f53f292eea
Resolved Conflicts: drivers/firmware/efivars.c fs/efivarsfs/file.c Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
1003 lines
25 KiB
C
1003 lines
25 KiB
C
/*
|
|
* Common EFI (Extensible Firmware Interface) support functions
|
|
* Based on Extensible Firmware Interface Specification version 1.0
|
|
*
|
|
* Copyright (C) 1999 VA Linux Systems
|
|
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
|
|
* Copyright (C) 1999-2002 Hewlett-Packard Co.
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Stephane Eranian <eranian@hpl.hp.com>
|
|
* Copyright (C) 2005-2008 Intel Co.
|
|
* Fenghua Yu <fenghua.yu@intel.com>
|
|
* Bibo Mao <bibo.mao@intel.com>
|
|
* Chandramouli Narayanan <mouli@linux.intel.com>
|
|
* Huang Ying <ying.huang@intel.com>
|
|
*
|
|
* Copied from efi_32.c to eliminate the duplicated code between EFI
|
|
* 32/64 support code. --ying 2007-10-26
|
|
*
|
|
* All EFI Runtime Services are not implemented yet as EFI only
|
|
* supports physical mode addressing on SoftSDV. This is to be fixed
|
|
* in a future version. --drummond 1999-07-20
|
|
*
|
|
* Implemented EFI runtime services and virtual mode calls. --davidm
|
|
*
|
|
* Goutham Rao: <goutham.rao@intel.com>
|
|
* Skip non-WB memory and ignore empty memory ranges.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/efi-bgrt.h>
|
|
#include <linux/export.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/time.h>
|
|
#include <linux/io.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/bcd.h>
|
|
|
|
#include <asm/setup.h>
|
|
#include <asm/efi.h>
|
|
#include <asm/time.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/x86_init.h>
|
|
|
|
#define EFI_DEBUG 1
|
|
|
|
struct efi __read_mostly efi = {
|
|
.mps = EFI_INVALID_TABLE_ADDR,
|
|
.acpi = EFI_INVALID_TABLE_ADDR,
|
|
.acpi20 = EFI_INVALID_TABLE_ADDR,
|
|
.smbios = EFI_INVALID_TABLE_ADDR,
|
|
.sal_systab = EFI_INVALID_TABLE_ADDR,
|
|
.boot_info = EFI_INVALID_TABLE_ADDR,
|
|
.hcdp = EFI_INVALID_TABLE_ADDR,
|
|
.uga = EFI_INVALID_TABLE_ADDR,
|
|
.uv_systab = EFI_INVALID_TABLE_ADDR,
|
|
};
|
|
EXPORT_SYMBOL(efi);
|
|
|
|
struct efi_memory_map memmap;
|
|
|
|
static struct efi efi_phys __initdata;
|
|
static efi_system_table_t efi_systab __initdata;
|
|
|
|
unsigned long x86_efi_facility;
|
|
|
|
/*
|
|
* Returns 1 if 'facility' is enabled, 0 otherwise.
