forked from Minki/linux
a5ac012924
Signed-off-by: Sonic Zhang <sonic.zhang@analog.com> Signed-off-by: Bryan Wu <cooloney@kernel.org>
831 lines
21 KiB
C
831 lines
21 KiB
C
/*
|
|
* arch/blackfin/kernel/kgdb.c - Blackfin kgdb pieces
|
|
*
|
|
* Copyright 2005-2008 Analog Devices Inc.
|
|
*
|
|
* Licensed under the GPL-2 or later.
|
|
*/
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ptrace.h> /* for linux pt_regs struct */
|
|
#include <linux/kgdb.h>
|
|
#include <linux/console.h>
|
|
#include <linux/init.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/system.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/blackfin.h>
|
|
#include <asm/dma.h>
|
|
|
|
/* Put the error code here just in case the user cares. */
|
|
int gdb_bfin_errcode;
|
|
/* Likewise, the vector number here (since GDB only gets the signal
|
|
number through the usual means, and that's not very specific). */
|
|
int gdb_bfin_vector = -1;
|
|
|
|
#if KGDB_MAX_NO_CPUS != 8
|
|
#error change the definition of slavecpulocks
|
|
#endif
|
|
|
|
#ifdef CONFIG_BFIN_WDT
|
|
# error "Please unselect blackfin watchdog driver before build KGDB."
|
|
#endif
|
|
|
|
void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
|
|
{
|
|
gdb_regs[BFIN_R0] = regs->r0;
|
|
gdb_regs[BFIN_R1] = regs->r1;
|
|
gdb_regs[BFIN_R2] = regs->r2;
|
|
gdb_regs[BFIN_R3] = regs->r3;
|
|
gdb_regs[BFIN_R4] = regs->r4;
|
|
gdb_regs[BFIN_R5] = regs->r5;
|
|
gdb_regs[BFIN_R6] = regs->r6;
|
|
gdb_regs[BFIN_R7] = regs->r7;
|
|
gdb_regs[BFIN_P0] = regs->p0;
|
|
gdb_regs[BFIN_P1] = regs->p1;
|
|
gdb_regs[BFIN_P2] = regs->p2;
|
|
gdb_regs[BFIN_P3] = regs->p3;
|
|
gdb_regs[BFIN_P4] = regs->p4;
|
|
gdb_regs[BFIN_P5] = regs->p5;
|
|
gdb_regs[BFIN_SP] = regs->reserved;
|
|
gdb_regs[BFIN_FP] = regs->fp;
|
|
gdb_regs[BFIN_I0] = regs->i0;
|
|
gdb_regs[BFIN_I1] = regs->i1;
|
|
gdb_regs[BFIN_I2] = regs->i2;
|
|
gdb_regs[BFIN_I3] = regs->i3;
|
|
gdb_regs[BFIN_M0] = regs->m0;
|
|
gdb_regs[BFIN_M1] = regs->m1;
|
|
gdb_regs[BFIN_M2] = regs->m2;
|
|
gdb_regs[BFIN_M3] = regs->m3;
|
|
gdb_regs[BFIN_B0] = regs->b0;
|
|
gdb_regs[BFIN_B1] = regs->b1;
|
|
gdb_regs[BFIN_B2] = regs->b2;
|
|
gdb_regs[BFIN_B3] = regs->b3;
|
|
gdb_regs[BFIN_L0] = regs->l0;
|
|
gdb_regs[BFIN_L1] = regs->l1;
|
|
gdb_regs[BFIN_L2] = regs->l2;
|
|
gdb_regs[BFIN_L3] = regs->l3;
|
|
gdb_regs[BFIN_A0_DOT_X] = regs->a0x;
|
|
gdb_regs[BFIN_A0_DOT_W] = regs->a0w;
|
|
gdb_regs[BFIN_A1_DOT_X] = regs->a1x;
|
|
gdb_regs[BFIN_A1_DOT_W] = regs->a1w;
|
|
gdb_regs[BFIN_ASTAT] = regs->astat;
|
|
gdb_regs[BFIN_RETS] = regs->rets;
|
|
gdb_regs[BFIN_LC0] = regs->lc0;
|
|
gdb_regs[BFIN_LT0] = regs->lt0;
|
|
gdb_regs[BFIN_LB0] = regs->lb0;
|
|
gdb_regs[BFIN_LC1] = regs->lc1;
|
|
gdb_regs[BFIN_LT1] = regs->lt1;
|
|
gdb_regs[BFIN_LB1] = regs->lb1;
|
|
gdb_regs[BFIN_CYCLES] = 0;
|
|
gdb_regs[BFIN_CYCLES2] = 0;
|
|
gdb_regs[BFIN_USP] = regs->usp;
|
|
gdb_regs[BFIN_SEQSTAT] = regs->seqstat;
