linux/arch/x86/kernel/dumpstack_64.c
Paul Gortmaker 186f43608a x86/kernel: Audit and remove any unnecessary uses of module.h
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends.  That changed
when we forked out support for the latter into the export.h file.

This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig.  The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.

Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance
for the presence of either and replace as needed.  Build testing
revealed some implicit header usage that was fixed up accordingly.

Note that some bool/obj-y instances remain since module.h is
the header for some exception table entry stuff, and for things
like __init_or_module (code that is tossed when MODULES=n).

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160714001901.31603-4-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-14 15:06:41 +02:00

353 lines
8.0 KiB
C

/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
*/
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/hardirq.h>
#include <linux/kdebug.h>
#include <linux/export.h>
#include <linux/ptrace.h>
#include <linux/kexec.h>
#include <linux/sysfs.h>
#include <linux/bug.h>
#include <linux/nmi.h>
#include <asm/stacktrace.h>
#define N_EXCEPTION_STACKS_END \
(N_EXCEPTION_STACKS + DEBUG_STKSZ/EXCEPTION_STKSZ - 2)
static char x86_stack_ids[][8] = {
[ DEBUG_STACK-1 ] = "#DB",
[ NMI_STACK-1 ] = "NMI",
[ DOUBLEFAULT_STACK-1 ] = "#DF",
[ MCE_STACK-1 ] = "#MC",
#if DEBUG_STKSZ > EXCEPTION_STKSZ
[ N_EXCEPTION_STACKS ...
N_EXCEPTION_STACKS_END ] = "#DB[?]"
#endif
};
static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
unsigned *usedp, char **idp)
{
unsigned k;
/*
* Iterate over all exception stacks, and figure out whether
* 'stack' is in one of them:
*/
for (k = 0; k < N_EXCEPTION_STACKS; k++) {
unsigned long end = per_cpu(orig_ist, cpu).ist[k];
/*
* Is 'stack' above this exception frame's end?
* If yes then skip to the next frame.
*/
if (stack >= end)
continue;
/*
* Is 'stack' above this exception frame's start address?
* If yes then we found the right frame.
*/
if (stack >= end - EXCEPTION_STKSZ) {
/*
* Make sure we only iterate through an exception
* stack once. If it comes up for the second time
* then there's something wrong going on - just
* break out and return NULL:
*/
if (*usedp & (1U << k))
break;
*usedp |= 1U << k;
*idp = x86_stack_ids[k];
return (unsigned long *)end;
}
/*
* If this is a debug stack, and if it has a larger size than
* the usual exception stacks, then 'stack' might still
* be within the lower portion of the debug stack:
*/
#if DEBUG_STKSZ > EXCEPTION_STKSZ
if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
unsigned j = N_EXCEPTION_STACKS - 1;
/*
* Black magic. A large debug stack is composed of
* multiple exception stack entries, which we
* iterate through now. Dont look:
*/
do {
++j;
end -= EXCEPTION_STKSZ;
x86_stack_ids[j][4] = '1' +
(j - N_EXCEPTION_STACKS);
} while (stack < end - EXCEPTION_STKSZ);
if (*usedp & (1U << j))
break;
*usedp |= 1U << j;
*idp = x86_stack_ids[j];
return (unsigned long *)end;
}
#endif
}
return NULL;
}
static inline int
in_irq_stack(unsigned long *stack, unsigned long *irq_stack,
unsigned long *irq_stack_end)
{
return (stack >= irq_stack && stack < irq_stack_end);
}
static const unsigned long irq_stack_size =
(IRQ_STACK_SIZE - 64) / sizeof(unsigned long);
enum stack_type {
STACK_IS_UNKNOWN,
STACK_IS_NORMAL,
STACK_IS_EXCEPTION,
STACK_IS_IRQ,
};
static enum stack_type
analyze_stack(int cpu, struct task_struct *task, unsigned long *stack,
unsigned long **stack_end, unsigned long *irq_stack,
unsigned *used, char **id)
{
unsigned long addr;
addr = ((unsigned long)stack & (~(THREAD_SIZE - 1)));
if ((unsigned long)task_stack_page(task) == addr)
return STACK_IS_NORMAL;
*stack_end = in_exception_stack(cpu, (unsigned long)stack,
used, id);
if (*stack_end)
return STACK_IS_EXCEPTION;
if (!irq_stack)
return STACK_IS_NORMAL;
*stack_end = irq_stack;
irq_stack = irq_stack - irq_stack_size;
if (in_irq_stack(stack, irq_stack, *stack_end))
return STACK_IS_IRQ;
return STACK_IS_UNKNOWN;
}
/*
* x86-64 can have up to three kernel stacks:
* process stack
* interrupt stack
* severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
*/
void dump_trace(struct task_struct *task, struct pt_regs *regs,
unsigned long *stack, unsigned long bp,
const struct stacktrace_ops *ops, void *data)
{
const unsigned cpu = get_cpu();
unsigned long *irq_stack = (unsigned long *)per_cpu(irq_stack_ptr, cpu);
unsigned long dummy;
unsigned used = 0;
int graph = 0;
int done = 0;
if (!task)
task = current;
if (!stack) {
if (regs)
stack = (unsigned long *)regs->sp;
else if (task != current)
stack = (unsigned long *)task->thread.sp;
else
stack = &dummy;
}
if (!bp)
bp = stack_frame(task, regs);
/*
* Print function call entries in all stacks, starting at the
* current stack address. If the stacks consist of nested
* exceptions
*/
while (!done) {
unsigned long *stack_end;
enum stack_type stype;
char *id;
stype = analyze_stack(cpu, task, stack, &stack_end,
irq_stack, &used, &id);
/* Default finish unless specified to continue */
done = 1;
switch (stype) {
/* Break out early if we are on the thread stack */
case STACK_IS_NORMAL:
break;
case STACK_IS_EXCEPTION:
if (ops->stack(data, id) < 0)
break;
bp = ops->walk_stack(task, stack, bp, ops,
data, stack_end, &graph);
ops->stack(data, "<EOE>");
/*
* We link to the next stack via the
* second-to-last pointer (index -2 to end) in the
* exception stack:
*/
stack = (unsigned long *) stack_end[-2];
done = 0;
break;
case STACK_IS_IRQ:
if (ops->stack(data, "IRQ") < 0)
break;
bp = ops->walk_stack(task, stack, bp,
ops, data, stack_end, &graph);
/*
* We link to the next stack (which would be
* the process stack normally) the last
* pointer (index -1 to end) in the IRQ stack:
*/
stack = (unsigned long *) (stack_end[-1]);
irq_stack = NULL;
ops->stack(data, "EOI");
done = 0;
break;
case STACK_IS_UNKNOWN:
ops->stack(data, "UNK");
break;
}
}
/*
* This handles the process stack:
*/
bp = ops->walk_stack(task, stack, bp, ops, data, NULL, &graph);
put_cpu();
}
EXPORT_SYMBOL(dump_trace);
void
show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
unsigned long *sp, unsigned long bp, char *log_lvl)
{
unsigned long *irq_stack_end;
unsigned long *irq_stack;
unsigned long *stack;
int cpu;
int i;
preempt_disable();
cpu = smp_processor_id();
irq_stack_end = (unsigned long *)(per_cpu(irq_stack_ptr, cpu));
irq_stack = (unsigned long *)(per_cpu(irq_stack_ptr, cpu) - IRQ_STACK_SIZE);
/*
* Debugging aid: "show_stack(NULL, NULL);" prints the
* back trace for this cpu:
*/
if (sp == NULL) {
if (task)
sp = (unsigned long *)task->thread.sp;
else
sp = (unsigned long *)&sp;
}
stack = sp;
for (i = 0; i < kstack_depth_to_print; i++) {
if (stack >= irq_stack && stack <= irq_stack_end) {
if (stack == irq_stack_end) {
stack = (unsigned long *) (irq_stack_end[-1]);
pr_cont(" <EOI> ");
}
} else {
if (kstack_end(stack))
break;
}
if ((i % STACKSLOTS_PER_LINE) == 0) {
if (i != 0)
pr_cont("\n");
printk("%s %016lx", log_lvl, *stack++);
} else
pr_cont(" %016lx", *stack++);
touch_nmi_watchdog();
}
preempt_enable();
pr_cont("\n");
show_trace_log_lvl(task, regs, sp, bp, log_lvl);
}
void show_regs(struct pt_regs *regs)
{
int i;
unsigned long sp;
sp = regs->sp;
show_regs_print_info(KERN_DEFAULT);
__show_regs(regs, 1);
/*
* When in-kernel, we also print out the stack and code at the
* time of the fault..
*/
if (!user_mode(regs)) {
unsigned int code_prologue = code_bytes * 43 / 64;
unsigned int code_len = code_bytes;
unsigned char c;
u8 *ip;
printk(KERN_DEFAULT "Stack:\n");
show_stack_log_lvl(NULL, regs, (unsigned long *)sp,
0, KERN_DEFAULT);
printk(KERN_DEFAULT "Code: ");
ip = (u8 *)regs->ip - code_prologue;
if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
/* try starting at IP */
ip = (u8 *)regs->ip;
code_len = code_len - code_prologue + 1;
}
for (i = 0; i < code_len; i++, ip++) {
if (ip < (u8 *)PAGE_OFFSET ||
probe_kernel_address(ip, c)) {
pr_cont(" Bad RIP value.");
break;
}
if (ip == (u8 *)regs->ip)
pr_cont("<%02x> ", c);
else
pr_cont("%02x ", c);
}
}
pr_cont("\n");
}
int is_valid_bugaddr(unsigned long ip)
{
unsigned short ud2;
if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2)))
return 0;
return ud2 == 0x0b0f;
}