|
|
*/
|
|
int efi_enabled(int facility)
|
|
{
|
|
return test_bit(facility, &x86_efi_facility) != 0;
|
|
}
|
|
EXPORT_SYMBOL(efi_enabled);
|
|
|
|
static bool __initdata disable_runtime = false;
|
|
static int __init setup_noefi(char *arg)
|
|
{
|
|
disable_runtime = true;
|
|
return 0;
|
|
}
|
|
early_param("noefi", setup_noefi);
|
|
|
|
int add_efi_memmap;
|
|
EXPORT_SYMBOL(add_efi_memmap);
|
|
|
|
static int __init setup_add_efi_memmap(char *arg)
|
|
{
|
|
add_efi_memmap = 1;
|
|
return 0;
|
|
}
|
|
early_param("add_efi_memmap", setup_add_efi_memmap);
|
|
|
|
|
|
static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
|
|
{
|
|
unsigned long flags;
|
|
efi_status_t status;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
status = efi_call_virt2(get_time, tm, tc);
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t virt_efi_set_time(efi_time_t *tm)
|
|
{
|
|
unsigned long flags;
|
|
efi_status_t status;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
status = efi_call_virt1(set_time, tm);
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
|
|
efi_bool_t *pending,
|
|
efi_time_t *tm)
|
|
{
|
|
unsigned long flags;
|
|
efi_status_t status;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
status = efi_call_virt3(get_wakeup_time,
|
|
enabled, pending, tm);
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
|
|
{
|
|
unsigned long flags;
|
|
efi_status_t status;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
status = efi_call_virt2(set_wakeup_time,
|
|
enabled, tm);
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t virt_efi_get_variable(efi_char16_t *name,
|
|
efi_guid_t *vendor,
|
|
u32 *attr,
|
|
unsigned long *data_size,
|
|
void *data)
|
|
{
|
|
return efi_call_virt5(get_variable,
|
|
name, vendor, attr,
|
|
data_size, data);
|
|
}
|
|
|
|
static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
|
|
efi_char16_t *name,
|
|
efi_guid_t *vendor)
|
|
{
|
|
return efi_call_virt3(get_next_variable,
|
|
name_size, name, vendor);
|
|
}
|
|
|
|
static efi_status_t virt_efi_set_variable(efi_char16_t *name,
|
|
efi_guid_t *vendor,
|
|
u32 attr,
|
|
unsigned long data_size,
|
|
void *data)
|
|
{
|
|
return efi_call_virt5(set_variable,
|
|
name, vendor, attr,
|
|
data_size, data);
|
|
}
|
|
|
|
static efi_status_t virt_efi_query_variable_info(u32 attr,
|
|
u64 *storage_space,
|
|
u64 *remaining_space,
|
|
u64 *max_variable_size)
|
|
{
|
|
if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
|
|
return EFI_UNSUPPORTED;
|
|
|
|
return efi_call_virt4(query_variable_info, attr, storage_space,
|
|
remaining_space, max_variable_size);
|
|
}
|
|
|
|
static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
|
|
{
|
|
return efi_call_virt1(get_next_high_mono_count, count);
|
|
}
|
|
|
|
static void virt_efi_reset_system(int reset_type,
|
|
efi_status_t status,
|
|
unsigned long data_size,
|
|
efi_char16_t *data)
|
|
{
|
|
efi_call_virt4(reset_system, reset_type, status,
|
|
data_size, data);
|
|
}
|
|
|
|
static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
|
|
unsigned long count,
|
|
unsigned long sg_list)
|
|
{
|
|
if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
|
|
return EFI_UNSUPPORTED;
|
|
|
|
return efi_call_virt3(update_capsule, capsules, count, sg_list);
|
|
}
|
|
|
|
static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
|
|
unsigned long count,
|
|
u64 *max_size,
|
|
int *reset_type)
|
|
{
|
|
if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
|
|
return EFI_UNSUPPORTED;
|
|
|
|
return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
|
|
reset_type);
|
|
}
|
|
|
|
static efi_status_t __init phys_efi_set_virtual_address_map(
|
|
unsigned long memory_map_size,
|
|
unsigned long descriptor_size,
|
|
u32 descriptor_version,
|
|
efi_memory_desc_t *virtual_map)
|
|
{
|
|
efi_status_t status;
|
|
|
|
efi_call_phys_prelog();
|
|
status = efi_call_phys4(efi_phys.set_virtual_address_map,
|
|
memory_map_size, descriptor_size,
|
|
descriptor_version, virtual_map);
|
|
efi_call_phys_epilog();
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
|
|
efi_time_cap_t *tc)
|
|
{
|
|
unsigned long flags;
|
|
efi_status_t status;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
efi_call_phys_prelog();
|
|
status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
|
|
virt_to_phys(tc));
|
|
efi_call_phys_epilog();
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
return status;
|
|
}
|
|
|
|
int efi_set_rtc_mmss(unsigned long nowtime)
|
|
{
|
|
int real_seconds, real_minutes;
|
|
efi_status_t status;
|
|
efi_time_t eft;
|
|
efi_time_cap_t cap;
|
|
|
|
status = efi.get_time(&eft, &cap);
|
|
if (status != EFI_SUCCESS) {
|
|
pr_err("Oops: efitime: can't read time!\n");
|
|
return -1;
|
|
}
|
|
|
|
real_seconds = nowtime % 60;
|
|
real_minutes = nowtime / 60;
|
|
if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
|
|
real_minutes += 30;
|
|
real_minutes %= 60;
|
|
eft.minute = real_minutes;
|
|
eft.second = real_seconds;
|
|
|
|
status = efi.set_time(&eft);
|
|
if (status != EFI_SUCCESS) {
|
|
pr_err("Oops: efitime: can't write time!\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned long efi_get_time(void)
|
|
{
|
|
efi_status_t status;
|
|
efi_time_t eft;
|
|
efi_time_cap_t cap;
|
|
|
|
status = efi.get_time(&eft, &cap);
|
|
if (status != EFI_SUCCESS)
|
|
pr_err("Oops: efitime: can't read time!\n");
|
|
|
|
return mktime(eft.year, eft.month, eft.day, eft.hour,
|
|
eft.minute, eft.second);
|
|
}
|
|
|
|
/*
|
|
* Tell the kernel about the EFI memory map. This might include
|
|
* more than the max 128 entries that can fit in the e820 legacy
|
|
* (zeropage) memory map.