|
|
gdb_regs[BFIN_SYSCFG] = regs->syscfg;
|
|
gdb_regs[BFIN_RETI] = regs->pc;
|
|
gdb_regs[BFIN_RETX] = regs->retx;
|
|
gdb_regs[BFIN_RETN] = regs->retn;
|
|
gdb_regs[BFIN_RETE] = regs->rete;
|
|
gdb_regs[BFIN_PC] = regs->pc;
|
|
gdb_regs[BFIN_CC] = 0;
|
|
gdb_regs[BFIN_EXTRA1] = 0;
|
|
gdb_regs[BFIN_EXTRA2] = 0;
|
|
gdb_regs[BFIN_EXTRA3] = 0;
|
|
gdb_regs[BFIN_IPEND] = regs->ipend;
|
|
}
|
|
|
|
/*
|
|
* Extracts ebp, esp and eip values understandable by gdb from the values
|
|
* saved by switch_to.
|
|
* thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp
|
|
* prior to entering switch_to is 8 greater then the value that is saved.
|
|
* If switch_to changes, change following code appropriately.
|
|
*/
|
|
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
|
|
{
|
|
gdb_regs[BFIN_SP] = p->thread.ksp;
|
|
gdb_regs[BFIN_PC] = p->thread.pc;
|
|
gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat;
|
|
}
|
|
|
|
void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
|
|
{
|
|
regs->r0 = gdb_regs[BFIN_R0];
|
|
regs->r1 = gdb_regs[BFIN_R1];
|
|
regs->r2 = gdb_regs[BFIN_R2];
|
|
regs->r3 = gdb_regs[BFIN_R3];
|
|
regs->r4 = gdb_regs[BFIN_R4];
|
|
regs->r5 = gdb_regs[BFIN_R5];
|
|
regs->r6 = gdb_regs[BFIN_R6];
|
|
regs->r7 = gdb_regs[BFIN_R7];
|
|
regs->p0 = gdb_regs[BFIN_P0];
|
|
regs->p1 = gdb_regs[BFIN_P1];
|
|
regs->p2 = gdb_regs[BFIN_P2];
|
|
regs->p3 = gdb_regs[BFIN_P3];
|
|
regs->p4 = gdb_regs[BFIN_P4];
|
|
regs->p5 = gdb_regs[BFIN_P5];
|
|
regs->fp = gdb_regs[BFIN_FP];
|
|
regs->i0 = gdb_regs[BFIN_I0];
|
|
regs->i1 = gdb_regs[BFIN_I1];
|
|
regs->i2 = gdb_regs[BFIN_I2];
|
|
regs->i3 = gdb_regs[BFIN_I3];
|
|
regs->m0 = gdb_regs[BFIN_M0];
|
|
regs->m1 = gdb_regs[BFIN_M1];
|
|
regs->m2 = gdb_regs[BFIN_M2];
|
|
regs->m3 = gdb_regs[BFIN_M3];
|
|
regs->b0 = gdb_regs[BFIN_B0];
|
|
regs->b1 = gdb_regs[BFIN_B1];
|
|
regs->b2 = gdb_regs[BFIN_B2];
|
|
regs->b3 = gdb_regs[BFIN_B3];
|
|
regs->l0 = gdb_regs[BFIN_L0];
|
|
regs->l1 = gdb_regs[BFIN_L1];
|
|
regs->l2 = gdb_regs[BFIN_L2];
|
|
regs->l3 = gdb_regs[BFIN_L3];
|
|
regs->a0x = gdb_regs[BFIN_A0_DOT_X];
|
|
regs->a0w = gdb_regs[BFIN_A0_DOT_W];
|
|
regs->a1x = gdb_regs[BFIN_A1_DOT_X];
|
|
regs->a1w = gdb_regs[BFIN_A1_DOT_W];
|
|
regs->rets = gdb_regs[BFIN_RETS];
|
|
regs->lc0 = gdb_regs[BFIN_LC0];
|
|
regs->lt0 = gdb_regs[BFIN_LT0];
|
|
regs->lb0 = gdb_regs[BFIN_LB0];
|
|
regs->lc1 = gdb_regs[BFIN_LC1];
|
|
regs->lt1 = gdb_regs[BFIN_LT1];
|
|
regs->lb1 = gdb_regs[BFIN_LB1];
|
|
regs->usp = gdb_regs[BFIN_USP];
|
|
regs->syscfg = gdb_regs[BFIN_SYSCFG];
|
|
regs->retx = gdb_regs[BFIN_PC];
|
|
regs->retn = gdb_regs[BFIN_RETN];
|
|
regs->rete = gdb_regs[BFIN_RETE];
|
|
regs->pc = gdb_regs[BFIN_PC];
|
|
|
|
#if 0 /* can't change these */
|
|
regs->astat = gdb_regs[BFIN_ASTAT];
|
|
regs->seqstat = gdb_regs[BFIN_SEQSTAT];
|
|
regs->ipend = gdb_regs[BFIN_IPEND];
|
|
#endif
|
|
}
|
|
|
|
struct hw_breakpoint {
