verify if this can be reproduced on VLV,CHV.
*/
if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
if (INTEL_INFO(dev_priv)->gen >= 8)
dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
if (IS_GEN2(dev_priv)) {
/* Gen2 doesn't have a hardware frame counter */
dev->max_vblank_count = 0;
dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
dev->driver->get_vblank_counter = g4x_get_vblank_counter;
} else {
dev->driver->get_vblank_counter = i915_get_vblank_counter;
dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
}
/*
* Opt out of the vblank disable timer on everything except gen2.
* Gen2 doesn't have a hardware frame counter and so depends on
* vblank interrupts to produce sane vblank seuquence numbers.
*/
if (!IS_GEN2(dev_priv))
dev->vblank_disable_immediate = true;
dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
if (IS_CHERRYVIEW(dev_priv)) {
dev->driver->irq_handler = cherryview_irq_handler;
dev->driver->irq_preinstall = cherryview_irq_preinstall;
dev->driver->irq_postinstall = cherryview_irq_postinstall;
dev->driver->irq_uninstall = cherryview_irq_uninstall;
dev->driver->enable_vblank = i965_enable_vblank;
dev->driver->disable_vblank = i965_disable_vblank;
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
} else if (IS_VALLEYVIEW(dev_priv)) {
dev->driver->irq_handler = valleyview_irq_handler;
dev->driver->irq_preinstall = valleyview_irq_preinstall;
dev->driver->irq_postinstall = valleyview_irq_postinstall;
dev->driver->irq_uninstall = valleyview_irq_uninstall;
dev->driver->enable_vblank = i965_enable_vblank;
dev->driver->disable_vblank = i965_disable_vblank;
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
} else if (INTEL_INFO(dev_priv)->gen >= 8) {
dev->driver->irq_handler = gen8_irq_handler;
dev->driver->irq_preinstall = gen8_irq_reset;
dev->driver->irq_postinstall = gen8_irq_postinstall;
dev->driver->irq_uninstall = gen8_irq_uninstall;
dev->driver->enable_vblank = gen8_enable_vblank;
dev->driver->disable_vblank = gen8_disable_vblank;
if (IS_GEN9_LP(dev_priv))
dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
else
dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
} else if (HAS_PCH_SPLIT(dev_priv)) {
dev->driver->irq_handler = ironlake_irq_handler;
dev->driver->irq_preinstall = ironlake_irq_reset;
dev->driver->irq_postinstall = ironlake_irq_postinstall;
dev->driver->irq_uninstall = ironlake_irq_uninstall;
dev->driver->enable_vblank = ironlake_enable_vblank;
dev->driver->disable_vblank = ironlake_disable_vblank;
dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
} else {
if (IS_GEN2(dev_priv)) {
dev->driver->irq_preinstall = i8xx_irq_preinstall;
dev->driver->irq_postinstall = i8xx_irq_postinstall;
dev->driver->irq_handler = i8xx_irq_handler;
dev->driver->irq_uninstall = i8xx_irq_uninstall;
dev->driver->enable_vblank = i8xx_enable_vblank;
dev->driver->disable_vblank = i8xx_disable_vblank;
} else if (IS_GEN3(dev_priv)) {
dev->driver->irq_preinstall = i915_irq_preinstall;
dev->driver->irq_postinstall = i915_irq_postinstall;
dev->driver->irq_uninstall = i915_irq_uninstall;
dev->driver->irq_handler = i915_irq_handler;
dev->driver->enable_vblank = i8xx_enable_vblank;
dev->driver->disable_vblank = i8xx_disable_vblank;
} else {
dev->driver->irq_preinstall = i965_irq_preinstall;
dev->driver->irq_postinstall = i965_irq_postinstall;
dev->driver->irq_uninstall = i965_irq_uninstall;
dev->driver->irq_handler = i965_irq_handler;
dev->driver->enable_vblank = i965_enable_vblank;
dev->driver->disable_vblank = i965_disable_vblank;
}
if (I915_HAS_HOTPLUG(dev_priv))
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
}
}
/**
* intel_irq_install - enables the hardware interrupt
* @dev_priv: i915 device instance
*
* This function enables the hardware interrupt handling, but leaves the hotplug
* handling still disabled. It is called after intel_irq_init().
*
* In the driver load and resume code we need working interrupts in a few places
* but don't want to deal with the hassle of concurrent probe and hotplug
* workers. Hence the split into this two-stage approach.
*/
int intel_irq_install(struct drm_i915_private *dev_priv)
{
/*
* We enable some interrupt sources in our postinstall hooks, so mark
* interrupts as enabled _before_ actually enabling them to avoid
* special cases in our ordering checks.
*/
dev_priv->pm.irqs_enabled = true;
return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
}
/**
* intel_irq_uninstall - finilizes all irq handling
* @dev_priv: i915 device instance
*
* This stops interrupt and hotplug handling and unregisters and frees all
* resources acquired in the init functions.
*/
void intel_irq_uninstall(struct drm_i915_private *dev_priv)
{
drm_irq_uninstall(&dev_priv->drm);
intel_hpd_cancel_work(dev_priv);
dev_priv->pm.irqs_enabled = false;
}
/**
* intel_runtime_pm_disable_interrupts - runtime interrupt disabling
* @dev_priv: i915 device instance
*
* This function is used to disable interrupts at runtime, both in the runtime
* pm and the system suspend/resume code.
*/
void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
{
dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
dev_priv->pm.irqs_enabled = false;
synchronize_irq(dev_priv->drm.irq);
}
/**
* intel_runtime_pm_enable_interrupts - runtime interrupt enabling
* @dev_priv: i915 device instance
*
* This function is used to enable interrupts at runtime, both in the runtime
* pm and the system suspend/resume code.
*/
void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
{
dev_priv->pm.irqs_enabled = true;
dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
}