|
|
*/
|
|
|
|
static void __init do_add_efi_memmap(void)
|
|
{
|
|
void *p;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
efi_memory_desc_t *md = p;
|
|
unsigned long long start = md->phys_addr;
|
|
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
|
|
int e820_type;
|
|
|
|
switch (md->type) {
|
|
case EFI_LOADER_CODE:
|
|
case EFI_LOADER_DATA:
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
if (md->attribute & EFI_MEMORY_WB)
|
|
e820_type = E820_RAM;
|
|
else
|
|
e820_type = E820_RESERVED;
|
|
break;
|
|
case EFI_ACPI_RECLAIM_MEMORY:
|
|
e820_type = E820_ACPI;
|
|
break;
|
|
case EFI_ACPI_MEMORY_NVS:
|
|
e820_type = E820_NVS;
|
|
break;
|
|
case EFI_UNUSABLE_MEMORY:
|
|
e820_type = E820_UNUSABLE;
|
|
break;
|
|
default:
|
|
/*
|
|
* EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
|
|
* EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
|
|
* EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
|
|
*/
|
|
e820_type = E820_RESERVED;
|
|
break;
|
|
}
|
|
e820_add_region(start, size, e820_type);
|
|
}
|
|
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
|
|
}
|
|
|
|
int __init efi_memblock_x86_reserve_range(void)
|
|
{
|
|
struct efi_info *e = &boot_params.efi_info;
|
|
unsigned long pmap;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* Can't handle data above 4GB at this time */
|
|
if (e->efi_memmap_hi) {
|
|
pr_err("Memory map is above 4GB, disabling EFI.\n");
|
|
return -EINVAL;
|
|
}
|
|
pmap = e->efi_memmap;
|
|
#else
|
|
pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
|
|
#endif
|
|
memmap.phys_map = (void *)pmap;
|
|
memmap.nr_map = e->efi_memmap_size /
|
|
e->efi_memdesc_size;
|
|
memmap.desc_size = e->efi_memdesc_size;
|
|
memmap.desc_version = e->efi_memdesc_version;
|
|
|
|
memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if EFI_DEBUG
|
|
static void __init print_efi_memmap(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
int i;
|
|
|
|
for (p = memmap.map, i = 0;
|
|
p < memmap.map_end;
|
|
p += memmap.desc_size, i++) {
|
|
md = p;
|
|
pr_info("mem%02u: type=%u, attr=0x%llx, "
|
|
"range=[0x%016llx-0x%016llx) (%lluMB)\n",
|
|
i, md->type, md->attribute, md->phys_addr,
|
|
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
|
|
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
|
|
}
|
|
}
|
|
#endif /* EFI_DEBUG */
|
|
|
|
void __init efi_reserve_boot_services(void)
|
|
{
|
|
void *p;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
efi_memory_desc_t *md = p;
|
|
u64 start = md->phys_addr;
|
|
u64 size = md->num_pages << EFI_PAGE_SHIFT;
|
|
|
|
if (md->type != EFI_BOOT_SERVICES_CODE &&
|
|
md->type != EFI_BOOT_SERVICES_DATA)
|
|
continue;
|
|
/* Only reserve where possible:
|
|
* - Not within any already allocated areas
|
|
* - Not over any memory area (really needed, if above?)