|
|
unsigned int occupied:1;
|
|
unsigned int skip:1;
|
|
unsigned int enabled:1;
|
|
unsigned int type:1;
|
|
unsigned int dataacc:2;
|
|
unsigned short count;
|
|
unsigned int addr;
|
|
} breakinfo[HW_WATCHPOINT_NUM];
|
|
|
|
int bfin_set_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
|
|
{
|
|
int breakno;
|
|
int bfin_type;
|
|
int dataacc = 0;
|
|
|
|
switch (type) {
|
|
case BP_HARDWARE_BREAKPOINT:
|
|
bfin_type = TYPE_INST_WATCHPOINT;
|
|
break;
|
|
case BP_WRITE_WATCHPOINT:
|
|
dataacc = 1;
|
|
bfin_type = TYPE_DATA_WATCHPOINT;
|
|
break;
|
|
case BP_READ_WATCHPOINT:
|
|
dataacc = 2;
|
|
bfin_type = TYPE_DATA_WATCHPOINT;
|
|
break;
|
|
case BP_ACCESS_WATCHPOINT:
|
|
dataacc = 3;
|
|
bfin_type = TYPE_DATA_WATCHPOINT;
|
|
break;
|
|
default:
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/* Becasue hardware data watchpoint impelemented in current
|
|
* Blackfin can not trigger an exception event as the hardware
|
|
* instrction watchpoint does, we ignaore all data watch point here.
|
|
* They can be turned on easily after future blackfin design
|
|
* supports this feature.
|
|
*/
|
|
for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
|
|
if (bfin_type == breakinfo[breakno].type
|
|
&& !breakinfo[breakno].occupied) {
|
|
breakinfo[breakno].occupied = 1;
|
|
breakinfo[breakno].enabled = 1;
|
|
breakinfo[breakno].addr = addr;
|
|
breakinfo[breakno].dataacc = dataacc;
|
|
breakinfo[breakno].count = 0;
|
|
return 0;
|
|
}
|
|
|
|
return -ENOSPC;
|
|
}
|
|
|
|
int bfin_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
|
|
{
|
|
int breakno;
|
|
int bfin_type;
|
|
|
|
switch (type) {
|
|
case BP_HARDWARE_BREAKPOINT:
|
|
bfin_type = TYPE_INST_WATCHPOINT;
|
|
break;
|
|
case BP_WRITE_WATCHPOINT:
|
|
case BP_READ_WATCHPOINT:
|
|
case BP_ACCESS_WATCHPOINT:
|
|
bfin_type = TYPE_DATA_WATCHPOINT;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
|
|
if (bfin_type == breakinfo[breakno].type
|
|
&& breakinfo[breakno].occupied
|
|
&& breakinfo[breakno].addr == addr) {
|
|
breakinfo[breakno].occupied = 0;
|
|
breakinfo[breakno].enabled = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bfin_remove_all_hw_break(void)
|
|
{
|
|
int breakno;
|
|
|
|
memset(breakinfo, 0, sizeof(struct hw_breakpoint)*HW_WATCHPOINT_NUM);
|
|
|
|
for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
|
|
breakinfo[breakno].type = TYPE_INST_WATCHPOINT;
|
|
for (; breakno < HW_WATCHPOINT_NUM; breakno++)
|
|
breakinfo[breakno].type = TYPE_DATA_WATCHPOINT;
|
|
}
|
|
|
|
void bfin_correct_hw_break(void)
|
|
{
|
|
int breakno;
|
|
unsigned int wpiactl = 0;
|
|
unsigned int wpdactl = 0;
|
|
int enable_wp = 0;
|
|
|
|
for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
|
|
if (breakinfo[breakno].enabled) {
|
|
enable_wp = 1;
|
|
|
|
switch (breakno) {
|
|
case 0:
|
|
wpiactl |= WPIAEN0|WPICNTEN0;
|
|
bfin_write_WPIA0(breakinfo[breakno].addr);
|
|
