According to USB 2 specs ports need to signal resume for at least 20ms, in practice even longer, before moving to U0 state. Both host and devices can initiate resume. On device initiated resume, a port status interrupt with the port in resume state in issued. The interrupt handler tags a resume_done[port] timestamp with current time + USB_RESUME_TIMEOUT, and kick roothub timer. Root hub timer requests for port status, finds the port in resume state, checks if resume_done[port] timestamp passed, and set port to U0 state. On host initiated resume, current code sets the port to resume state, sleep 20ms, and finally sets the port to U0 state. This should also be changed to work in a similar way as the device initiated resume, with timestamp tagging, but that is not yet tested and will be a separate fix later. There are a few issues with this approach 1. A host initiated resume will also generate a resume event. The event handler will find the port in resume state, believe it's a device initiated resume, and act accordingly. 2. A port status request might cut the resume signalling short if a get_port_status request is handled during the host resume signalling. The port will be found in resume state. The timestamp is not set leading to time_after_eq(jiffies, timestamp) returning true, as timestamp = 0. get_port_status will proceed with moving the port to U0. 3. If an error, or anything else happens to the port during device initiated resume signalling it will leave all the device resume parameters hanging uncleared, preventing further suspend, returning -EBUSY, and cause the pm thread to busyloop trying to enter suspend. Fix this by using the existing resuming_ports bitfield to indicate that resume signalling timing is taken care of. Check if the resume_done[port] is set before using it for timestamp comparison, and also clear out any resume signalling related variables if port is not in U0 or Resume state This issue was discovered when a PM thread busylooped, trying to runtime suspend the xhci USB 2 roothub on a Dell XPS Cc: stable <stable@vger.kernel.org> Reported-by: Daniel J Blueman <daniel@quora.org> Tested-by: Daniel J Blueman <daniel@quora.org> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
---|---|---|
.. | ||
atm | ||
c67x00 | ||
chipidea | ||
class | ||
common | ||
core | ||
dwc2 | ||
dwc3 | ||
early | ||
gadget | ||
host | ||
image | ||
isp1760 | ||
misc | ||
mon | ||
musb | ||
phy | ||
renesas_usbhs | ||
serial | ||
storage | ||
usbip | ||
wusbcore | ||
Kconfig | ||
Makefile | ||
README | ||
usb-skeleton.c |
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("hub_wq"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.