|
|
* - Not within any part of the kernel
|
|
* - Not the bios reserved area
|
|
*/
|
|
if ((start+size >= __pa_symbol(_text)
|
|
&& start <= __pa_symbol(_end)) ||
|
|
!e820_all_mapped(start, start+size, E820_RAM) ||
|
|
memblock_is_region_reserved(start, size)) {
|
|
/* Could not reserve, skip it */
|
|
md->num_pages = 0;
|
|
memblock_dbg("Could not reserve boot range "
|
|
"[0x%010llx-0x%010llx]\n",
|
|
start, start+size-1);
|
|
} else
|
|
memblock_reserve(start, size);
|
|
}
|
|
}
|
|
|
|
void __init efi_unmap_memmap(void)
|
|
{
|
|
clear_bit(EFI_MEMMAP, &x86_efi_facility);
|
|
if (memmap.map) {
|
|
early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
|
|
memmap.map = NULL;
|
|
}
|
|
}
|
|
|
|
void __init efi_free_boot_services(void)
|
|
{
|
|
void *p;
|
|
|
|
if (!efi_is_native())
|
|
return;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
efi_memory_desc_t *md = p;
|
|
unsigned long long start = md->phys_addr;
|
|
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
|
|
|
|
if (md->type != EFI_BOOT_SERVICES_CODE &&
|
|
md->type != EFI_BOOT_SERVICES_DATA)
|
|
continue;
|
|
|
|
/* Could not reserve boot area */
|
|
if (!size)
|
|
continue;
|
|
|
|
free_bootmem_late(start, size);
|
|
}
|
|
|
|
efi_unmap_memmap();
|
|
}
|
|
|
|
static int __init efi_systab_init(void *phys)
|
|
{
|
|
if (efi_enabled(EFI_64BIT)) {
|
|
efi_system_table_64_t *systab64;
|
|
u64 tmp = 0;
|
|
|
|
systab64 = early_ioremap((unsigned long)phys,
|
|
sizeof(*systab64));
|
|
if (systab64 == NULL) {
|
|
pr_err("Couldn't map the system table!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
efi_systab.hdr = systab64->hdr;
|
|
efi_systab.fw_vendor = systab64->fw_vendor;
|
|
tmp |= systab64->fw_vendor;
|
|
efi_systab.fw_revision = systab64->fw_revision;
|
|
efi_systab.con_in_handle = systab64->con_in_handle;
|
|
tmp |= systab64->con_in_handle;
|
|
efi_systab.con_in = systab64->con_in;
|
|
tmp |= systab64->con_in;
|
|
efi_systab.con_out_handle = systab64->con_out_handle;
|
|
tmp |= systab64->con_out_handle;
|
|
efi_systab.con_out = systab64->con_out;
|
|
tmp |= systab64->con_out;
|
|
efi_systab.stderr_handle = systab64->stderr_handle;
|
|
tmp |= systab64->stderr_handle;
|
|
efi_systab.stderr = systab64->stderr;
|
|
tmp |= systab64->stderr;
|
|
efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
|
|
tmp |= systab64->runtime;
|
|
efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
|
|
tmp |= systab64->boottime;
|
|
efi_systab.nr_tables = systab64->nr_tables;
|
|
efi_systab.tables = systab64->tables;
|
|
tmp |= systab64->tables;
|
|
|
|
early_iounmap(systab64, sizeof(*systab64));
|
|
#ifdef CONFIG_X86_32
|
|
if (tmp >> 32) {
|
|
pr_err("EFI data located above 4GB, disabling EFI.\n");
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
} else {
|
|
efi_system_table_32_t *systab32;
|
|
|
|
systab32 = early_ioremap((unsigned long)phys,
|
|
sizeof(*systab32));
|
|
if (systab32 == NULL) {
|
|
pr_err("Couldn't map the system table!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
efi_systab.hdr = systab32->hdr;
|
|
efi_systab.fw_vendor = systab32->fw_vendor;
|
|
efi_systab.fw_revision = systab32->fw_revision;
|
|
efi_systab.con_in_handle = systab32->con_in_handle;
|
|
efi_systab.con_in = systab32->con_in;
|
|
efi_systab.con_out_handle = systab32->con_out_handle;
|
|
efi_systab.con_out = systab32->con_out;