bfin_write_WPIACNT0(breakinfo[breakno].count
|
|
+ breakinfo->skip);
|
|
break;
|
|
case 1:
|
|
wpiactl |= WPIAEN1|WPICNTEN1;
|
|
bfin_write_WPIA1(breakinfo[breakno].addr);
|
|
bfin_write_WPIACNT1(breakinfo[breakno].count
|
|
+ breakinfo->skip);
|
|
break;
|
|
case 2:
|
|
wpiactl |= WPIAEN2|WPICNTEN2;
|
|
bfin_write_WPIA2(breakinfo[breakno].addr);
|
|
bfin_write_WPIACNT2(breakinfo[breakno].count
|
|
+ breakinfo->skip);
|
|
break;
|
|
case 3:
|
|
wpiactl |= WPIAEN3|WPICNTEN3;
|
|
bfin_write_WPIA3(breakinfo[breakno].addr);
|
|
bfin_write_WPIACNT3(breakinfo[breakno].count
|
|
+ breakinfo->skip);
|
|
break;
|
|
case 4:
|
|
wpiactl |= WPIAEN4|WPICNTEN4;
|
|
bfin_write_WPIA4(breakinfo[breakno].addr);
|
|
bfin_write_WPIACNT4(breakinfo[breakno].count
|
|
+ breakinfo->skip);
|
|
break;
|
|
case 5:
|
|
wpiactl |= WPIAEN5|WPICNTEN5;
|
|
bfin_write_WPIA5(breakinfo[breakno].addr);
|
|
bfin_write_WPIACNT5(breakinfo[breakno].count
|
|
+ breakinfo->skip);
|
|
break;
|
|
case 6:
|
|
wpdactl |= WPDAEN0|WPDCNTEN0|WPDSRC0;
|
|
wpdactl |= breakinfo[breakno].dataacc
|
|
<< WPDACC0_OFFSET;
|
|
bfin_write_WPDA0(breakinfo[breakno].addr);
|
|
bfin_write_WPDACNT0(breakinfo[breakno].count
|
|
+ breakinfo->skip);
|
|
break;
|
|
case 7:
|
|
wpdactl |= WPDAEN1|WPDCNTEN1|WPDSRC1;
|
|
wpdactl |= breakinfo[breakno].dataacc
|
|
<< WPDACC1_OFFSET;
|
|
bfin_write_WPDA1(breakinfo[breakno].addr);
|
|
bfin_write_WPDACNT1(breakinfo[breakno].count
|
|
+ breakinfo->skip);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Should enable WPPWR bit first before set any other
|
|
* WPIACTL and WPDACTL bits */
|
|
if (enable_wp) {
|
|
bfin_write_WPIACTL(WPPWR);
|
|
CSYNC();
|
|
bfin_write_WPIACTL(wpiactl|WPPWR);
|
|
bfin_write_WPDACTL(wpdactl);
|
|
CSYNC();
|
|
}
|
|
}
|
|
|
|
void kgdb_disable_hw_debug(struct pt_regs *regs)
|
|
{
|
|
/* Disable hardware debugging while we are in kgdb */
|
|
bfin_write_WPIACTL(0);
|
|
bfin_write_WPDACTL(0);
|
|
CSYNC();
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
void kgdb_passive_cpu_callback(void *info)
|
|
{
|
|
kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
|
|
}
|
|
|
|
void kgdb_roundup_cpus(unsigned long flags)
|
|
{
|
|
smp_call_function(kgdb_passive_cpu_callback, NULL, 0, 0);
|
|
}
|
|
|
|
void kgdb_roundup_cpu(int cpu, unsigned long flags)
|
|
{
|
|
smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0, 0);
|
|
}
|
|
#endif
|
|
|
|
void kgdb_post_primary_code(struct pt_regs *regs, int eVector, int err_code)
|
|
{
|
|
/* Master processor is completely in the debugger */
|
|
gdb_bfin_vector = eVector;
|
|
gdb_bfin_errcode = err_code;
|
|
}
|
|
|
|
int kgdb_arch_handle_exception(int vector, int signo,
|
|
int err_code, char *remcom_in_buffer,
|
|
char *remcom_out_buffer,
|
|
struct pt_regs *regs)
|
|
{
|
|
long addr;
|
|
long breakno;
|
|
char *ptr;
|
|
int newPC;
|
|
int wp_status;
|
|
int i;
|
|
|
|
switch (remcom_in_buffer[0]) {
|
|
case 'c':
|
|