|
|
efi_systab.stderr_handle = systab32->stderr_handle;
|
|
efi_systab.stderr = systab32->stderr;
|
|
efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
|
|
efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
|
|
efi_systab.nr_tables = systab32->nr_tables;
|
|
efi_systab.tables = systab32->tables;
|
|
|
|
early_iounmap(systab32, sizeof(*systab32));
|
|
}
|
|
|
|
efi.systab = &efi_systab;
|
|
|
|
/*
|
|
* Verify the EFI Table
|
|
*/
|
|
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
|
|
pr_err("System table signature incorrect!\n");
|
|
return -EINVAL;
|
|
}
|
|
if ((efi.systab->hdr.revision >> 16) == 0)
|
|
pr_err("Warning: System table version "
|
|
"%d.%02d, expected 1.00 or greater!\n",
|
|
efi.systab->hdr.revision >> 16,
|
|
efi.systab->hdr.revision & 0xffff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init efi_config_init(u64 tables, int nr_tables)
|
|
{
|
|
void *config_tables, *tablep;
|
|
int i, sz;
|
|
|
|
if (efi_enabled(EFI_64BIT))
|
|
sz = sizeof(efi_config_table_64_t);
|
|
else
|
|
sz = sizeof(efi_config_table_32_t);
|
|
|
|
/*
|
|
* Let's see what config tables the firmware passed to us.
|
|
*/
|
|
config_tables = early_ioremap(tables, nr_tables * sz);
|
|
if (config_tables == NULL) {
|
|
pr_err("Could not map Configuration table!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
tablep = config_tables;
|
|
pr_info("");
|
|
for (i = 0; i < efi.systab->nr_tables; i++) {
|
|
efi_guid_t guid;
|
|
unsigned long table;
|
|
|
|
if (efi_enabled(EFI_64BIT)) {
|
|
u64 table64;
|
|
guid = ((efi_config_table_64_t *)tablep)->guid;
|
|
table64 = ((efi_config_table_64_t *)tablep)->table;
|
|
table = table64;
|
|
#ifdef CONFIG_X86_32
|
|
if (table64 >> 32) {
|
|
pr_cont("\n");
|
|
pr_err("Table located above 4GB, disabling EFI.\n");
|
|
early_iounmap(config_tables,
|
|
efi.systab->nr_tables * sz);
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
} else {
|
|
guid = ((efi_config_table_32_t *)tablep)->guid;
|
|
table = ((efi_config_table_32_t *)tablep)->table;
|
|
}
|
|
if (!efi_guidcmp(guid, MPS_TABLE_GUID)) {
|
|
efi.mps = table;
|
|
pr_cont(" MPS=0x%lx ", table);
|
|
} else if (!efi_guidcmp(guid, ACPI_20_TABLE_GUID)) {
|
|
efi.acpi20 = table;
|
|
pr_cont(" ACPI 2.0=0x%lx ", table);
|
|
} else if (!efi_guidcmp(guid, ACPI_TABLE_GUID)) {
|
|
efi.acpi = table;
|
|
pr_cont(" ACPI=0x%lx ", table);
|
|
} else if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) {
|
|
efi.smbios = table;
|
|
pr_cont(" SMBIOS=0x%lx ", table);
|
|
#ifdef CONFIG_X86_UV
|
|
} else if (!efi_guidcmp(guid, UV_SYSTEM_TABLE_GUID)) {
|
|
efi.uv_systab = table;
|
|
pr_cont(" UVsystab=0x%lx ", table);
|
|
#endif
|
|
} else if (!efi_guidcmp(guid, HCDP_TABLE_GUID)) {
|
|
efi.hcdp = table;
|
|
pr_cont(" HCDP=0x%lx ", table);
|
|
} else if (!efi_guidcmp(guid, UGA_IO_PROTOCOL_GUID)) {
|
|
efi.uga = table;
|
|
pr_cont(" UGA=0x%lx ", table);
|
|
}
|
|
tablep += sz;
|
|
}
|
|
pr_cont("\n");
|
|
early_iounmap(config_tables, efi.systab->nr_tables * sz);
|
|
return 0;
|
|
}
|
|
|
|
static int __init efi_runtime_init(void)
|
|
{
|
|
efi_runtime_services_t *runtime;
|
|
|
|
/*
|
|
* Check out the runtime services table. We need to map
|
|
* the runtime services table so that we can grab the physical
|
|
* address of several of the EFI runtime functions, needed to
|
|
* set the firmware into virtual mode.
|
|
*/
|
|
runtime = early_ioremap((unsigned long)efi.systab->runtime,
|
|
sizeof(efi_runtime_services_t));
|
|
if (!runtime) {
|
|
pr_err("Could not map the runtime service table!\n");
|
|
return -ENOMEM;
|
|
}
|
|
/*
|
|
* We will only need *early* access to the following
|
|
* two EFI runtime services before set_virtual_address_map
|
|
* is invoked.
|
|
*/
|
|
efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
|
|
efi_phys.set_virtual_address_map =
|
|
(efi_set_virtual_address_map_t *)
|
|
runtime->set_virtual_address_map;
|
|
/*
|
|
* Make efi_get_time can be called before entering
|
|
* virtual mode.
|
|
*/
|
|
efi.get_time = phys_efi_get_time;
|
|
early_iounmap(runtime, sizeof(efi_runtime_services_t));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init efi_memmap_init(void)
|
|
{
|
|
/* Map the EFI memory map */
|
|
memmap.map = early_ioremap((unsigned long)memmap.phys_map,
|
|
memmap.nr_map * memmap.desc_size);
|
|
if (memmap.map == NULL) {
|
|
pr_err("Could not map the memory map!\n");
|
|
return -ENOMEM;
|
|
}
|
|
memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
|
|
|
|
if (add_efi_memmap)
|
|
do_add_efi_memmap();
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __init efi_init(void)
|
|
{
|
|
efi_char16_t *c16;
|
|
char vendor[100] = "unknown";
|
|
int i = 0;
|
|
void *tmp;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
if (boot_params.efi_info.efi_systab_hi ||
|
|
boot_params.efi_info.efi_memmap_hi) {
|
|
pr_info("Table located above 4GB, disabling EFI.\n");
|
|
return;
|
|
}
|
|
efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
|
|
#else
|
|
efi_phys.systab = (efi_system_table_t *)
|
|
(boot_params.efi_info.efi_systab |
|
|
((__u64)boot_params.efi_info.efi_systab_hi<<32));
|
|
#endif
|
|
|
|
if (efi_systab_init(efi_phys.systab))
|
|
return;
|
|
|
|
set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
|
|
|
|
/*
|
|
* Show what we know for posterity
|
|
*/
|
|
c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
|
|
if (c16) {
|
|
for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
|
|
vendor[i] = *c16++;
|
|
vendor[i] = '\0';
|
|
} else
|
|
pr_err("Could not map the firmware vendor!\n");
|
|
early_iounmap(tmp, 2);
|
|
|
|
pr_info("EFI v%u.%.02u by %s\n",
|
|
efi.systab->hdr.revision >> 16,
|
|
efi.systab->hdr.revision & 0xffff, vendor);
|
|
|
|
if (efi_config_init(efi.systab->tables, efi.systab->nr_tables))
|
|
return;
|
|
|
|
set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
|
|
|
|
/*
|
|
* Note: We currently don't support runtime services on an EFI
|
|
* that doesn't match the kernel 32/64-bit mode.