case 's':
|
|
if (kgdb_contthread && kgdb_contthread != current) {
|
|
strcpy(remcom_out_buffer, "E00");
|
|
break;
|
|
}
|
|
|
|
kgdb_contthread = NULL;
|
|
|
|
/* try to read optional parameter, pc unchanged if no parm */
|
|
ptr = &remcom_in_buffer[1];
|
|
if (kgdb_hex2long(&ptr, &addr)) {
|
|
regs->retx = addr;
|
|
}
|
|
newPC = regs->retx;
|
|
|
|
/* clear the trace bit */
|
|
regs->syscfg &= 0xfffffffe;
|
|
|
|
/* set the trace bit if we're stepping */
|
|
if (remcom_in_buffer[0] == 's') {
|
|
regs->syscfg |= 0x1;
|
|
kgdb_single_step = regs->ipend;
|
|
kgdb_single_step >>= 6;
|
|
for (i = 10; i > 0; i--, kgdb_single_step >>= 1)
|
|
if (kgdb_single_step & 1)
|
|
break;
|
|
/* i indicate event priority of current stopped instruction
|
|
* user space instruction is 0, IVG15 is 1, IVTMR is 10.
|
|
* kgdb_single_step > 0 means in single step mode
|
|
*/
|
|
kgdb_single_step = i + 1;
|
|
}
|
|
|
|
if (vector == VEC_WATCH) {
|
|
wp_status = bfin_read_WPSTAT();
|
|
for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++) {
|
|
if (wp_status & (1 << breakno)) {
|
|
breakinfo->skip = 1;
|
|
break;
|
|
}
|
|
}
|
|
bfin_write_WPSTAT(0);
|
|
}
|
|
|
|
bfin_correct_hw_break();
|
|
|
|
return 0;
|
|
} /* switch */
|
|
return -1; /* this means that we do not want to exit from the handler */
|
|
}
|
|
|
|
struct kgdb_arch arch_kgdb_ops = {
|
|
.gdb_bpt_instr = {0xa1},
|
|
#ifdef CONFIG_SMP
|
|
.flags = KGDB_HW_BREAKPOINT|KGDB_THR_PROC_SWAP,
|
|
#else
|
|
.flags = KGDB_HW_BREAKPOINT,
|
|
#endif
|
|
.set_hw_breakpoint = bfin_set_hw_break,
|
|
.remove_hw_breakpoint = bfin_remove_hw_break,
|
|
.remove_all_hw_break = bfin_remove_all_hw_break,
|
|
.correct_hw_break = bfin_correct_hw_break,
|
|
};
|
|
|
|
static int hex(char ch)
|
|
{
|
|
if ((ch >= 'a') && (ch <= 'f'))
|
|
return ch - 'a' + 10;
|
|
if ((ch >= '0') && (ch <= '9'))
|
|
return ch - '0';
|
|
if ((ch >= 'A') && (ch <= 'F'))
|
|
return ch - 'A' + 10;
|
|
return -1;
|
|
}
|
|
|
|
static int validate_memory_access_address(unsigned long addr, int size)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if (size < 0)
|
|
return EFAULT;
|
|
if (addr >= 0x1000 && (addr + size) <= physical_mem_end)
|
|
return 0;
|
|
if (addr >= SYSMMR_BASE)
|
|
return 0;
|
|
if (addr >= ASYNC_BANK0_BASE
|
|
&& addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
|
|
return 0;
|
|
if (cpu == 0) {
|
|
if (addr >= L1_SCRATCH_START
|
|
&& (addr + size <= L1_SCRATCH_START + L1_SCRATCH_LENGTH))
|
|
return 0;
|
|
#if L1_CODE_LENGTH != 0
|
|
if (addr >= L1_CODE_START
|
|
&& (addr + size <= L1_CODE_START + L1_CODE_LENGTH))
|
|
return 0;
|
|
#endif
|
|
#if L1_DATA_A_LENGTH != 0
|
|
if (addr >= L1_DATA_A_START
|
|
&& (addr + size <= L1_DATA_A_START + L1_DATA_A_LENGTH))
|
|
return 0;
|
|
#endif
|
|
#if L1_DATA_B_LENGTH != 0
|
|
if (addr >= L1_DATA_B_START
|
|
&& (addr + size <= L1_DATA_B_START + L1_DATA_B_LENGTH))
|
|
return 0;
|
|
#endif