|
|
*/
|
|
|
|
if (!efi_is_native())
|
|
pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
|
|
else {
|
|
if (disable_runtime || efi_runtime_init())
|
|
return;
|
|
set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
|
|
}
|
|
|
|
if (efi_memmap_init())
|
|
return;
|
|
|
|
set_bit(EFI_MEMMAP, &x86_efi_facility);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
if (efi_is_native()) {
|
|
x86_platform.get_wallclock = efi_get_time;
|
|
x86_platform.set_wallclock = efi_set_rtc_mmss;
|
|
}
|
|
#endif
|
|
|
|
#if EFI_DEBUG
|
|
print_efi_memmap();
|
|
#endif
|
|
}
|
|
|
|
void __init efi_late_init(void)
|
|
{
|
|
efi_bgrt_init();
|
|
}
|
|
|
|
void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
|
|
{
|
|
u64 addr, npages;
|
|
|
|
addr = md->virt_addr;
|
|
npages = md->num_pages;
|
|
|
|
memrange_efi_to_native(&addr, &npages);
|
|
|
|
if (executable)
|
|
set_memory_x(addr, npages);
|
|
else
|
|
set_memory_nx(addr, npages);
|
|
}
|
|
|
|
static void __init runtime_code_page_mkexec(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
|
|
/* Make EFI runtime service code area executable */
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
|
|
if (md->type != EFI_RUNTIME_SERVICES_CODE)
|
|
continue;
|
|
|
|
efi_set_executable(md, true);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We can't ioremap data in EFI boot services RAM, because we've already mapped
|
|
* it as RAM. So, look it up in the existing EFI memory map instead. Only
|
|
* callable after efi_enter_virtual_mode and before efi_free_boot_services.
|
|
*/
|
|
void __iomem *efi_lookup_mapped_addr(u64 phys_addr)
|
|
{
|
|
void *p;
|
|
if (WARN_ON(!memmap.map))
|
|
return NULL;
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
efi_memory_desc_t *md = p;
|
|
u64 size = md->num_pages << EFI_PAGE_SHIFT;
|
|
u64 end = md->phys_addr + size;
|
|
if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
|
|
md->type != EFI_BOOT_SERVICES_CODE &&
|
|
md->type != EFI_BOOT_SERVICES_DATA)
|
|
continue;
|
|
if (!md->virt_addr)
|
|
continue;
|
|
if (phys_addr >= md->phys_addr && phys_addr < end) {
|
|
phys_addr += md->virt_addr - md->phys_addr;
|
|
return (__force void __iomem *)(unsigned long)phys_addr;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void efi_memory_uc(u64 addr, unsigned long size)
|
|
{
|
|
unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
|
|
u64 npages;
|
|
|
|
npages = round_up(size, page_shift) / page_shift;
|
|
memrange_efi_to_native(&addr, &npages);
|
|
set_memory_uc(addr, npages);
|
|
}
|
|
|
|
/*
|
|
* This function will switch the EFI runtime services to virtual mode.
|
|
* Essentially, look through the EFI memmap and map every region that
|
|
* has the runtime attribute bit set in its memory descriptor and update
|
|
* that memory descriptor with the virtual address obtained from ioremap().
|
|
* This enables the runtime services to be called without having to
|
|
* thunk back into physical mode for every invocation.
|
|
*/
|
|
void __init efi_enter_virtual_mode(void)
|
|
{
|
|
efi_memory_desc_t *md, *prev_md = NULL;
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
u64 end, systab, start_pfn, end_pfn;
|
|
void *p, *va, *new_memmap = NULL;
|
|
int count = 0;
|
|
|
|
efi.systab = NULL;
|
|
|
|
/*
|
|
* We don't do virtual mode, since we don't do runtime services, on
|
|
* non-native EFI
|
|
*/
|
|
|
|
if (!efi_is_native()) {
|
|
efi_unmap_memmap();
|
|
return;
|
|
}
|
|
|
|
/* Merge contiguous regions of the same type and attribute */
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
u64 prev_size;
|
|
md = p;
|
|
|
|
if (!prev_md) {
|
|
prev_md = md;
|
|
continue;
|
|
}
|
|
|
|