|
|
#ifdef CONFIG_SMP
|
|
} else if (cpu == 1) {
|
|
if (addr >= COREB_L1_SCRATCH_START
|
|
&& (addr + size <= COREB_L1_SCRATCH_START
|
|
+ L1_SCRATCH_LENGTH))
|
|
return 0;
|
|
# if L1_CODE_LENGTH != 0
|
|
if (addr >= COREB_L1_CODE_START
|
|
&& (addr + size <= COREB_L1_CODE_START + L1_CODE_LENGTH))
|
|
return 0;
|
|
# endif
|
|
# if L1_DATA_A_LENGTH != 0
|
|
if (addr >= COREB_L1_DATA_A_START
|
|
&& (addr + size <= COREB_L1_DATA_A_START + L1_DATA_A_LENGTH))
|
|
return 0;
|
|
# endif
|
|
# if L1_DATA_B_LENGTH != 0
|
|
if (addr >= COREB_L1_DATA_B_START
|
|
&& (addr + size <= COREB_L1_DATA_B_START + L1_DATA_B_LENGTH))
|
|
return 0;
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
#if L2_LENGTH != 0
|
|
if (addr >= L2_START
|
|
&& addr + size <= L2_START + L2_LENGTH)
|
|
return 0;
|
|
#endif
|
|
|
|
return EFAULT;
|
|
}
|
|
|
|
/*
|
|
* Convert the memory pointed to by mem into hex, placing result in buf.
|
|
* Return a pointer to the last char put in buf (null). May return an error.
|
|
*/
|
|
int kgdb_mem2hex(char *mem, char *buf, int count)
|
|
{
|
|
char *tmp;
|
|
int err = 0;
|
|
unsigned char *pch;
|
|
unsigned short mmr16;
|
|
unsigned long mmr32;
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if (validate_memory_access_address((unsigned long)mem, count))
|
|
return EFAULT;
|
|
|
|
/*
|
|
* We use the upper half of buf as an intermediate buffer for the
|
|
* raw memory copy. Hex conversion will work against this one.
|
|
*/
|
|
tmp = buf + count;
|
|
|
|
if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
|
|
switch (count) {
|
|
case 2:
|
|
if ((unsigned int)mem % 2 == 0) {
|
|
mmr16 = *(unsigned short *)mem;
|
|
pch = (unsigned char *)&mmr16;
|
|
*tmp++ = *pch++;
|
|
*tmp++ = *pch++;
|
|
tmp -= 2;
|
|
} else
|
|
err = EFAULT;
|
|
break;
|
|
case 4:
|
|
if ((unsigned int)mem % 4 == 0) {
|
|
mmr32 = *(unsigned long *)mem;
|
|
pch = (unsigned char *)&mmr32;
|
|
*tmp++ = *pch++;
|
|
*tmp++ = *pch++;
|
|
*tmp++ = *pch++;
|
|
*tmp++ = *pch++;
|
|
tmp -= 4;
|
|
} else
|
|
err = EFAULT;
|
|
break;
|
|
default:
|
|
err = EFAULT;
|
|
}
|
|
} else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START &&
|
|
(unsigned int)(mem + count) <= L1_CODE_START + L1_CODE_LENGTH
|
|
#ifdef CONFIG_SMP
|
|
|| cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START &&
|
|
(unsigned int)(mem + count) <=
|
|
COREB_L1_CODE_START + L1_CODE_LENGTH
|
|
#endif
|
|
) {
|
|
/* access L1 instruction SRAM*/
|
|
if (dma_memcpy(tmp, mem, count) == NULL)
|
|
err = EFAULT;
|
|
} else
|
|
err = probe_kernel_read(tmp, mem, count);
|
|
|
|
if (!err) {
|
|
while (count > 0) {
|
|
buf = pack_hex_byte(buf, *tmp);
|
|
tmp++;
|
|
count--;
|
|
}
|
|
|
|
*buf = 0;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Copy the binary array pointed to by buf into mem. Fix $, #, and
|
|
* 0x7d escaped with 0x7d. Return a pointer to the character after
|
|
* the last byte written.