if (prev_md->type != md->type ||
|
|
prev_md->attribute != md->attribute) {
|
|
prev_md = md;
|
|
continue;
|
|
}
|
|
|
|
prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
|
|
|
|
if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
|
|
prev_md->num_pages += md->num_pages;
|
|
md->type = EFI_RESERVED_TYPE;
|
|
md->attribute = 0;
|
|
continue;
|
|
}
|
|
prev_md = md;
|
|
}
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
|
|
md->type != EFI_BOOT_SERVICES_CODE &&
|
|
md->type != EFI_BOOT_SERVICES_DATA)
|
|
continue;
|
|
|
|
size = md->num_pages << EFI_PAGE_SHIFT;
|
|
end = md->phys_addr + size;
|
|
|
|
start_pfn = PFN_DOWN(md->phys_addr);
|
|
end_pfn = PFN_UP(end);
|
|
if (pfn_range_is_mapped(start_pfn, end_pfn)) {
|
|
va = __va(md->phys_addr);
|
|
|
|
if (!(md->attribute & EFI_MEMORY_WB))
|
|
efi_memory_uc((u64)(unsigned long)va, size);
|
|
} else
|
|
va = efi_ioremap(md->phys_addr, size,
|
|
md->type, md->attribute);
|
|
|
|
md->virt_addr = (u64) (unsigned long) va;
|
|
|
|
if (!va) {
|
|
pr_err("ioremap of 0x%llX failed!\n",
|
|
(unsigned long long)md->phys_addr);
|
|
continue;
|
|
}
|
|
|
|
systab = (u64) (unsigned long) efi_phys.systab;
|
|
if (md->phys_addr <= systab && systab < end) {
|
|
systab += md->virt_addr - md->phys_addr;
|
|
efi.systab = (efi_system_table_t *) (unsigned long) systab;
|
|
}
|
|
new_memmap = krealloc(new_memmap,
|
|
(count + 1) * memmap.desc_size,
|
|
GFP_KERNEL);
|
|
memcpy(new_memmap + (count * memmap.desc_size), md,
|
|
memmap.desc_size);
|
|
count++;
|
|
}
|
|
|
|
BUG_ON(!efi.systab);
|
|
|
|
status = phys_efi_set_virtual_address_map(
|
|
memmap.desc_size * count,
|
|
memmap.desc_size,
|
|
memmap.desc_version,
|
|
(efi_memory_desc_t *)__pa(new_memmap));
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
pr_alert("Unable to switch EFI into virtual mode "
|
|
"(status=%lx)!\n", status);
|
|
panic("EFI call to SetVirtualAddressMap() failed!");
|
|
}
|
|
|
|
/*
|
|
* Now that EFI is in virtual mode, update the function
|
|
* pointers in the runtime service table to the new virtual addresses.
|
|
*
|
|
* Call EFI services through wrapper functions.
|
|
*/
|
|
efi.runtime_version = efi_systab.hdr.revision;
|
|
efi.get_time = virt_efi_get_time;
|
|
efi.set_time = virt_efi_set_time;
|
|
efi.get_wakeup_time = virt_efi_get_wakeup_time;
|
|
efi.set_wakeup_time = virt_efi_set_wakeup_time;
|
|
efi.get_variable = virt_efi_get_variable;
|
|
efi.get_next_variable = virt_efi_get_next_variable;
|
|
efi.set_variable = virt_efi_set_variable;
|
|
efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
|
|
efi.reset_system = virt_efi_reset_system;
|
|
efi.set_virtual_address_map = NULL;
|
|
efi.query_variable_info = virt_efi_query_variable_info;
|
|
efi.update_capsule = virt_efi_update_capsule;
|
|
efi.query_capsule_caps = virt_efi_query_capsule_caps;
|
|
if (__supported_pte_mask & _PAGE_NX)
|
|
runtime_code_page_mkexec();
|
|
|
|
kfree(new_memmap);
|
|
}
|
|
|
|
/*
|
|
* Convenience functions to obtain memory types and attributes
|
|
*/
|
|
u32 efi_mem_type(unsigned long phys_addr)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
|
|
if (!efi_enabled(EFI_MEMMAP))
|
|
return 0;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
if ((md->phys_addr <= phys_addr) &&
|
|
(phys_addr < (md->phys_addr +
|
|
(md->num_pages << EFI_PAGE_SHIFT))))
|
|
return md->type;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
u64 efi_mem_attributes(unsigned long phys_addr)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
if ((md->phys_addr <= phys_addr) &&
|
|
(phys_addr < (md->phys_addr +
|
|
(md->num_pages << EFI_PAGE_SHIFT))))
|
|
return md->attribute;
|
|
}
|
|
return 0;
|
|
}
|