|
|
*/
|
|
int kgdb_ebin2mem(char *buf, char *mem, int count)
|
|
{
|
|
char *tmp_old;
|
|
char *tmp_new;
|
|
unsigned short *mmr16;
|
|
unsigned long *mmr32;
|
|
int err = 0;
|
|
int size = 0;
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
tmp_old = tmp_new = buf;
|
|
|
|
while (count-- > 0) {
|
|
if (*tmp_old == 0x7d)
|
|
*tmp_new = *(++tmp_old) ^ 0x20;
|
|
else
|
|
*tmp_new = *tmp_old;
|
|
tmp_new++;
|
|
tmp_old++;
|
|
size++;
|
|
}
|
|
|
|
if (validate_memory_access_address((unsigned long)mem, size))
|
|
return EFAULT;
|
|
|
|
if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
|
|
switch (size) {
|
|
case 2:
|
|
if ((unsigned int)mem % 2 == 0) {
|
|
mmr16 = (unsigned short *)buf;
|
|
*(unsigned short *)mem = *mmr16;
|
|
} else
|
|
return EFAULT;
|
|
break;
|
|
case 4:
|
|
if ((unsigned int)mem % 4 == 0) {
|
|
mmr32 = (unsigned long *)buf;
|
|
*(unsigned long *)mem = *mmr32;
|
|
} else
|
|
return EFAULT;
|
|
break;
|
|
default:
|
|
return EFAULT;
|
|
}
|
|
} else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START &&
|
|
(unsigned int)(mem + count) < L1_CODE_START + L1_CODE_LENGTH
|
|
#ifdef CONFIG_SMP
|
|
|| cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START &&
|
|
(unsigned int)(mem + count) <=
|
|
COREB_L1_CODE_START + L1_CODE_LENGTH
|
|
#endif
|
|
) {
|
|
/* access L1 instruction SRAM */
|
|
if (dma_memcpy(mem, buf, size) == NULL)
|
|
err = EFAULT;
|
|
} else
|
|
err = probe_kernel_write(mem, buf, size);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Convert the hex array pointed to by buf into binary to be placed in mem.
|
|
* Return a pointer to the character AFTER the last byte written.
|
|
* May return an error.
|
|
*/
|
|
int kgdb_hex2mem(char *buf, char *mem, int count)
|
|
{
|
|
char *tmp_raw;
|
|
char *tmp_hex;
|
|
unsigned short *mmr16;
|
|
unsigned long *mmr32;
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if (validate_memory_access_address((unsigned long)mem, count))
|
|
return EFAULT;
|
|
|
|
/*
|
|
* We use the upper half of buf as an intermediate buffer for the
|
|
* raw memory that is converted from hex.
|
|
*/
|
|
tmp_raw = buf + count * 2;
|
|
|
|
tmp_hex = tmp_raw - 1;
|
|
while (tmp_hex >= buf) {
|
|
tmp_raw--;
|
|
*tmp_raw = hex(*tmp_hex--);
|
|
*tmp_raw |= hex(*tmp_hex--) << 4;
|
|
}
|
|
|
|
if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
|
|
switch (count) {
|
|
case 2:
|
|
if ((unsigned int)mem % 2 == 0) {
|
|
mmr16 = (unsigned short *)tmp_raw;
|
|
*(unsigned short *)mem = *mmr16;
|
|
} else
|
|
return EFAULT;
|
|
break;
|
|
case 4:
|
|
if ((unsigned int)mem % 4 == 0) {
|
|
mmr32 = (unsigned long *)tmp_raw;
|
|
*(unsigned long *)mem = *mmr32;
|
|
} else
|
|
return EFAULT;
|
|
break;
|
|
default:
|
|
return EFAULT;
|
|
}
|
|
} else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START &&
|
|
(unsigned int)(mem + count) <= L1_CODE_START + L1_CODE_LENGTH
|
|
#ifdef CONFIG_SMP
|
|
|| cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START &&
|
|
(unsigned int)(mem + count) <=
|
|
COREB_L1_CODE_START + L1_CODE_LENGTH
|
|
#endif
|
|
) {
|
|
/* access L1 instruction SRAM */
|
|
if (dma_memcpy(mem, tmp_raw, count) == NULL)
|
|
return EFAULT;
|
|
} else
|
|
return probe_kernel_write(mem, tmp_raw, count);
|
|
return 0;
|
|
}
|
|
|
|
int kgdb_validate_break_address(unsigned long addr)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if (addr >= 0x1000 && (addr + BREAK_INSTR_SIZE) <= physical_mem_end)
|
|
return 0;
|
|
if (addr >= ASYNC_BANK0_BASE
|
|
&& addr + BREAK_INSTR_SIZE <= ASYNC_BANK3_BASE + ASYNC_BANK3_BASE)
|
|
return 0;
|
|
#if L1_CODE_LENGTH != 0
|
|
if (cpu == 0 && addr >= L1_CODE_START
|
|
&& addr + BREAK_INSTR_SIZE <= L1_CODE_START + L1_CODE_LENGTH)
|
|
return 0;
|
|
# ifdef CONFIG_SMP
|
|
else if (cpu == 1 && addr >= COREB_L1_CODE_START
|
|
&& addr + BREAK_INSTR_SIZE <= COREB_L1_CODE_START + L1_CODE_LENGTH)
|
|
return 0;
|
|
# endif
|
|
#endif
|
|
#if L2_LENGTH != 0
|
|
if (addr >= L2_START
|
|
&& addr + BREAK_INSTR_SIZE <= L2_START + L2_LENGTH)
|
|
return 0;
|
|
#endif
|
|
|
|
return EFAULT;
|
|
}
|
|
|
|
int kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
|
|
{
|
|
int err;
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if ((cpu == 0 && (unsigned int)addr >= L1_CODE_START
|
|
&& (unsigned int)(addr + BREAK_INSTR_SIZE)
|
|
< L1_CODE_START + L1_CODE_LENGTH)
|
|
#ifdef CONFIG_SMP
|
|
|| (cpu == 1 && (unsigned int)addr >= COREB_L1_CODE_START
|
|
&& (unsigned int)(addr + BREAK_INSTR_SIZE)
|
|
< COREB_L1_CODE_START + L1_CODE_LENGTH)
|
|
#endif
|
|
) {
|
|
/* access L1 instruction SRAM */
|
|
if (dma_memcpy(saved_instr, (void *)addr, BREAK_INSTR_SIZE)
|
|
== NULL)
|
|
return -EFAULT;
|
|
|
|
if (dma_memcpy((void *)addr, arch_kgdb_ops.gdb_bpt_instr,
|
|
BREAK_INSTR_SIZE) == NULL)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
} else {
|
|
err = probe_kernel_read(saved_instr, (char *)addr,
|
|
BREAK_INSTR_SIZE);
|
|
if (err)
|
|
return err;
|
|
|
|
return probe_kernel_write((char *)addr,
|
|
arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
|
|
}
|
|
}
|
|
|
|
int kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
|
|
{
|
|
if ((unsigned int)addr >= L1_CODE_START &&
|
|
(unsigned int)(addr + BREAK_INSTR_SIZE) <
|
|
L1_CODE_START + L1_CODE_LENGTH) {
|
|
/* access L1 instruction SRAM */
|
|
if (dma_memcpy((void *)addr, bundle, BREAK_INSTR_SIZE) == NULL)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
} else
|
|
return probe_kernel_write((char *)addr,
|
|
(char *)bundle, BREAK_INSTR_SIZE);
|
|
}
|
|
|
|
int kgdb_arch_init(void)
|
|
{
|
|
kgdb_single_step = 0;
|
|
|
|
bfin_remove_all_hw_break();
|
|
return 0;
|
|
}
|
|
|
|
void kgdb_arch_exit(void)
|
|
{
|
|
}
|